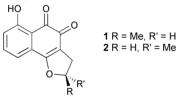
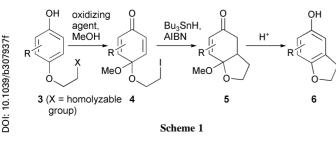
Synthesis of (+)-nocardione A — use of formal radical cyclization onto a benzene ring

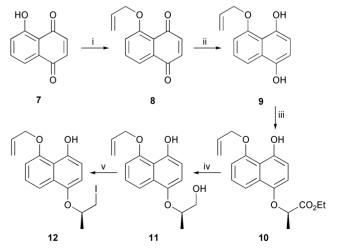

Derrick L. J. Clive* and Stephen P. Fletcher

Chemistry Department, University of Alberta, Edmonton, Alberta, Canada T6G 2G2. E-mail: derrick.clive@ualberta.ca

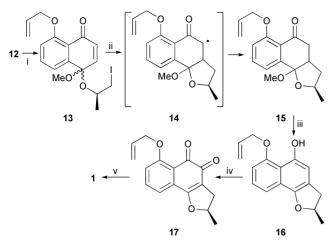
Received (in Cambridge, UK) 11th July 2003, Accepted 8th August 2003 First published as an Advance Article on the web 21st August 2003


Juglone (7) was converted into enone 13; this underwent radical cyclization to afford 15, which was aromatized to 16 and elaborated into (+)-nocardione A (1), the enantiomer of the naturally-occurring tyrosine phosphatase inhibitor (-)-nocardione A (2).

We report the synthesis of (+)-1, the enantiomer of the Cdc25B tyrosine phosphatase inhibitor (-)-nocardione A (2).^{1,2} The latter was isolated from the fermentation broth of a soil microorganism tentatively identified as the Gram-positive bacterium *Nocardia* sp. TP-A0248, and is of interest because Cdc25B is a key enzyme in cell cycle regulation and is overexpressed in several types of human cancer cells.³ Nocardione A (2) shows moderate antifungal and cytotoxic activity,¹ and causes cell death with characteristics of apoptosis in U937 human myeloid leukemia cell lines.¹


Our synthetic route is based on a method for achieving formal cyclization of a radical onto a benzene ring, along the lines summarized in Scheme 1. The overall sequence $3 \rightarrow 6$ is general;⁴ our model studies⁴ have shown that it is an efficient route to simple benzo-fused dihydrofurans, and its application to the synthesis of 1 or 2 promised to be a significantly more demanding test of the methodology. The prior synthesis^{2,5} of nocardione A (2), revealed that the compound is rather sensitive and its construction challenging; deprotection of the corresponding O-methyl ether (a congener called nocardione B) was accompanied by racemization, and even hydrogenolysis of the corresponding O-benzyl ether was inefficient. Formation of the dihydrofuran segment, generated by Mitsunobu displacement, was also difficult. We chose to make the unnatural enantiomer 1 because ethyl (-)-lactate, a chiral building block used in our approach, is much cheaper than the *R*-enantiomer.

Application of the general method of Scheme 1 to the particular case of (+)-nocardione A requires the substituted naphthalenol **12** (see Scheme 2) as a key intermediate, and this compound was prepared as shown. Juglone (**7**) was converted (allyl bromide, Ag_2O , 79%) into allyl ether **8** (Scheme 2), and reduction with aqueous $Na_2S_2O_4$ (100%) then gave bis-phenol **9**. At this point, introduction of the chiral two-carbon chain needed for the radical cyclization could be achieved under the



following conditions. First, ethyl (-)-lactate⁶ was converted into its trifluoromethanesulfonate by the literature method,7 and a solution of this derivative (4 equiv.) was added to a stirred and cooled (-78 °C) solution of 9 in the presence of Cs₂CO₃.⁸ After an 18-hour reaction period, 10 could be isolated in 50% yield (88% after correction for recovered 9). Under these conditions, stereochemical inversion of the trifluoromethanesulfonate occurs and the alkylation is regioselective $(9 \rightarrow 10)$. Ester reduction (LiAlH₄, 100%) gave alcohol 11 (ee >95% by 19 F NMR on the derived Mosher ester) and replacement of the hydroxyl by iodine (Ph₃P, imidazole, I₂, 89%) took the route as far as phenolic ether 12. When this was oxidized with DDO (Scheme 3) in the presence of MeOH and K₂CO₃, the required enone 13 was formed in good yield (87%) as a 1.1 : 1 mixture of diastereoisomers. Radical cyclization under standard conditions⁴ (Bu₃SnH, AIBN, PhMe, 85 °C) led to the diastereoisomeric furans 15 (82%) by way of the intermediate radicals 14. We found no evidence for cyclization of 14 through oxygen onto the allyl pendant. Aromatization $(15 \rightarrow 16)$ was easily achieved, either by storage in CDCl₃ (12 h, 97%) or by treatment with AcOH in CHCl₃ (88%); under these conditions 7-exo cyclization of the phenolic hydroxyl onto the allyl group was not observed. With the phenolic dihydrofuran 16 in hand, the o-quinone system was readily generated (96%, 82% after crystallization from CHCl3-hexane) by the action of [PhSe(O)]₂O⁹ and, finally, palladium-mediated removal of the allyl protecting group afforded (+)-nocardione A, which crystallized from EtOAc-hexane as bright red needles (74% yield from 17, 22% overall from juglone), mp 168-169 °C,10 [Lit. 115-120 °C;1 172.5-173.5 °C2]. Examination of the compound by HPLC on a chiral column¹¹ showed the material to have an ee of 98.5%¹²

We thank the Natural Sciences and Engineering Research Council of Canada for financial support, and Dr X. Lu and H.

Scheme 2 Reagents and conditions: (i) allyl bromide, Ag₂O, CH₂Cl₂, reflux, 11 h, 79%; (ii) Na₂S₂O₄, ether–water, 40 min, 100%; (iii) triflate of ethyl (–)-lactate, Cs₂CO₃, CH₂Cl₂, -78 °C, 18 h, 50%, 88% corrected for recovered **9**; (iv) LiAlH₄, THF, 10 min, 100%; (v) Ph₃P, imidazole, I₂, THF, 12 h, 89%.

Scheme 3 Reagents and conditions: (i) DDQ, MeOH, K_2CO_3 , 4 min, 87%; (ii) Bu_3SnH and AIBN (addition over 9 h), heat 6 h more, PhMe, 85 °C, 82%; (iii) AcOH, CHCl₃, 2 h, 88%; (iv) [PhSe(O)]₂O, THF, 12 min, 96%, 82% after recrystallization; (v) 10 mol% Pd(PPh₃)₄, dimedone, THF, 4 min, 74%.

Lachance for HPLC measurements. SPF holds an NSERC Postgraduate Scholarship.

Notes and references

 Isolation and biological properties: T. Otani, Y. Sugimoto, Y. Aoyagi, Y. Igarashi, T. Furumai, N. Saito, Y. Yamada, T. Asao and T. Oki, *J. Antiobiot.*, 2000, 53, 337–344.

- 2 Synthesis: Y. Tanada and K. Mori, Eur. J. Org. Chem, 2001, 4313-4319.
- 3 (a) D. Gasparotto, R. Maestro, S. Piccinin, T. Vukosavljevic, L. Barzan, S. Sulfaro and M. Boiocchi, *Cancer Res.*, 1971, **57**, 2366–2368; (b) K. Galaktionov, A. K. Lee, J. Eckstein, G. Draetta, J. Meckler, M. Loda and D. Beach, *Science*, 1995, **269**, 1575–1577; (c) W. G. Dunphy and A. Kumagai, *Cell*, 1991, **67**, 189–196.
- 4 D. L. J. Clive, S. P. Fletcher and M. Zhao, J. Chem. Soc., Chem. Commun., 2003, 526–527.
- 5 An *o*-quinone, structurally related to nocardione A, was produced as a minor byproduct (5–10%) during oxidation of an *o*-naphthoquinone: C. A. Merlic, C. C. Aldrich, J. Albaneze-Walker, A. Saghatelian and J. Mammen, *J. Org. Chem.*, 2001, **66**, 1297–1309.
- 6 Commercial samples of ethyl (-)-lactate are probably *ca.* 97% ee, see: L. E. Overman, K. L. Bell and F. Ito, *J. Am. Chem. Soc.*, 1984, **106**, 4192–4201and reference 39 therein.
- 7 (a) F. Effenberger, U. Burkard and J. Willfahrt, *Liebigs Ann. Chem.*, 1986, 314–333; (b) F. Effenberger, U. Burkard and J. Willfahrt, *Angew. Chem.*, *Int. Ed. Engl.*, 1983, **95**, 65–66.
- 8 Cf. W. H. Kruizinga, B. Strijtveen and R. M. Kellogg, J. Org. Chem., 1981, 46, 4321–4323.
- 9 D. H. R. Barton, A. G. Brewster, S. V. Ley, C. M. Read and M. N. Rosenfeld, J. Chem. Soc., Perkin Trans. 1, 1981, 1473–1476.
- 10 There is a form change to needles at, or below, 158 °C if the original material is a powder, as obtained by evaporation of a solution.
- 11 Chiralcel AD-RH column (0.46 cm \times 15 cm); eluant 2 : 1 water–MeCN; flow rate 0.6 mL min⁻¹; detection at 230 nm, temperature 25 °C; sample concentration and injection value 1 mL mg⁻¹ in MeCN \times 0.5 µL. Under these conditions there is baseline separation between the nocardione A enantiomers.
- 12 Our $[\alpha]_D$ values are unreliable; the high extinction coefficient of the compound prevents adequate light transmission in our instrument: found for **1**, $[\alpha]_D^{24}$ +36.8, c = 1.0 CHCl₃, 10 cm cell; $[\alpha]_D^{24}$ +49.5, c = 0.97 CHCl₃, 1 cm cell. Lit. for **2**, $[\alpha]_D^{21}$ -56.0, c = 0.97 CHCl₃ (ref. 2) $[\alpha]_D^{26}$ -85.4, c = 1.0 CHCl₃ (ref. 1).