Zur Kristallstruktur von $O_2^+MF_6^-$ (M = Sb, Ru, Pt, Au)

O. Graudejus und B. G. Müller*

Gießen, Institut für Anorganische und Analytische Chemie I der Justus-Liebig-Universität

Bei der Redaktion eingegangen am 3. November 1995.

Inhaltsübersicht. Erneut dargestellt, aber erstmals anhand von Einkristallen röntgenographisch untersucht wurden die Fluoride $O_2^+MF_6^-$ (M = Sb, Ru, Pt, Au). Farbloses $O_2^+SbF_6^-$ und die rubinroten Verbindungen $O_2^+RuF_6^-$ und $O_2^+PtF_6^-$ kristallisieren isotyp in der Raumgruppe Ia $\bar{3}$ -T⁷_h (Nr. 206) mit a =

(Pt), Z = 8. Gelbes $O_2^+AuF_6^-$ kristallisiert trigonal-rhomboedrisch in der Raumgruppe $R\bar{3}$ - D_{32}^6 (Nr. 148) mit a = 775,9(3) pm, c = 711,7(4) pm, Z = 3.

1016(1) pm (Sb), a = 1002,6(9) pm (Ru) und a = 1003,6(9) pm

On the Crystal Structure of $O_2^+MF_6^-$ (M = Sb, Ru, Pt, Au)

Abstract. $O_2^+MF_6^-$ (M = Sb, Ru, Pt, Au) were obtained again, but for the first time investigated by X-ray methods. Colourless $O_2^+SbF_6^-$ and the rubyred compounds $O_2^+RuF_6^-$ and $O_2^+PtF_6^-$ crystallize isostructural in space group Ia $\overline{3}$ -T_h⁺ (Nr. 206) with a = 1016(1) pm (Sb), a = 1002.6(9) pm (Ru) and a = 1003.6(9) pm (Pt), Z = 8. Yellow $O_2^+AuF_6^-$ crystallizes trigonal-rhombohedric in space group R3- D_{32}^6 (Nr. 148) with a = 775.9(3) pm, c = 711.7(4) pm, Z = 3.

Keywords: Dioxygenyl compounds; single crystal structure

1 Einleitung

Dioxygenylverbindungen sind seit mehr als 30 Jahren bekannt [1-4], Einkristalluntersuchungen liegen jedoch lediglich für $(O_2^+)_2 Ti_7 F_{30}^{2-}$ [5] und $O_2^+ Mn_2 F_9^-$ [6]) vor. Im Zusammenhang mit der Synthese binärer Fluoride der Übergangsmetalle in Form von Einkristallen wurden nun auch die Fluoride $O_2^+ MF_6^-$ (M = Sb, Ru, Pt, Au) erstmals einkristallin erhalten und röntgenographisch untersucht. Danach kristallisieren $O_2^+ MF_6^-$ (M = Sb, Ru, Pt) isotyp zu NO⁺SbF_6^- [7], $O_2^+ AuF_6^-$ hingegen isotyp zu KOsF₆ [8].

Von $O_2^+ PtF_6^-$ wurden eine kubische und eine rhomboedrische Modifikation beschrieben [2]. Hier wurde jedoch bei allen, unter verschiedenen Bedingungen durchgeführten Versuchen, stets nur die kubische Form beobachtet.

2 Darstellung der Proben

Einkristalle wurden jeweils durch Umsetzung der entsprechenden Metalle (Degussa, 99,9%) mit einem O_2/F_2 -Gemisch (Verhältnis $O_2/F_2 = 1:3$) im Autoklaven (T ≈ 400 °C, p ≈ 300 bar) dargestellt. Nach einer Reaktionsdauer von einem Tag kühlte man die Proben schrittweise ab (ca. 40 °C/d) und schaltete bei etwa 100 °C den Ofen schließlich ab. Man erhielt so rubinrote Proben von $O_2^+ PtF_6^-$ bzw. $O_2^+ RuF_6^-$ (mit MF₅ (M = Ru, Pt) als Nebenprodukt), farbloses $O_2^+ SbF_6^-$ bzw. zitronengelbes $O_2^+ AuF_6^-$.

3 Röntgenographische Untersuchungen

Mehrere Kristalle der jeweiligen Verbindung wurden unter einem Mikroskop mit Polarisationsaufsatz ausgesucht, als Sperrflüssigkeit diente dabei ein durch mehrfaches Einleiten von Fluor getrocknetes, hochviskoses Perfluoretheröl (Hoechst AG). Die Verwendung dieses hochsiedenden Öles ist notwendig, um zum einen die extrem feuchtigkeitsempfindlichen Kristalle vor Hydrolyse zu schützen, und zum anderen eine Zersetzung der thermisch sehr labilen Verbindungen durch eventuell entstehende heiße Dämpfe bzw. Gase beim Abschmelzen der Markröhrchen zu verhindern. Der nach Weissenberg-Schwenkaufnahmen jeweils beste Kristall wurde zur Datensammlung auf einem Stoe-IPDS bzw. einem Vierkreisdiffraktometer (Siemens AED2) herangezogen.

Aus Präzessionsaufnahmen (Mo—K $\overline{\alpha}$; hk0, hk1 sowie Laueaufnahmen längs [111]) und der Darstellung des Reziproken Gitters aus dem Datensatz [9] erhält man die Auslöschungsbedingungen (hkl) nur mit h + k + l = 2n und (0kl) nur mit k, l = 2n für $O_2^+MF_6^-$ (M = Sb, Ru, Pt), die auf Raumgruppe Ia $\overline{3}$ verweisen. Strukturrechnungen führten nur hier zu einem sinnvollen Ergebnis, nicht aber in den niedersymmetrischen Raumgruppen I2,3, Pa $\overline{3}$ oder Pa3. Für $O_2^+AuF_6^-$ folgt aus der Darstellung des Reziproken Gitters die Auslöschungsbedingung (hkl) nur mit -h + k + l = 3nund damit die Raumgrupp R $\overline{3}$ bzw. R3. Strukturrechnungen in R3 (aber auch in P3 bzw. P $\overline{3}$) führten zu ähnlichen (oder schlechteren) Ergebnissen. Zur Beschreibung wurde daher die zentrosymmetrische Raumgruppe R $\overline{3}$ gewählt. Zur Absicherung der Ergebnisse wurden zwei Kristalle aus zwei unterschiedlichen

Tabelle 1 Kristallographische Daten von $O_2^+SbF_6^-$

Kristallsystem	kubisch
Raumgruppe	$Ia\bar{3}; T_{h}^{7}$ (Nr. 206)
Gitterkonstanten	
1) Guinier Simon Daten	a = 1012,08(6) pm
2) IPDS	a = 1016(1) pm
Röntgenographische Dichte	3,387
Zahl der Formeleinheiten	8
pro Elementarzelle	
F (000)	968
Molares Volumen (röntgeno- graphisch)	79,053 cm³/mol
Kristallform, -farbe	unregelmäßig, farblos
Diffraktometer	IPDS
Linearer Absorptions-	53,3 cm ^{-1}
koeffizient μ (Mo—K $\tilde{\alpha}$)	
Strahlung	Mo— $K\bar{\alpha}$; $\lambda = 71,073 \text{ pm}$
Korrektur der Intensitäten	Polarisations- und Lorentz- korrektur
Meßbereich	$9,5^\circ \le 2\theta \le 56,3^\circ$
Anzahl der gemessenen I _o (hkl)	2497, hieraus durch Mittelung
Anzahl der symmetrie-	209
unabhängigen I _o (hkl)	
R _m	10,05%
Lösungsverfahren	Patterson- und Differenz-
	fouriersynthese
Nicht berücksichtigte I _o (hkl)	keine
Anzahl der freien Parameter	15
Absorptionskorrektur	keine
Gütefaktor	$wR(F^2) = 18,84\%$
	R(F) = 6,34%
	$(F_o > 4\sigma(F_o) = 5,41\%)$
Max. und min. Restelektronen- dichte $[e^{-}/Å^3]$	0,92/-1,03

Abb. 1 $O_2^+SbF_6^-$, Anordnung der F^- um das O_2^+ -Kation

Ansätzen vermessen, die beiden Datensätze führten zu übereinstimmenden Resultaten. Die Positionen der Metallatome wurden mit Hilfe der Patterson-Synthese (Shell-X86) [10] bestimmt, die Sauerstoff- und Fluorlagen anschließend durch Dif-

Die Einkristalldaten stimmen mit den anhand von Guinier-Pulveraufnahmen abgeleiteten Gitterkonstanten gut überein (vgl. Tab. 1-4).

Die von $O_2^+MF_6^-$ (M = Sb, Au) angefertigten Ramanspektren bzw. magnetischen Messungen bestätigen die Literaturangaben: $O_2^+SbF_6^-$: $\tilde{\nu}(O_2^+) = 1862 \text{ cm}^{-1}$ [1]; $O_2^+AuF_6^-$: $\tilde{\nu}(O_2^+) = 1834 \text{ cm}^{-1}$ [1]; $\mu = 1,73 \mu_B$.

Tabelle 2 Kristallographische Daten von O₂⁺RuF₆⁻

ferenzfouriersynthesen (Shell-X93) [11].

Kristallsystem	kubisch
Raumgruppe	$Ia\bar{3}; T_{h}^{7}$ (Nr. 206)
Gitterkonstanten	
1) Guinier Simon Daten	a = 1000,01(6) pm
2) IPDS	a = 1002.6(9) pm
Röntgenographische Dichte	3.257
(g/cm^3)	
Zahl der Formeleinheiten	8
pro Elementarzelle	
F (000)	912
Molares Volumen (röntgeno-	75,876 cm ³ /mol
graphisch)	
Kristallform, -farbe	unregelmäßig, rubinrot
Diffraktometer	IPDS
Linearer Absorptions-	$31,9 \mathrm{cm}^{-1}$
koeffizient μ (Mo—K $\bar{\alpha}$)	
Strahlung	Mo—K $\bar{\alpha}$; $\lambda = 71,073 \text{ pm}$
Korrektur der Intensitäten	Polarisations- und Lorentz-
	korrektur
Meßbereich	$9,5^\circ \le 2\theta \le 56,3^\circ$
Anzahl der gemessenen I _o (hkl)	4404, hieraus durch Mittelung
Anzahl der symmetrie-	205
unabhängigen I _o (hkl)	
R _m	8,19%
Lösungsverfahren	Patterson- und Differenz-
	fouriersynthese
Nicht berücksichtigte I _o (hkl)	keine
Anzahl der freien Parameter	15
Absorptionskorrektur	keine
Gütefaktor	$wR(F^2) = 14,00\%$
	R(F) = 5,86%
	$(F_{o} > 4\sigma(F_{o}) = 4,28\%)$
Max. und min. Restelektronen- dichte $[e^-/Å^3]$	0,62/-1,06

4 Strukturbeschreibung

4.1 $O_2^+SbF_6^-$, $O_2^+RuF_6^-$ und $O_2^+PtF_6^-$

Primärstruktur

In allen drei Fällen sind die Metallatome praktisch regulär oktaedrisch von sechs F^- umgeben. Die Abstände **Tabelle 3** Kristallographische Daten von $O_2^+PtF_6^-$

Kristallsystem kubisch Raumgruppe Gitterkonstanten 1) Guinier Simon Daten 2) Vierkreisdiffraktometer Röntgenographische Dichte 4,483 (g/cm^3) Zahl der Formeleinheiten 8 pro Elementarzelle F (000) Molares Volumen (röntgenographisch) Kristallform, -farbe Diffraktometer Linearer Absorptionskoeffizient μ (Mo-K $\bar{\alpha}$) Strahlung Korrektur der Intensitäten Meßbereich Anzahl der gemessenen I_o(hkl) Anzahl der symmetrie-249 unabhängigen I_o(hkl) 17,9% $\mathbf{R}_{\mathbf{m}}$ Lösungsverfahren Nicht berücksichtigte I_o(hkl) Anzahl der freien Parameter 15 Absorptionskorrektur Gütefaktor

Ia3; T⁷_h (Nr. 206) a = 1002,88(7) pma = 1003,6(9) pm

1184 76,104 cm³/mol

unregelmäßig, rubinrot Vierkreis (Siemens AED 2) 278,9 cm⁻¹

Mo—K $\bar{\alpha}$; $\lambda = 71,073$ pm Polarisations- und Lorentzkorrektur $3^\circ \le 2\theta \le 60^\circ$ 5887, hieraus durch Mittelung

Patterson- und Differenzfouriersynthese keine empirisch; Ψ -Scans $wR(F^2) = 5,29\%$ R(|F|) = 7,23% $(F_0 > 4\sigma(F_0) = 2.05\%)$

Max. und min. Restelektronen- 0,30/-0,46 dichte [e⁻/ų]

 $d(M^{5+}-F^{-})$ betragen 188,2 pm für O₂⁺SbF₆⁻, 184,6 pm für $O_2^+ RuF_6^-$ und 187,6 pm für $O_2^+ PtF_6^-$.

Beide Komponenten der O_2^+ -Hantel sind von $9F^$ umgeben - dabei sind 6 jeweils beiden, die restlichen 3 lediglich einer zugeordnet, insgesamt umgeben also $12F^{-}$ das O_2^{+} -Kation. Die sechs gemeinsamen F^{-} (in der Abb. 1 willkürlich als F' bezeichnet) sind dabei so koordiniert, daß sie alternierend in Richtung des einen bzw. anderen O-Atoms ausgelenkt sind (Abb. 1).

Sekundärstruktur

Die Anionen $[MF_6]^-$ sind voneinander isoliert und lediglich über O2⁺-Hanteln miteinander verknüpft. Die Verknüpfung der Kationen erfolgt jeweils über zwei F⁻. Auf diese Weise ist jede O2+ -Hantel mit sechs weiteren verbunden, jedes F⁻ ist dabei gleichzeitig "terminal" bezüglich der einen O₂⁺-Hantel (d. h. nur einem Sauerstoff in einer O2+-Einheit zugeordnet) und intern verbrückend bezüglich einer benachbarten (Abb. 2).

Abb. 2 $O_2^+SbF_6^-$, Verknüpfung der O_2^+ -Kationen

Abb. 3 $O_2^+SbF_6^-$, Blick entlang [100]

Tertiärstruktur

Man findet in der Struktur alternierende Schichten von [MF₆]-Oktaedern und O₂⁺-Kationen, in denen sowohl die Oktaeder als auch die O2⁺-Hanteln gegeneinander verkippt sind (bezüglich [100]; Abb. 3). Die Oktaeder-

Tabelle 4	Kristallographische	Daten	von	O_2^+	AuF6
-----------	---------------------	-------	-----	---------	------

Kristallsystem	trigonal-rhomboedrisch \mathbf{P}_{2}^{2} C^{2} (Nr 148)
Cittorkonstanten	$K_{3} = C_{3i}$ (INI. 146)
1) Guinier Simon Daten	a = 774,2(1) pm
2) Vierkreisdiffraktometer	a = 775,9(3) pm
	c = 711,7(4) pm
Röntgenographische Dichte (g/cm ³)	4,605
Zahl der Formeleinheiten	3
pro Elementarzelle	
F (000)	447
Molares Volumen (röntgeno- graphisch)	74,356 cm ³ /mol
Kristallform _farbe	unregelmäßig zitronengelb
Diffraktometer	Vierkreis (Siemens AED2)
Linearer Absorptions-	$298.1 \mathrm{cm}^{-1}$
koeffizient μ (Mo-K $\bar{\alpha}$)	250,1011
Strahlung	$M_0 - K \bar{\alpha}$: $\lambda = 71.073 \text{ pm}$
Korrektur der Intensitäten	Polarisations- und Lorentz-
	korrektur
Meßbereich	$8.3^\circ \le 2\theta \le 60.0^\circ$
Anzahl der gemessenen L _(hkl)	1434, hieraus durch Mittelung
Anzahl der symmetrie-	241
unabhängigen L(hkl)	
R _m	7.4%
Lösungsverfahren	Patterson- und Differenz-
e e	fouriersynthese
Nicht berücksichtigte I ₂ (hkl)	keine
Anzahl der freien Parameter	21
Absorptionskorrektur	numerisch; Beschreibung der
•	Kristallgestalt mit Hilfe des
	Programms HABITUS [13]
Gütefaktor	$wR(F^2) = 4,50\%$
	R(F) = 2,21%
	$(F_0 > 4\sigma(F_0) = 2,21\%)$
Max. und min. Restelektronen- dichte $[e^{-}/\dot{A}^3]$	0,81/-1,74

Abb. 4 O_2^+ SbF₆⁻, Verknüpfung der [SbF₆]-Oktaeder mit den O_2^+ -Kation

schichten verlaufen parallel der a,b-Ebene in z = 0und z = 0,5, die Schichten von O_2^+ -Ionen befinden sich zwischen den Oktaederschichten in $z \approx 0,25$ bzw. $z \approx 0,75$.

Zu jedem $[MF_6]$ -Oktaeder gehören jeweils acht O_2^+ -Kationen: Zwei davon sind senkrecht (bezüglich der Bindungsachse Sauerstoff—Sauerstoff) über zwei gegenüberliegenden Dreiecksflächen des Oktaeders angeordnet. Die restlichen sechs O_2^+ -Ionen liegen jeweils in gleichen Abständen so über einem F⁻ des betreffenden Oktaeders, daß sie sich nahezu in der gleichen Ebene wie die beiden Oktaederflächen befinden (wiederum bezogen auf die Bindungsachse O—O). Das bedeutet umgekehrt, daß alle F⁻ des Oktaeders über der Bindungsachse der jeweiligen O_2^+ -Hantel liegen (Abb. 4). Die auf diese Weise dreifach verknüpften O_2^+ -Kationen bilden mit den Oktaedern lineare Stränge entlang [111] (Abb. 5).

Tabelle 5 Lageparameter und ,anisotrope Temperaturfaktoren' (Å²) von O_2 + SbF₆⁻; Standardabweichungen zweite Zeile

Atom	Lage	x/a	y/b	z/c	\mathbf{U}_{11}	U ₂₂	U ₃₃	U ₂₃	U_{13}	U ₁₂
0	16c	0,277	0,277	0,277	0,075	0,075	0,075	0,009	0,009	0,009
		0,002	0,002	0,002	0,007	0,007	0,007	0,008	0,008	0,008
Sb	8a	0	0	0	0,0342	0,0342	0,0342	0,0018	0,0018	0,0018
					0,0008	0,0008	0,0008	0,0004	0,0004	0,0004
F	48 e	0,9390	0,1092	0,1366	0,069	0,054	0,048	-0,009	0,012	0,008
		0,0009	0,0008	0,0008	0,006	0,005	0,004	0,004	0,004	0,004

Der ,anisotrope Temperaturfaktor' hat die Form: $T_{anis} = exp[-2\pi^2(U_{11}h^2a^{*2} + U_{22}k^2b^{*2} + ... + 2U_{12}hka^*b^*)]$

Atom	Lage	x/a	y/b	z/c	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
0	16c	0,2788	0,2788	0,2788	0,065	0,065	0,065	-0,003	-0,003	-0,003
		0,0008	0,0008	0,0008	0,003	0,003	0,003	0,004	0,004	0,004
Ru	8 a	0	0	0	0,0290	0,0290	0,0290	0,0032	0,0032	0,0032
					0,0006	0,0006	0,0006	0,0003	0,0003	0,0003
F	48 e	0,9410	0,1072	0,1376	0,062	0,046	0,043	-0,007	0,010	0,008
		0,0005	0,0004	0,0004	0,003	0,002	0,002	0,002	0,002	0,002

Tabelle 6 Lageparameter und ,anisotrope Temperaturfaktoren' (Å²) von $O_2^+RuF_6^-$; Standardabweichungen zweite Zeile

Der ,anisotrope Temperaturfaktor' hat die Form: $T_{anis} = \exp[-2\pi^2(U_{11}h^2a^{*2} + U_{22}k^2b^{*2} + ... + 2U_{12}hka^*b^*)]$

Tabelle 7 Lageparameter und ,anisotrope Temperaturfaktoren' ($Å^2$) von $O_2^+PtF_6^-$; Standardabweichungen zweite Zeile

Atom	Lage	x/a	y/b	z/c	U_{11}	U ₂₂	U ₃₃	U_{23}	\mathbf{U}_{13}	U ₁₂
0	16c	0,2777	0,2777	0,2777	0,071	0,071	0,071	-0,003	-0,003	-0,003
		0,0008	0,0008	0,0008	0,007	0,007	0,007	0,005	0,005	0,005
Pt	8 a	0	0	0	0,0276	0,0276	0,0276	0,0028	0,0028	0,0028
					0,0002	0,0002	0,0002	0,0004	0,0004	0,0004
F	48 e	0,9417	0,1072	0,1416	0,0063	0,051	0,040	-0,011	-0,008	-0,014
		0,0008	0,0007	0,0006	0,004	0,004	0,004	0,004	0,004	0,004

Der ,anisotrope Temperaturfaktor' hat die Form: $T_{anis} = exp[-2\pi^2(U_{11}h^2a^{*2} + U_{22}k^2b^{*2} + ... + 2U_{12}hka^*b^*)]$

Tabelle 8 Lageparameter und ,anisotrope Temperaturfaktoren' (Å²) von $O_2^+AuF_6^-$; Standardabweichungen zweite Zeile

Atom	Lage	x/a	y/b	z/c	U_{11}	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
0	18f	0,06 0,03	0,98 0,03	0,493 0,004	0,06097 0,04596	0,04292 0,01297	0,04612 0,00547	-0,00503 0.00459	0,00954 0,00742	0,02931
Au	3a	0	0	0	0,0418 0,0003	0,0418 0,0003	0,0270 0,0003	0	0	0,0209 0,0002
F	18 f	0,8457 0,0008	0,7809 0,0007	0,8409 0,0006	0,065 0,003	0,054 0,003	0,052 0,002	-0,015 0,002	-0,012 0,002	0,025 0,002

Der "anisotrope Temperaturfaktor" hat die Form: $T_{anis} = exp[-2\pi^2(U_{11}h^2a^{*2} + U_{22}k^2b^{*2} + ... + 2U_{12}hka^*b^*)]$

Tabelle 9 O_2^+ [SbF₆]⁻, Motive der gegenseitigen Zuordnung, ECoN und MEFIR (pm), Koordinationszahlen (C.N.) und Abstände innerhalb der Koordinationspolyeder

F	C.N.	ECoN	1	MEFIR	
		a)	b)	a)	b)
9/3 3×253· 3×286· 3×323	9	6,0	1,0	130,8	47,8
6/1 188.2	6	6,0	6,0	54,8	54,0
4 3,0	a) nur barn v b) alle	gegen verden Nach	sinnig g berücksi barn v	geladene ichtigt verden	e Nach- berück-
7,8 134,7 138,6	sichtig Als St	t artwert	diente:	$\mathbf{r}_{\mathrm{F}} = 12$	33 pm
	F 9/3 3×253; 3×286; 3×323 6/1 188,2 4 3,0 7,8 134,7 138,6	F C.N. 9/3 9 3×253; 3×286; 3×323 6/1 6 188,2 4 4 a) nur 3,0 barn v b) alle 7,8 sichtig 134,7 Als St 138,6	F C.N. ECon a) 9/3 9 6,0 3×253; 3×286; 3×323 6 6 6/1 6 6,0 188,2 4 a) nur gegen barn werden b 9 3,0 barn werden b b) alle Nach sichtigt 7,8 sichtigt 134,7 138,6 Jage A Jage A	F C.N. ECoN 9/3 9 6,0 1,0 3×253; 3×286; 3×323 6/1 6 6,0 6,0 6/1 6 6,0 6,0 188,2 4 a) nur gegensinnig gegansing gegansi	F C.N. $ECoN$ a) MEFI b) 9/3 9 6,0 1,0 130,8 3×253; 3×286; 3×323 6 6 6,0 54,8 6/1 6 6,0 6,0 54,8 188,2 4 a) nur gegensinnig geladend barn werden berücksichtigt b) alle Nachbarn werden 3,0 balle Nachbarn werden 54,8 134,7 Als Startwert diente: $r_F = 12$ 138,6 138,6

Tabelle 10 O_2^+ [RuF₆]⁻, Motive der gegenseitigen Zuordnung, ECoN und MEFIR (pm), Koordinationszahlen (C.N.) und Abstände innerhalb der Koordinationspolyeder

	F	C.N. ECoN a) b)		1 b)	MEFIR a) b)	
0	9/3	9	6,3	1,1	130,0	50,3
Ru	3×251; 3×286; 3×315 6/1	6	6,0	6,0	51,2	50,9
C.N.	184,6 4	a) nur	gegen	sinnig 🤉	geladen	e Nach-
a) ECoN	3,1	barn v	verden l	berücks	ichtigt	barück
b)	7,7	sichtig	t Nach	Daili V	veruen	Del uck-
a) MEFIR	135,0	Als St	artwert	diente:	$r_F = 1$	33 pm
b)	136,2					

Abb. 5 $O_2^+SbF_6^-$, lineare Stränge von $[SbF_6]$ -Oktaedern und O_2^+ -Kationen

Tabelle 11 O_2^+ [PtF₆]⁻, Motive der gegenseitigen Zuordnung, ECoN und MEFIR (pm), Koordinationszahlen (C.N.) und Abstände innerhalb der Koordinationspolyeder

	F	C.N.	ECoN		MEFIR		
			a)	b)	a)	b)	
0	9/3	9	6,3	1,1	129,5	48,5	
	3×251; 3×284; 3×315		-	-	-		
Pt	6/1	6	6,0	6,0	54,1	53,3	
	187,6						
C.N.	4	a) nur	gegen	sinnig g	geladen	e Nach-	
a)	3,1	barn v	verden l	oerücks	ichtigt		
ECoN		b) alle	Nach	barn v	verden	berück-	
b)	8,3	sichtig	t				
a)	134,9	Als St	artwert	diente:	$r_F = 12$	33 pm	
MEFIR							
b)	138,6						

4.2 $O_2^+AuF_6^-$

Im Gegensatz zu den oben beschriebenen Verbindungen – dort liegen die O_2^+ -Hanteln geordnet als Bestandteil des "Kationenteilgitters" vor – sind sie in $O_2^+AuF_6^-$ in das "Anionenteilgitter" eingebaut. So ersetzen sie einzelne F⁻ innerhalb einer "dichtesten Packung" von Fluor-Ionen, die Koordinationszahl ist daher 12. Die genauen Positionen der Sauerstoff-Atome bzw. die Orientierung der O_2^+ -Hantel sind jedoch nicht lokalisierbar, da diese innerhalb einer solchen Schicht fehlgeordnet sind. Weitere Informationen hierzu könnten allerdings die in Vorbereitung befindlichen Tieftemperaturmessungen liefern.

Analog zu $O_2^+SbF_6^-$ sind auch die nahezu regulären $[AuF_6]^-$ -Oktaeder (d($Au^{5+}-F^-$) = 189,0 pm) voneinander isoliert und man findet Schichten von Oktaedern und solche von O_2^+ -Kationen. Hier jedoch sind einerseits die Oktaeder alle in einer Richtung orientiert, also nicht gegeneinander verkippt, und andererseits sind diese Oktaeder bzw. O_2^+ -Schichten nicht parallel zu den Kanten der Elementarzelle angeordnet (Abb. 6).

Abb. 6 $O_2^+AuF_6^-$, Blick entlang [010]

5 Schlußbemerkung

Neben den hier beschriebenen, z. T. seit längerem bekannten Verbindungen $O_2^+[MF_6]^-$ (M = Sb, Ru, Pt, Au), wurde als Nebenprodukt bei der Synthese von $O_2^+[PtF_6]^-$ neben PtF₅ mit rubinrotem $O_2^+[Pt_2F_{11}]^-$ eine weitere, bislang unbekannte Dioxygenylverbindung des Platins erhalten (vgl. auch [12]). Diese Verbindung kristallisiert orthorhombisch in der Raumguppe Pccn- D_{2h}^{10} (Nr. 56) mit a = 948,1 pm, b = 845,5 pm, c = 1004,9 pm, Z = 4. Im Gegensatz zu $O_2^+[MF_6]^-$ liegen hier keine isolierten [MF₆]-Oktaeder vor, sondern über Ecken verknüpfte [Pt₂F₁₁]-Oktaederdoppel. Über Einzelheiten wird nach Abschluß der laufenden Untersuchungen berichtet.

Herrn G. Koch danken wir für die freundliche Unterstützung bei der Datensammlung am Vierkreisdiffraktometer und am IPDS, der Deutschen Forschungsgemeinschaft (DFG) für Sachund Personalmittel.

Literatur

- A. J. Edwars, W. E. Falconer, J. E. Griffiths, W. A. Sunder, M. J. Vasile, J. Chem. Soc. Dalton Trans. 1974, 1129
- [2] N. Bartlett, D. H. Lohmann, J. Chem. Soc. 1962, 5253
- [3] J. A. Ibers, W. C. Hamilton, J. Chem. Phys. 44 (1966) 1748
- [4] N. Bartlett, K. Leary, Rev. Chim. Min. 13 (1976) 82
- [5] B. G. Müller, J. Fluorine Chem. 17 (1981) 489
- [6] B. G. Müller, J. Fluorine Chem. 17 (1981) 409
- [7] JR. J. B. Beal, Ch. Pupp, N. E. White, Inorg. Chem. 8 (1969) 828
- [8] M. A. Hepworth, K. H. Jack, G. J. Westland, J. Inorg. Nucl. Chem. 2 (1956) 79
- [9] F. Schrötter, M. Serafin, Programm zur Darstellung des Reziproken Gitters anhand des Datensatzes, Gießen 1991

- [10] G. M. Sheldrick, SHEL-X86, Program for Crystal Structure Determination, Göttingen 1986
- [11] G. M. Sheldrick, SHEL-X93, Program for Crystal Structure Refinement, Göttingen 1993
- [12] B. G. Müller, M. Serafin, J. Fluorine Chem. 29 (1992) 625
- [13] *W. Herrendorf*, HABITUS, Programm zur Optimierung der Kristallgestalt für die numerische Absorptionskorrektur, Dissertation Karlsruhe 1993

Anschr. d. Verf.:

Prof. Dr. B. G. Müller Institut für Anorganische und Analytische Chemie Heinrich-Buff-Ring 58 D-35392 Gießen