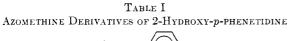
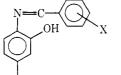
New Compounds


Derivatives of 2-Hydroxy-*p*-phenetidine. I. Azomethines¹


Moses J. NAMKUNG AND T. LLOYD FLETCHER

Chemistry Research Laboratory of the Department of Surgery, University of Wasington School of Medicine, Seattle, Washington 98105

Received November 12, 1969

We have reported² an improved synthesis of 2-hydroxy-*p*-phenetidine. The *N*-acetyl derivative of this compound has recently been identified³ as a toxic metabolite of *p*-acetophenetide (phenacetin) in the urine of cats, dogs, and humans. Since the azomethine

Com-

pound		Yield, a			
no.	X	Mp, °C	%	Formula ^b	
1	\mathbf{H}^{c}	109 - 110	90	$\mathrm{C}_{15}\mathrm{H}_{15}\mathrm{NO}_2$	
2	2-OH ^c	151 - 152	90	$\mathrm{C_{15}H_{15}NO_{3}}$	
3	3-OH ^{<i>d</i>}	137 - 138	46	$\mathrm{C}_{15}\mathrm{H}_{15}\mathrm{NO}_{3}$	
4	4-OH ^c	108 - 109	60	$\mathrm{C}_{15}\mathrm{H}_{15}\mathrm{NO}_3$	
5	$3\text{-OCH}_3\text{-}4\text{-OH}^e$	136 - 137	95	$\mathrm{C}_{16}\mathrm{H}_{17}\mathrm{NO}_4$	
6	$3,4-CH_2O_2{}^{\prime}$	131 - 132	61	$C_{16}H_{15}NO_4$	
7	$3, 4-(OCH_3)_2^c$	114 - 115	84	$\mathrm{C}_{17}\mathrm{H}_{19}\mathrm{NO}_4$	
8	$3,4,5-(OCH_3)_3$	118 - 119	69	$\mathrm{C}_{18}\mathrm{H}_{21}\mathrm{NO}_5$	
9	4-NHCOCH ₃ ^c	190 - 191	81	$\mathrm{C_{17}H_{18}N_2O_{\delta}}$	
10	$4-N(CH_3)_2^e$	167 - 168	77	${ m C_{17}H_{20}N_2O_2}$	
11	$2-NO_2^c$	104 - 105	49	$\mathrm{C}_{15}\mathrm{H}_{14}\mathrm{N}_{2}\mathrm{O}_{4}$	
12	$3-NO_2^c$	119 - 120	61	$\mathrm{C_{15}H_{14}N_{2}O_{4}}$	
13	$4-\mathrm{NO}_2^f$	147 - 148	70	$\mathrm{C_{15}H_{14}N_{2}O_{4}}$	
14	2-Cl^{e}	85 - 86	53	$C_{15}H_{14}ClNO_2$	
15	3-Cl/	97 - 98	68	$\mathrm{C}_{15}\mathrm{H}_{14}\mathrm{ClNO}_2$	
16	4-Cl ^c	125 - 126	65	$\mathrm{C}_{15}\mathrm{H}_{14}\mathrm{ClNO}_2$	
17	$2,6-Cl_{2}$	111 - 112	63	$\mathrm{C}_{15}\mathrm{H}_{13}\mathrm{Cl}_2\mathrm{NO}_2$	
18	$3, 4-Cl_{2}^{c}$	117-118	63	$\mathrm{C_{15}H_{13}Cl_2NO_2}$	
19	$3,5$ - Cl_{2}^{g}	104 - 105	83	$\mathrm{C_{15}H_{13}Cl_2NO_2}$	
20	H ^e [cinnamylidene]	115 - 116	57	$\mathrm{C}_{17}\mathrm{H}_{17}\mathrm{NO}_2$	

^a Yield after one recrystallization (EtOH). ^b All of the compounds had correct analyses for C, H, and N (within 0.4% of the theoretical) except compound **13**: Calcd for C₁₅H₁₄N₂O₄: C, 62.93; H, 4.93; N, 9.79. Found: C, 62.70; H, 5.40; N, 9.85. All analyses were done by Dr. A. Bernhardt, Elbach über Engelskirchen, Germany. Aldehy deobtained from ^c The Matheson Co., Inc. ^d J. T. Baker Chemical Co. ^e Eastman Kodak Co. ^f Aldrich Chemical Co. ^e Synthesized in this laboratory by the method of H. S. Sharadamma, S. H. Kulkarni, P. B. Sattur, and K. S. Nargund, J. Karnatak Univ., **1**, 61 (1956).

linkage is not unknown, and even plays a role, in certain physiological reactions,⁴ it occurred to us to

(4) D. E. Metzler, M. Ikawa, and E. E. Snell, J. Amer. Chem. Soc., 76, 648 (1954).

prepare a series of compounds condensing this biologically interesting amine with various aryl aldehydes seeking compounds of possible therapeutic value. Twenty new compounds were made and are presented in Table I. Their ir spectra had a band at 1626-1618 cm⁻¹ (C=N stretching).⁵

In addition to these azomethines, the parent amine and its N-acetyl derivative were tested in BDF_1 mice (with L1210 lymphoid leukemia) for antitumor activity by the Cancer Chemotherapy National Service Center, NCI. All of the compounds were inactive. It is of interest that whereas both 2-hydroxy-*p*-phenetidine and 2-hydroxy-*p*-acetophenetide were toxic at a dosage of 150 mg/kg (5/6 deaths with the amine, and 6/6 with the N-acetyl derivative), only one of the 20 azomethines caused a death at 400 mg/kg, the highest dose tested (**2**, Table I, 1 death of 6 mice tested).

Experimental Section⁶

The condensations between the amine and the various aldehydes were performed as described in the following procedure for N-benzylidene-2-hydroxy-p-phenetidine. To a hot (60°) solution of 7.6 g (0.05 mol) of 2-hydroxy-p-phenetidine in 50 ml of EtOH, 5.3 g (0.05 mol) of PhCHO was added slowly and the mixture was boiled for 10 min. Upon cooling to room temperature, a creamy white precipitate came out giving 15.5 g (95%), mp 109-110°. One recrystallization from EtOH gave an analytical sample with the same melting point.

Acknowledgment.—We wish to thank Alice C. Lee for obtaining the ir spectra.

(5) K. Nakanishi, "Infrared Absorption Spectroscopy," Holden-Day Inc.. San Francisco, Calif., 1962, p 222; The usual range given for C==N is 1690-1640 cm⁻¹, but this is shifted by the effects of conjugation. The spectra were run on a Beckman IR-5 instrument (KBr disks).

(6) Melting points were determined on a Fisher-Johns block and are corrected to standards.

2,3-Dihydro-4(1H)-quinazolinone Derivatives

G. BONOLA AND E. SIANESI

Research Division, Recordati s.a.s., Milan, Italy

Received August 1, 1969

As a part of a search for 2,3-dihydro-4(1H)-quinazolinone compounds with possible pharmacological activity,¹ some potential antipyretic, hypotensive, and CNS depressant 3-aminoalkyl-2,3-dihydro- and 3-amino-2,3-dihydro-4(1H)-quinazolinone derivatives were prepared; moreover, a series of 3-hydroxy-2,3-dihydro-4(1H)-quinazolinone derivatives was synthesized as possible antibacterial² and antifungal agents on the basis of the known activity of some benzohydroxamic and cyclic hydroxamic acids (Table I).

⁽¹⁾ Supported in part by Grant No. CA-01744 from the National Cancer Institute and by Career Development Award 5-K03-CA-14,991 (T.L.F.).

⁽²⁾ M. J. Namkung and T. L. Fletcher, J. Med. Chem., 12, 348 (1969).

⁽³⁾ A. Klutch, M. Harfenist, and A. H. Conney, *ibid.*, 9, 63 (1966).

⁽¹⁾ G. Bonola, P. Da Re, M. J. Magistretti, E. Massarani, and I. Setnikar, J. Med. Chem., 11, 1136 (1968).

⁽²⁾ Bacteriostatic 3-hydroxy-2,3-dihydro-4(1H)-quinazolinones have been quite recently reported by Farbwerke Hoechst A.-G., Netherland Appl. 6,609,924 (1967); Chem. Abstr., **68**, 59609 (1968).

TABLE I H I N H H R H RR'

			()		
No.	R	R'	Re- crystn solvent ^o	$\mathrm{Mp}_{*} \cong \mathbb{C}$	Yieid, 'a
1	H	CH_(N)O	${}^{\rm A}_{\rm B}$	$144-145 \\ 195-198^{b}$	60
2	C_6H_5	CH_N_0		$rac{163}{85^c}$	71
3	$2-\mathrm{HOC}_6\mathrm{H}_4$	$-CH_{\rm ele} N = 0$	В	$183 - 185 \\ 100 - 110^{5}$	62
4	4-HOC ₆ H ₄	(H ₁)N(0)	С	182-183	42
5	4-ClC ₆ H ₄	·CH_N_O	C	$163 \ 165$	61
6	II	· (H ₂)N	${}^{\rm A}_{\rm B}$	$137 - 138 \\ 185 - 187^{b}$	65
7	C_6H_5	CH - N		110-112	74
8	$2-HOC_6H_4$	$\mathcal{C}\mathcal{H} \in \mathbf{N}$		153-155	54
9	4-HOC ₆ H ₄	-tH + N	Е	180-182	37
10	$4-\mathrm{ClC}_6\mathrm{H}_4$.CH_N	А	157-158	::-4
11 12 13	H C ₆ H ₅ 2-HOC ₆ H ₄	$(CH_2)_2N(C_2H_5)_2$ $(CH_2)_2N(C_2H_5)_2$ $(CH_2)_2N(C_2H_5)_2$ $(CH_2)_2N(C_2H_5)_2$	F B B D	$\begin{array}{c} 60 - 62 \\ 159 - 162^{b} \\ 112 - 114 \\ 139^{c} \\ 150 - 164 \end{array}$	65 48 39 72
$\frac{14}{15}$	$\begin{array}{l} \text{4-HOC}_6\text{H}_4 \\ \text{4-ClC}_6\text{H}_4 \end{array}$	$(CH_2)_2N(C_2H_5)_2 (CH_2)_2N(C_2H_5)_2$	B F	$159-161 \\ 117 - 118$	65
16	H	CHAN	А	131-132	53
17	C_6H_δ	$+CH_{1,2}$	Ċ	189-190	65
18	$2-\mathrm{HOC}_6\mathrm{H}_4$	(H ₁),N	D	177-178	74
19	$4-HOC_6H_4$	CH_CX	E	176-178	71
20	$4\text{-}\mathrm{ClC}_6\mathrm{H}_4$	CH ₂ N	C	$177 \cdot 178$	79
$21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 29 \\ 301 \\ 33 \\ 33 \\ 33 \\ 33 \\ 33 \\ 33 \\ 3$	H C_6H_5 4-HOC $_8H_4$ C_6H_5 2-HOC $_8H_4$ 4-HOC $_8H_4$ 4-ClC $_8H_4$ 2-HOC $_8H_4$ 4-HOC $_8H_4$ 4-ClC $_8H_4$ H C_6H_5	$\begin{array}{c} (CH_2)_2 N(CH_3)_2 \\ (CH_2)_2 N(CH_3)_2 \\ (CH_2)_2 N(CH_3)_2 \\ (CH_2)_2 N(CH_3)_2 \\ (CH_2)_3 N(CH_3)_2 \\ N(CH_3)_2 \\ N(CH_3)_2 \\ N(CH_3)_2 \\ N(CH_3)_2 \\ N(CH_3)_2 \\ NHC_6H_5 \\ NHC_6H_5 \\ NHC_8H_5 \\ NHC_8H_5 \\ OH \\ OCH_2 CH_2 N(CH_3)_2 \end{array}$	F B C A A C G A E H C B П	104-105 161-163 194-196 142-143 170-171 197-199 188-190 153-155 193-195 206-208 208-210 141-144 123-128 dec ⁶	$\begin{array}{c} 82 \\ 69 \\ 64 \\ 72 \\ 56 \\ 60 \\ 50 \\ 79 \\ 45 \\ 71 \\ 65 \\ 35 \\ 80 \end{array}$
34	C_6H_5	OCH CH N OCH CH N OCH CH N	В	144-147	30
35	C_6H_5		Н	139-143 \det^b	67
$36 \\ 37 \\ 38 \\ 40 \\ 41 \\ 42 \\ 43 \\ 44 \\ 45 \\ 46 \\ 47 $	$\begin{array}{c} C_{6}H_{6}\\ C_{6}H_{5}\\ C_{6}H_{5}\\ C_{6}H_{5}\\ C_{6}H_{5}\\ C_{6}H_{5}\\ C_{6}H_{5}\\ C_{6}H_{5}\\ 2\text{-}CH_{3}OC_{6}H_{4}\\ 2\text{-}CH_{3}OC_{6}H_{4}\\ 4\text{-}CH_{3}OC_{5}H_{4}\\ 4\text{-}CH_{2}OC_{6}H_{4}\\ 4\text{-}CH_{2}OC_{6}H_{4}\\ \end{array}$	$\begin{array}{c} OCH_2C_{\theta}H_{\delta} \\ OCH_2CH_2CH=CH_2 \\ OCH_2C=CH \\ OCOC_{\theta}H_{\delta} \\ OCH_2COOCH_3 \\ OCH_2COOC_2H_5 \\ OCH_2COOH \\ OH \\ OCH_2COOC_2H_5 \\ OCH_2COOC_2H_5 \\ OCH_2COOC_2H_5 \\ OH \\ OCH \\ OCH_2COOC_2H_5 \\ OH \\ OCH \\$	I C C C C I C A C C B A C C	170-173 142-144 178-180 193-195 140-143 142-144 158-160 dec ^b 162-165 150-153 194-197 144-146 175-177	$\frac{81}{771} \\ \frac{71}{64} \\ \frac{68}{730} \\ \frac{202}{73} \\ \frac{73}{58} \\ \frac{30}{35} \\ \frac{35}{35} \\ \frac$

id. Z	Formula	Analyses
0	$C_{14}H_{19}N_3O_2$	C, H, N N, Cl
	$\mathrm{C}_{14}\mathrm{H}_{19}\mathrm{N}_{3}\mathrm{O}_{2}\cdot\mathrm{HCl}$	
1	${f C_{20} H_{23} N_3 O_2 \over C_{20} H_{23} N_3 O_2 \cdot C_6 H_8 O_7{}^d}$	С, И, N N
2	$\begin{array}{c} { m C}_{20}{ m H}_{23}{ m N}_{3}{ m O}_{3} \\ { m C}_{20}{ m H}_{23}{ m N}_{3}{ m O}_{3}\cdot{ m C}_{6}{ m H}_{8}{ m O}_{7}{}^{d} \end{array}$	C, H, N C, H, N
2	$C_{20}H_{23}N_3O_8$	С, Н, Х
1	$\mathrm{C}_{20}\mathrm{H}_{22}\mathrm{ClN}_3\mathrm{O}_2$	C, H, Cl, N
5	${ m C_{15}H_{21}N_{3}O} \ { m C_{15}H_{21}N_{3}O\cdot HCl}$	C, H, N N, Cl
4	$C_{21}H_{25}N_8O$	С. Н. Х
4	$\mathrm{C}_{21}\mathrm{H}_{25}\mathrm{N}_{3}\mathrm{O}_{2}$	С, И, Х
7	$C_{21}H_{25}N_{3}O_{2}$	С. Н. Х
-1	$C_{21}H_{24}CIN_3O$	с. н, с, х
-)	$C_{14}H_{21}N_{3}O = C_{14}H_{21}N_{3}O + HC1$	C, H, N N, Cl C, H, N C, H, N C, H, N C, H, N
8 9 2 5	$\begin{array}{c} C_{20}H_{25}N_{3}O\\ C_{20}H_{25}N_{3}O_{2} \end{array}$	C, H, N C, H, N
2	$-C_{20}H_{25}N_3O_2$	С, Н, N С, Н, Cl, N
5	$C_{20}H_{24}CIN_{3}O$	С, И, СІ, Х
3	$C_{14}H_{19}N_{3}O$	С, Н, Х
.ī,	$C_{20}H_{23}N_3O$	С, Н, Х
4	$\mathrm{C}_{20}\mathrm{H}_{23}\mathrm{N}_{3}\mathrm{O}_{2}$	С, Н, N
1	$C_{20}H_{23}N_{2}O_{2}$	С. Н. Х
9	$\mathrm{C}_{20}\mathrm{H}_{22}\mathrm{ClN}_{3}\mathrm{O}$	С, Н, СІ, Х
2	$C_{12}H_{17}N_{3}O$	С.,Н, Х
9 4	$C_{18}H_{21}N_3O \\ C_{18}H_{21}N_3O_2$	C, H, N C, II, N
4 7 2 6	$C_{19}H_{26}N_{3}O_{2}$ $C_{19}H_{26}N_{3}O$	
2	$C_{16}H_{17}N_3O$	C, H, N C, II, N C, H, N C, II, N
$\overline{6}$	$\mathrm{C}_{16}\mathrm{H}_{17}\mathrm{N}_{3}\mathrm{O}_{2}$	C, H, N
()	$C_{16}H_{17}N_3O_2$	C, H, N C, H, Cl, N
0	$C_{16}H_{16}CIN_3O$	= C, H, Cl, N
9	$C_{20}H_{17}N_3O_2$	C, H, N
5	$C_{20}H_{17}N_3O_2$	$-0, \mathbf{H}, \mathbf{N}$
1	$\begin{array}{c} C_{20}H_{16}CIN_{3}O\\ C_{3}H_{5}N_{2}O_{2}\end{array}$	- C, H, Cl, N - C, H, N
1 5 5	$C_{18}H_{20}N_3O_2$	C, H, N C, H, N C, H, Cl, X C, H, Cl, X C, H, N C, H, N
0	$C_{20}H_{23}N_3O_3$	С. Н. Х
7	$C_{21}H_{25}N_3O_2$	С, Н, Х
1	$\mathrm{C}_{21}\mathrm{H}_{18}\mathrm{N}_{2}\mathrm{O}_{2}$	С, Н, Х
7	$C_{17}H_{16}N_2O_2$	C, C
1	$C_{17}\Pi_{14}N_2U_2$	C, H, N C, H, N
7	C_{1} -H ₁ $(N_{2}O_{3})$	C, H, N
	$C_{18}H_{18}N_2O_4$	C, H, N C, H, N C, H, N
0	$C_{16}H_{14}N_2O_4$	C, H, N C, H, N C, H, N
2	$\begin{array}{c} C_{11}H_{14}N_2O_2\\ C_{21}H_{16}N_2O_3\\ C_{21}H_{16}N_2O_3\\ C_{15}H_{16}N_2O_4\\ C_{15}H_{16}N_2O_4\\ C_{16}H_{14}N_2O_4\\ C_{16}H_{14}N_2O_3\\ C_{16}H_{14}N_2O_3\\ C_{16}H_{14}N_2O_3\\ \end{array}$	C, H, N C, H, N
3		C, H, N
17148302380	$C_{15}H_{14}N_2O_3 \\ C_{19}H_{23}N_3O_3$	C, H, N C, H, N C, H, N C, II, N
	······································	··, ··, ··

С, Н, N

 $C_{21}H_{25}N_8O_4$

Re.

No.	R	R′	Re- crystn solvent ^a	Mp, °C	Yield, %	Formula	Analyses
48	$4\text{-}CH_3OC_6H_4$	OCH,CH,N	С	180-182	50	$C_{22}H_{27}N_3O_3$	С, Н, N
$49 \\ 50 \\ 51$	$\begin{array}{l} \mbox{4-CH}_3{ m OC}_6{ m H}_4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\stackrel{\rm OCH_2COOC_2H_5}{\stackrel{\rm OH}{ m OH}}_{ m OCH_2CH_2N(CH_3)_2}$	${}^{\mathrm{C}}_{\mathrm{J}}$	$\begin{array}{c} 128 - 130 \\ 201 - 204 \\ 122 - 124 \end{array}$		${f C_{19}H_{20}N_2O_5}\ {f C_{16}H_{16}N_2O_4}\ {f C_{20}H_{25}N_3O_4}$	C, H, N C, H, N C, H, N
52	$2,3-(CH_3O)_2C_6H_3$	OCH3CH3N O	н	140 - 142	52	${ m C}_{22}{ m H}_{27}{ m N}_{3}{ m O}_{5}$	С, Н, N
53	$2,3-(CH_3O)_2C_6H_3$	OCH ₂ CH ₂ N	н	143–145	40	$C_{23}H_{29}N_3O_4$	C, H, N
$54 \\ 55 \\ 56$	$^{2,3-(CH_{3}O)_{2}C_{6}H_{3}}_{3,4-(CH_{3}O)_{2}C_{6}H_{3}}_{3,4-(CH_{3}O)_{2}C_{6}H_{3}}$	$OCH_2COOC_2H_5$ OH $OCH_2CH_2N(CH_3)_2$	${}^{\mathrm{C}}_{\mathrm{C}}$	126–128 191–193 dec 171–173	$ \begin{array}{r} 66 \\ 75 \\ 55 \end{array} $	$\substack{ \mathrm{C}_{20}\mathrm{H}_{22}\mathrm{N}_{2}\mathrm{O}_{6} \\ \mathrm{C}_{16}\mathrm{H}_{16}\mathrm{N}_{2}\mathrm{O}_{4} \\ \mathrm{C}_{20}\mathrm{H}_{25}\mathrm{N}_{3}\mathrm{O}_{4} }$	C, H, N C, H, N C, H, N
57	$3,4-(CH_{3}O)_{2}C_{6}H_{3}$	OCH,CH,NO	С	192 - 194	47	${\rm C}_{22}{\rm H}_{27}{\rm N}_{3}{\rm O}_{5}$	С, Н, N
58	3,4-(CH ₃ O) ₂ C ₆ H ₃	OCH ₂ CH ₂ N	С	156 - 158	48	$C_{23}H_{29}N_3O_4$	C, H, N
$\begin{array}{c} 59 \\ 60 \end{array}$	$^{3,4-(CH_{3}O)_{2}C_{6}H_{3}}_{2,5-(CH_{3}O)_{2}C_{6}H_{3}}$	$OCH_2COOC_2H_5$ OH	${}^{\mathrm{C}}_{\mathrm{C}}$	$155 - 157 \\ 169 - 171$	$\frac{75}{75}$	$\substack{\mathrm{C}_{20}\mathrm{H}_{22}\mathrm{N}_{2}\mathrm{O}_{6}\\\mathrm{C}_{16}\mathrm{H}_{16}\mathrm{N}_{2}\mathrm{O}_{4}}$	C, H, N C, H, N
61	$2,5-(CH_3O)_2C_6H_3$	OCH ₂ CH ₂ N	н	118-121	60	$C_{23}H_{29}N_{3}O_{4}$	C, H, N
$\begin{array}{c} 62 \\ 63 \\ 64 \\ 65 \end{array}$	$\begin{array}{l} 2,5\text{-}(\mathrm{CH_{3}O})_{2}\mathrm{C_{6}H_{3}}\\ 2\text{-}\mathrm{O_{2}NC_{6}H_{4}}\\ 3\text{-}\mathrm{O_{2}NC_{6}H_{4}}\\ 4\text{-}\mathrm{O_{2}NC_{6}H_{4}} \end{array}$	OCH₂COOC₂H₅ OH OH OH OH	C K C A	155–157 208–211 dec 192–194 122–123 dec	$\begin{array}{c} 65 \\ 84 \\ 85 \\ 73 \end{array}$	$\begin{array}{c} C_{20}H_{22}N_2O_6\\ C_{14}H_{11}N_8O_4\\ C_{14}H_{11}N_3O_4\\ C_{14}H_{11}N_3O_4\\ C_{14}H_{11}N_3O_4\end{array}$	C, H, N C, H, N C, H, N C, H, N C, H, N
66	$4-O_2NC_6H_4$	OCH_CH_NO	В	151 - 153	55	$\mathrm{C}_{20}\mathrm{H}_{22}\mathrm{N}_4\mathrm{O}_5$	C, H, N
$\begin{array}{c} 67 \\ 68 \end{array}$	$4-O_2NC_6H_4$ $2-ClC_6H_4$	OCH_COOC_H. OH	C C	133-135 170-172	$\frac{51}{80}$	$C_{18}H_{17}N_3O_6$ $C_{14}H_{11}ClN_2O_2$	C, H, N C, H, N, Cl
69	2-ClC_6H_4	OCH ₂ CH ₂ N_O	С	190 - 192	60	$\mathrm{C}_{20}\mathrm{H}_{22}\mathrm{ClN_3O_3}$	C, H, N, Cl
70 71	2-ClC ₆ H ₄ 2-Furyl	OCH ₂ COOC ₂ H ₃ OH	C D	$157 extsf{}159$ $163 extsf{}166$	90 30	${ m C_{18}H_{17}ClN_2O_4}\ { m C_{12}H_{10}N_2O_3}$	C, H, N, Cl C, H, N
72	2-Furyl	OCH_CH_N HCl	\mathbf{H}	$197 - 201^{b}$	50	$\mathrm{C}_{19}\mathrm{H}_{23}\mathrm{N}_{3}\mathrm{O}_{3}\cdot\mathrm{HCl}$	C, H, N, Cl
73	2-Furyl	OCH_COOC_H	С	128 - 129	7 2	$\mathrm{C_{16}H_{16}N_{2}O_{5}}$	С, Н, N
74 ^{<i>i</i>}	$C_{6}H_{5}$	OH	В	173 - 175	50	$C_{15}H_{14}N_2O_2$	C, H, N
75'	$C_{\theta}H_{\mathfrak{z}}$	OCH_CH_N_O	J	116-118	45	$C_{21}H_{25}N_3O_3$	С, Н, N
$76^{f} \\ 77^{f} \\ 78^{g}$	$\begin{array}{c} \mathrm{C}_6\mathrm{H}_5\\ \mathrm{C}_6\mathrm{H}_5 \end{array}$	$\begin{array}{c} OCH_{2}CH_{2}N(CH_{3})_{2} \cdot HCl\\ OCH_{2}COOC_{2}H_{\delta}\\ OH \end{array}$	H F A	$181 - 184^{b}$ 108 - 110 193 - 195	${60 \atop 50 \\ 10}$	$\begin{array}{c} { m C_{19}H_{23}N_3O_2 \cdot HCl} \\ { m C_{19}H_{20}N_2O_4} \\ { m C_{13}H_{16}N_2O_2} \end{array}$	C, H, N, Cl C, H, N C, H, N
79 ^h		OCH_CH_N_O	Α	143-144	50	$C_{16}H_{23}N_{3}O_{3}$	C, H, N
80^{λ}		OCH,CH,N	Н	130–135 dec^b	70	$C_{17}H_{25}N_3O_2$	C, H, N
81 ^h		$OCH_2C_6H_5$	F	132-133	75	$C_{17}H_{18}N_2O_2$	С, Н, N

^a A = C₆H₆, B = *i*-PrOH, C = 95% EtOH, D = AcOEt, E = Me₃CO, F = C₆H₆-ligroin, G = *i*-PrOH-H₂O, H = MeCN, I = MeOH, J = C₆H₆-cyclohexane, K = AcOH. ^b In sealed capillary tube. ^c Unsharp. ^d C₆H₅O₇ = citric acid. ^e On a Kofler bench. ^f 1-CH₃. ^g 2,2-Pentamethylene. ^h 2,2-(CH₃)₂.

Experimental Section³

N-(2-Piperidinoethyl)-2-aminobenzamide.—To a solution of 12.8 g (0.1 mol) of N-(2-aminoethyl)piperidine in 400 ml of H₂O was added 16.3 g (0.1 mol) of isatoic anhydride and the mixture was stirred for 0.5 hr at room temperature and for 0.5 hr at 45°. After standing overnight a saturated solution of Na₂-CO₃ was added to ensure a complete separation of the product, which was collected, dissolved in dilute HCl, and precipitated from the filtered solution with excess Na₂CO₃: yield 20 g (81%), mp 130–132°. An analytical sample (from C₆H₆) melted at 130–132°. Anal. (C₁₄H₂₁N₃O) C, H, N. The dihydrochloride salt decomposes at about 200° (from 99% EtOH). Anal. (C₁₄H₂₁N₃O·2HCl) N, Cl.

N-(2-Pyrrolidinoethyl)-2-aminobenzamide.—To a solution of 11.4 g (0.1 mol) of 2-pyrrolidinoethylamine in 100 ml of 99% EtOH was added 16.3 g (0.1 mol) of isatoica nhydride and the mixture was refluxed for 1 hr. The residue obtained by evaporating the solvent was taken up in dilute HCl. The acid solution was made alkaline with excess Na₂CO₃ and the product which separated was collected and recrystallized from ligroin to yield 11.6 g (50%) of pure product, mp 100–101°. Anal. (C₁₃H₁₉N₃O) C, H, N.

2-Methylaminobenzohydroxamic acid was prepared as described⁴ for 2-aminobenzohydroxamic acid, substituting methyl N-methylanthranilate for methyl anthranilate. After concentrating the reaction mixture, the sodium salt was collected and dissolved in H₂O. The filtered solution was made acid with AcOH and a cream-colored solid in 72% yield was obtained, mp 120-124°. An analytical sample (C₆H₆) melted at 122-124°. Anal. (C₈H₁₀N₂O₂) C, H, N.

⁽³⁾ Melting points are uncorrected and were determined on a Kofler micro hot stage unless otherwise specified. The uv absorptions of all the 2,3-dihydro-4(1H)-quinazolinone compounds were consistent with the given structures, *i.e.*, maxima around 220 and 345 nm (log ϵ ca. 4.5 and 3.4), respectively (cf. G. Bonola and E. Sianesi, Ber., in press.). When analyses are indicated only by symbols of the elements, analytical results obtained for those elements were within $\pm 0.4\%$ of the theoretical values.

⁽⁴⁾ A. W. Scott and B. L. Wood, J. Org. Chem., 7, 515 (1942).

General Procedures.—The products were prepared by condensing equimolar amounts of the appropriate 2-aminobenzamide or 2-aminobenzohydroxamic acid and of the aldehyde or ketone in absolute EtOH at room (43, 65, 68) or at boiling (63, 64) temperature, in boiling aqueous EtOH in the presence of NaOH (1, 6, 11, 16, 21, 32, 43, 45, 50, 55, 60, 71), or in boiling absolute EtOH in the presence of piperidine (74), dry HCl (78), or NaOEt (remaining products). Work-up followed as usual.

3- N_i , N-Disubstituted Aminoethoxy-2,3-dihydro-4(1H)quinazolinones. General Procedure. To 1 mol of the K salt of the 3-hydroxy-2,3-dihydro-4(1H)-quinazolinone in *i*-PrOH, 1 mol of 2-dialkylaminoethyl chloride was added. The mixture was refluxed for 3-4 hr and filtered from KCl. The products either crystallized directly or were obtained by concentration. Recrystallization from an appropriate solvent gave pure bases except **72** and **76**, for which only the hydrochloride salts fulfilled the analytical requirements.

3-Carbalkoxymethoxy-2,3-dihydro-4(1H)-quinazolinones. **General Procedure.**—To a solution of 3-hydroxy-2,3dihydro-4(1H)-quinazolinone in 1 equiv of alcoholic KOH 1 equiv of alkyl bromoacetate was added and the mixture was allowed to stand till the product separated; **77** was obtained on dilution with H_2O .

2-Phenyl-3-carboxymethoxy-2,3-dihydro-4(1H)-quinazolinone (42) was obtained by hydrolysis at room temperature of the ester 41 with 1 equiv of methanolic KOH, workup as usual.

2-Phenyl-3-benzoyloxy-2,3-dihydro-4(1H)-quinazolinone (39) was obtained by Schotten-Baumann acylation of 2phenyl-3-hydroxy-2,3-dihydro-4(1H)-quinazolinone.

2-Phenyl-3-benzyloxy-2,3-dihydro-4(1H)-quinazolinone (36).—To a solution of 2.4 g (0.01 mol) of 2-phenyl-3hydroxy-2,3-dihydro-4(1H)-quinazolinone in 10 ml of methanolic 1. N KOH 1.3 g (0.01 mol) of PhCH₂Cl was added. The mixture was refluxed for 1 hr and the product separated on cooling. In a similar way **2,2-dimethyl-3-benzyloxy-2,3-dihydro-4(1H)quinazolinone (81)** was obtained after dilution with H_2O of the reaction mixture.

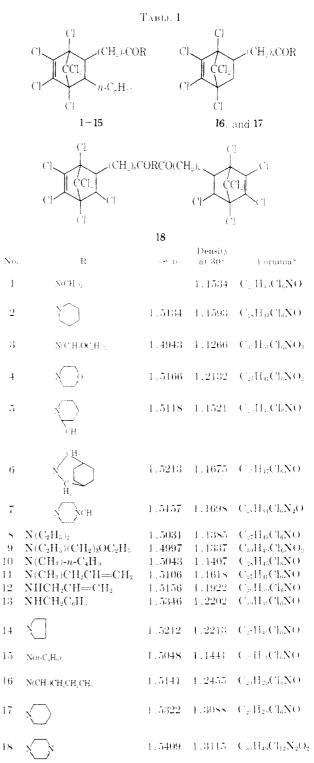
2-Phenyl-3-allyloxy-2,3-dihydro-4(1H)-quinazolinone (**37**).--To a solution of 2.8 g (0.01 mol) of the potassium salt of 2-phenyl-3-hydroxy-2,3-dihydro-4(1H)-quinazolinone in 10 ml of DMF 0.8 g (0.01 mol) of allyl bromide was added. The reaction mixture was set for 4 hr at room temperature and then poured into H₂O. The separated oil was extracted in CHCl₃, and the extract was washed (H₂O), dried, and evaporated to give erude **37**. Similarly, **2-phenyl-3-propargyloxy-2,3-dihydro-4(1H)-quinazolinone (38)** was prepared.

Hexachlorocyclopentadiene Adducts of Unsaturated Amides

ROBERT R. MOD, FRANK C. MAGNE, EVALD L. SKAU, AND GENE SUMRELL

Southern Regional Research Laboratory,¹ New Orleans, Louisiana 70119

Received November 6, 1969


It was previously shown that monoolefinic compounds react with hexachlorocyclopentadiene to give Diels-Alder adducts, some of which have exceptional insecticidal activity.² Previous publications³⁻⁵ from this laboratory have shown that many long chain amides possess antimycotic activity. In continuing

(1) A laboratory of the Southern Utilization Research and Development Division, ARS, USDA. Naming a company or product does not imply approval or recommendation by the Department over others which may also be suitable.

(3) A. F. Novak, G. C. Clark and H. P. Dupuy, J. Amer. Oil Chemists' Soc., 38, 321 (1961).

(4) Å, F. Novak, M. J. Fisher, S. P. Fore, and H. P. Dupuy, $ihid_{i},\,\mathbf{41},\,503$ (1964).

(5) A. F. Novak, J. M. Solar, R. R. Mod, F. C. Magne, and E. L. Skau, *ibid.*, **46**, 249 (1969). these investigations a number of hexachlorocyclopentadiene adducts of unsaturated amides have been prepared and are presented in Table I.

* All compounds were analyzed for N, and the analytical values were within $\pm 0.4 c_{1}^{c}$ of the calculated values.

Experimental Section⁶

The densities were determined by pychometer in a thermostated bath controlled to within 0.1°. Refractive indices were measured at $30.0 \pm 0.1^\circ$ with a precision Bausch and Lomb refractometer using the D Na line.

⁽²⁾ E. K. Fields, J. Amer. Chem. Soc., 76, 2709 (1954).

⁶⁾ Micro analyses are by Galbraith Laboratories, Knoxville, Tenn