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The development of solution-processable small-molecule and
polymeric semiconductors for field-effect transistors (FETs) exhibit-
ing high carrier mobility and good ambient stability is crucial to
realizing low-cost and mechanically flexible printed electronics.1

During the past decade, intense research efforts have yielded a
number of air-stable p-channel (hole-transporting)2 and n-channel
(electron-transporting)3 semiconductors. Nevertheless, very few
solution-processable, air-stable n-channel materials are known.3

Furthermore, known examples generally exhibit modest FET
performance (µe ≈ 0.01-10-5 cm2 V-1 s-1)4 versus the corre-
sponding vacuum-deposited films (µe ≈ 0.64-0.01 cm2 V-1 s-1),
likely reflecting microstructural irregularities in the solution-
processed films.3 Realization of air-stable, solution-processable,
n-channel molecules and polymers is important for p-n junctions,
bipolar transistors, organic complementary circuitry (CMOS), and
for stimulating fundamental research on OFET charge transport.1,5

Recently, a solution-processable dicyanomethylene-substituted ter-
thienoquinoid derivative was reported to exhibit µe ≈ 0.16 cm2

V-1 s-1 in air, however it suffers from a low Ion/Ioff ratio (ca.
103-104) and µe drops to ca. 0.01 cm2 V-1 s-1 over time in
ambient conditions.6 Importantly, the paucity of air-stable n-channel
polymers has significantly hindered utilizing the superior rheological
properties of polymers in printing processes.7

The above considerations prompted us to pursue new polymer-
izable, electron-deficient architectures and to investigate their
properties as semiconducting polymer building blocks. In this
Communication, we report the synthesis, characterization, and field-
effect response of a novel n-channel semiconducting molecule
TIFDMT and of the corresponding thiophene-based copolymer
P-IFDMT4. In these structures, the highly electron-deficient, ladder-
type indenofluorenebis(dicyanovinylene) skeleton is utilized to
depress LUMO energies, providing ambient stability to the gate
field-induced electron carriers. Furthermore, the donor-acceptor
backbone enhances core rigidity and π-conjugation, affording low
band gap semiconductors. We report here that solution-processed
TIFDMT FETs exhibit µe ) 0.10-0.16 cm2 V-1 s-1 in ambient,
while P-IFDMT4-based devices are interestingly ambipolar, having
electron and hole mobilities of ca. 2 × 10-4 cm2 V-1 s-1. To the
best of our knowledge, this is the first ambipolar OFET polymer
which operates in air.8

The syntheses of TIFDMT and P-IFDMT4 are shown in
Scheme 1. Suzuki coupling of 1,4-benzenediboronic acid dipinacol
ester with methyl 5-bromo-2-iodobenzoate yields compound 1 (89%

yield). Intramolecular Friedel-Crafts acylation of 1 is achieved by
H2SO4 treatment at 120 °C (91% yield). Pd(PPh3)2Cl2-catalyzed
Stille coupling of 2 and 5 in DMF then yields compound 3 (35%
yield) which undergoes reaction with excess malononitrile in the
presence pyridine and TiCl4 to afford TIFDMT in 40% yield.
Polymer building block 4 is prepared in 45% yield by bromination
of compound 3, followed by condensation with malononitrile.
Monomer 4 and TIFDMT are very soluble in common organic
solvents, allowing convenient purification by flash chromatography.
Monomer 4 is copolymerized with 6 via microwave-assisted
Pd2(dba)3/P(o-Tol)3-catalyzed Stille coupling. The resulting polymer
is purified by multiple dissolution/precipitation (60% yield). Final
products are characterized by 1H and 13C NMR, EA, IR, GPC,
and MS.

Thin-film cyclic voltammetry reveals five reversible reductions
for TIFDMT with the first half-wave potential (E1/2

red-1) at -0.12
V, whereas P-IFDMT4 exhibits six reversible reductions and one
oxidation (E1/2

red-1 ) -0.29 V and E1/2
ox-1 ) 1.07 V; Supporting

Information, Figure S1). Thin-film optical band gaps are estimated
from the low energy band edges in the optical spectra as 1.52 and
1.36 eV for TIFDMT and P-IFDMT4, respectively (Figure S2).
Consequently, the solid-state HOMO/LUMO energy levels are at
-5.84/-4.32 eV for TIFDMT and -5.51/-4.15 eV for P-
IFDMT4.9 The combined low LUMO energies and small band gaps
are indicative of the highly electron-deficient and π-conjugated
nature of these new structures. These are among the lowest LUMO
energies reported to date for a semiconducting polymer, approaching
those of air-stable n-channel core-cyanated perylene-, anthracene-,
and naphthalene-based small molecule semiconductors.3

Top-contact FETs were fabricated by spin-coating TIFDMT or
P-IFDMT4 solutions in CHCl3 (5.0 mg/mL) on OTS (octadecyl-
trichlorosilane) treated p+-Si/SiO2(300 nm) substrates. Next, the
semiconductor films (60-65 nm) were annealed at 150 °C for 30

Scheme 1. Synthetic Routes to TIFDMT and Polymer P-IFDMT4
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min under vacuum, followed by Au electrode (50 nm) deposition.
Thin-film microstructural order was assayed by out-of plane θ-2θ
XRD and grazing-incidence X-ray diffraction (GIXRD) scans. As
shown in Figure 1A, TIFDMT and P-IFDMT4 thin films are
highly crystalline, exhibiting Bragg reflections up to the fourth (400)
and second (200) order, respectively. Primary reflections are
observed at 2θ ) 3.46° (d-spacing ) 25.6 Å) for TIFDMT and at
2θ ) 4.12° (d-spacing ) 21.4 Å) for polymer P-IFDMT4. These
data are consistent with well-organized lamellar microstructures
having the common preferential molecular/chain “edge-on” orienta-
tion relative to the substrate surface (Figure S3).2d,10 The assigned
π-π stacking repeat distance is 3.1 Å (2θ ) 28.5°, inset Figure
1A), significantly smaller than typically observed for oligo-/
polythiophenes (3.4-3.8 Å).1,10 As shown in Figure 1B, AFM
characterization of TIFDMT films reveals very large plate-like
grains (3-5 µm sizes) of terraced islands with step heights of ∼2.8
nm, corresponding to the d-spacing along the lamellar layers. In
contrast, P-IFDMT4 films exhibit small grains (<0.1 µm sizes;
Figure S4).

FET device characteristics were measured in ambient conditions.
Typical transfer and output plots for TIFDMT are shown in Figure
2 and S5. These devices exhibit n-channel operation with µe )
0.10-0.16 cm2 V-1 s-1, Ion/Ioff ) 107-108, and VT ) 0 to ca. +5
V. Note that these devices exhibit negligible variations in TFT
characteristics after 5 months storage in air without exclusion of
light or humidity (Figure 2B). Interestingly, P-IFDMT4-based FETs
are ambipolar in ambient conditions and exhibit similar electron
and hole mobilities (∼2 × 10-4 cm2 V-1 s-1) and Ion/Ioff ratios
(∼104; Figure 2A and S5) with VT values of ca. +5 V (n-channel)
and ca. -10 V (p-channel). Although the present unoptimized
mobilities are moderate, to the best of our knowledge this is the
very first example of an air-stable, highly soluble ambipolar
semiconducting polymer.

The observed high mobility for TIFDMT probably reflects a
combination of enhanced intermolecular π-orbital overlap, highly

textured thin films, and large film grain sizes. Furthermore, the
preferential “edge-on” molecular orientation doubtless favors in-
plane source-to-drain (Sf D) transport.10 The excellent air-stability
of TIFDMT and P-IFDMT4 is likely related to the low LUMO
energies (-4.15 and -4.32 eV).3 The unique electronic structure
of the present polymer provides a very small band gap (1.36 eV),
rendering the HOMO level (-5.51 eV) accessible for hole injection
by Au contacts, thus enhancing p-channel operation.

In summary, we report the synthesis and characterization of new
air-stable molecular and polymeric semiconductors based on
indenofluorenebis(dicyanovinylene). Solution-processed FETs ex-
hibit high electron mobility with excellent ambient stability. The
first example of an air-stable, ambipolar polymer (P-IFDMT4) is
reported. Studies are underway to further optimize the polymer
architecture and device-processing characterisitics.
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Figure 1. (A) θ-2θ XRD and grazing-incidence XRD (inset) scans for
spin-coated TIFDMT (blue line) and P-IFDMT4 (red line) films; (B)
tapping mode AFM image of a spin-coated TIFDMT film.

Figure 2. OFET plots of devices measured in air. (A) Output curves as a
function of gate bias for P-IFDMT4-based devices; (B) transfer curve (VSD

) 100 V) for fresh TIFDMT-based device (red line) and after 5 months
storage in air (blue line).
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