

Bioorganic & Medicinal Chemistry 7 (1999) 1025-1031

# Synthesis and Cytotoxicity of Methyl-4,8-dihydrobenzo[1,2-*b*:5,4-*b*']dithiophene-4,8-dione Derivatives

Yu-Hua Chao, <sup>a,b</sup> Sheng-Chu Kuo, <sup>b,\*</sup> Kelvin Ku, <sup>b</sup> I-Ping Chiu, <sup>b</sup> Chun-Hsiung Wu, <sup>b</sup> Anthony Mauger, <sup>c</sup> Hui-Kang Wang<sup>a</sup> and Kuo-Hsiung Lee<sup>a</sup>

<sup>a</sup>Natural Products Laboratory, Division of Medicinal Chemistry and Natural Products, School of Pharmacy CB#7360,

University of North Carolina, Chapel Hill, NC 27599-7360, USA

<sup>b</sup>Graduate Institute of Pharmaceutical Chemistry, China Medical College, Taichung 400, Taiwan

<sup>e</sup>Drug Synthesis and Chemistry Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA

Received 6 July 1998; accepted 2 October 1998

Abstract—2- and 3-Methyl-4,8-dihydrobenzo[1,2-*b*:5,4-*b'*]dithiophene-4,8-dione and related derivatives were synthesized and evaluated in vitro by NCI against eight cancer types. Compounds **12–15** showed significant activity against melanoma, NCI-H23 non-small cell lung cancer, and MDA-MB-435 and MDA-N breast cancer cell lines; 2-hydroxymethyl-4,8-dihydrobenzo[1,2-*b*:5,4-*b'*]dithiophene-4,8-dione (**13**) showed the highest activity against melanoma (mean log  $GI_{50} = -7.74$ ) and the highest overall potency (mean log  $GI_{50} = -6.99$ ). © 1999 Published by Elsevier Science Ltd. All rights reserved.

## Introduction

We have previously described the synthesis and potent antineoplastic activity of 4,8-dihydrobenzo[1,2-*b*:4,5-*b'*]-dithiophene-4,8-dione derivatives (1,2),<sup>1,2</sup> and 4,8-di-hydrobenzo[1,2-*b*:5,4-*b'*]dithiophene-4,8-dione  $(3)^2$  derivatives. In this continuing structural modification study, we now report the synthesis and cytotoxic evaluation of methyl and substituted methyl derivatives of the latter compound class.

## Synthesis of 2-methyl-4,8-dihydrobenzo[1,2-*b*:5,4-*b*']dithiophene-4,8-dione (8) and its derivatives

The syntheses of 2-methyl-4,8-dihydrobenzo[1,2-*b*:5,4*b'*]dithio-phene-4,8-dione (8) derivatives are outlined in Scheme 1. We used 3-methyl-2-thiophene carboxylic acid (4) as a starting material. Oxidation of compound 4 to the diacid 5 was accomplished in 45% yield using potassium permanganate in 15% NaOH. The cyclic diacylation of 2-methylthiophene (7) using 6 and AlCl<sub>3</sub> afforded the dione 8 accompanied by small amounts of other materials. Compound 8 was passed through a chromatographic column with benzene and recrystallized from acetic acid to give pure product (8) as yellow needles in 18% yield. Based on mass spectral results  $[m/z (234, M^+)]$  and elemental analysis data, the molecular formula was determined as  $C_{11}H_6O_2S$ . However, there are three possible structures (8a, 8b, and 8) for this compound.

In the IR spectrum, we found two different carbonyl absorptions at 1640 and 1660 cm<sup>-1</sup>. In the <sup>1</sup>H NMR spectrum, a CH<sub>3</sub> signal was found at 2.59 ppm, a singlet was observed at 7.27 ppm, and AB type signals were found at 7.57 and 7.68 ppm. In the <sup>1</sup>H-<sup>1</sup>H COSY spectrum, we observed allylic coupling between the 2-methyl group and H-3. Accordingly, structure 8a was ruled out. In the <sup>13</sup>C NMR spectrum, we observed two different carbonyl signals at 173 and 176 ppm; therefore, the carbonyl groups are in different chemical environments. However, from the above data, we still could not determine if the structure was 8b or 8, and designed the following chemical transformation experiments. This compound was oxidized with CrO<sub>3</sub> in glacial acetic acid to give the 2-carboxylic acid product 9, which was decarboxylated with a suspension of active copper in quinoline at 190-200 °C to give a 52% yield of compound 10.

The spectral data (i.e, 1-D and 2-D NMR spectra, mass spectrum, and elemental analysis) of compound **10** were compared with data in a published paper,<sup>3</sup> proving that compound **10** is 4,8-dihydrobenzo[1,2-*b*:5,4-*b'*]dithio-

Key words: 4,8-Dihydrobenzo[1,2-*b*:4,5-*b*']dithiophene-4,8-diones; 4,8-dihydrobenzo[1,2-*b*:5,4-*b*']dithiophene-4,8-diones; antineoplastic activity; cytotoxicity; structural modification.

<sup>\*</sup>Corresponding author. Tel.: 919 966 1121; fax: 919 966 6919.



phene-4,8-dione. Therefore, **8** is the major product in the cyclic diacylation reaction and its structure is 2-methyl-4,8-dihydrobenzo[1,2-*b*:5,4-*b*']dithiophene-4,8-dione.

Compound 8 is the key intermediate for the preparation of other anthraguinone derivatives. Oxidation of compound 8 with chromium trioxide in acetic anhydride under mild conditions (5-10 °C) afforded the diacetate intermediate 11. The crude intermediate 11 was hydrolyzed with dil H<sub>2</sub>SO<sub>4</sub> to yield 4,8-dihydrobenzo[1,2*b*:5,4-*b*']dithiophene-4,8-dione-2-carboxaldehyde (12)with mp 202-203 °C. Since the direct oxidation of 8 gave 9 only in very low (10%) yield, compound 12 was oxidized with silver nitrate in dioxane to give the same 2-carboxylic acid (9). Reduction of compound 12 with sodium borohydride in CH<sub>3</sub>OH gave a 90% yield of 2-hydroxymethyl-4,8-dihydrobenzo[1,2-b:5,4-b']dithiophene-4,8-dione (13). Treatment of 13 with acetyl chloride or thionyl chloride yielded 2-acetoxymethyl-4,8-dihydrobenzo[1,2-b:5,4-b']dithiophene-4,8-dione (14) in a 92% yield and 2-chloromethyl-4,8-dihydrobenzo-[1,2-*b*:5,4-*b*']dithiophene-4,8-dione (15) in an 86% yield, respectively.

### Synthesis of 3-methyl-4,8-dihydrobenzo[1,2-*b*:5,4*b*'|dithiophene-4,8-dione (17) and its derivatives

The synthesis of derivatives of 3-methyl-4,8-dihydrobenzo[1,2-*b*:5,4-*b'*]dithiophene-4,8-dione (17) is outlined in Scheme 2. The cyclic diacylation of 3-methylthiophene (16) with 6 and AlCl<sub>3</sub> afforded the dione 17 in a 16% yield. Based on mass spectral [m/z (234, M<sup>+</sup>)] and elemental analysis data, the molecular formula was determined as C<sub>11</sub>H<sub>6</sub>O<sub>2</sub>S. In its <sup>1</sup>H NMR spectrum, in addition to a CH<sub>3</sub> signal found at 2.58 ppm, a singlet was observed at 7.31 ppm, and AB type signals were found at 7.60 and 7.64 ppm. The <sup>13</sup>C NMR spectrum showed a CH<sub>3</sub> signal at 16 ppm and two carbonyl carbon signals at 174.5 and 175.8 ppm. From the above





data, we confirmed that this product is 3-methyl-4,8dihydrobenzo[1,2-b:5,4-b']dithiophene-4,8-dione (17). In the presence of a catalytic amount of benzoyl peroxide and a few drops of hydrobromic acid as an initiator, compound 17 underwent free radical bromination with 1.5–1.8 equiv of N-bromosuccinimide to afford the 2-(bromomethyl) analogue **18**. In its <sup>1</sup>H NMR spectrum, in addition to a CH<sub>2</sub> signal at 4.88 ppm, AB type signals were found at 7.61 and 7.67 ppm, and a singlet was observed at 7.71 ppm. The <sup>13</sup>C NMR spectrum showed a CH<sub>2</sub> signal at 26.5 ppm and two carbonyl carbon signals at 174 and 175 ppm. The mass spectrum showed two molecular ion peaks  $[m/z (312, M^+)]$  and  $[m/z(314, M^+)]$  $M^{+}+2)$ ] in a 1:1 ratio, which is characteristic of monobromine substitution, we thus concluded that this product is 3-bromomethyl-4,8-dihydrobenzo[1,2-b:5,4b']dithiophene-4,8-dione (18). Hydrolysis of compound 18 used silver nitrate in 70% acetone to give a 42% yield of 3-hydroxymethyl-4,8-dihydrobenzo[1,2-b:5,4-b']dithiophene-4,8-dione (19).

## **Results and Discussion**

Compounds 8-9, 12-15, 17, and 19 were submitted to NCI for in vitro testing<sup>4–6</sup> against 58 human tumor cell lines derived from leukemia, small and non-small cell lung cancers, colon cancer, CNS cancer, melanoma, ovarian cancer, renal cancer, and breast cancer. All compounds were active against all cell lines with mean log  $GI_{50}$  values ranging from -5.18 (compound 9) to -6.99 (compound 13). (Activity is defined as  $\log GI_{50} < -4$  where  $GI_{50}$  is the molar concentration causing 50% cell growth inhibition). Table 1 shows the biological data in selected cell lines. COMPARE computations<sup>4</sup> were performed on all NCI screening data from the test compounds, and all were negative (Pearson correlation coefficients < 0.6) against the NCI "Standard Agent" database. Therefore, these compounds probably act by a mechanism differing from those of the standard agents.

The 2-carboxylic acid (9) was less active than either the 2-methyl (8) or 2-carboxaldehyde (12). The 3-methyl (17) and 3-hydroxymethyl (19) compounds were less active than the corresponding 2-substituted 8 and 13. Compounds 13 (2-hydroxymethyl), 14 (2-acetoxymethyl),



Scheme 1. Synthesis of 2-methyl-4,8-dihydrobenzo[1,2-b:5,4-b']dithiophene-4,8-dione (8) and its derivatives.

and **15** (2-chloromethyl) displayed striking potency in the melanoma cell panel with  $GI_{50}$  values < -8 in several cell lines. 2-Hydroxymethyl-4,8-dihydrobenzo[1,2b:5,4-b']dithiophene-4,8-dione (**13**) had the highest activity over all cell lines with a mean log  $GI_{50}$  value less than -6.99. This compound is the most promising candidate for further in vivo testing.

### Synthetic Methods

## General experimental procedures

All melting points were determined on a Yanaco MP-500D apparatus and are uncorrected. IR spectra were recorded on a Shimadzu IR-440 and Nicolet Impact 400 FT-IR spectrophotometers as KBr pellets. NMR spectra were obtained on Bruker ARX-300 FT-NMR and Varian VXR-300 FT-NMR spectrometers with tetramethylsilane (TMS) as an internal standard. The chemical shift values are expressed in  $\delta$  values (parts per million). The following abbreviations are used: s = singlet, d=doublet, t=triplet, q=quartet, m=multiplet, and br = broad. Mass spectra (MS) were measured with HP 5995 GC–MS and JEOL JMS-Hx 110 spectrometers. Ultraviolet spectra were recorded on a Shimadzu UV-160A spectrophotometer. Elemental analyses were performed by National Cheng Kung University and National Chung Hsing University, Taiwan. Flash column chromatography was performed on silica gel (mesh 25–150  $\mu$ m). Precoated silica gel plates (Kieselgel 60 F254 0.25 mm, Merck) were used for TLC analysis.

**Thiophene-2,3-dicarboxylic acid (5).** A stirred solution of 3-methyl-2-thiophene carboxylic acid (4) (21.3 g, 150 mmol) in 15% NaOH (700 mL) was heated to 70–80 °C. Potassium permanganate (100 g) was added portionwise over 3 h. Then the mixture was heated to reflux for 3 h, allowed to cool and acidified with excess HCl (12 *M*) in an ice bath. The white precipitate was filtered, then was recrystallized from water to give colorless needles of **5** (mp 270–272 °C) in a 45% yield. IR (KBr): 1700 (C=O), 3400–3600 (OH) cm<sup>-1</sup>; <sup>1</sup>H NMR (DMSO-d<sub>6</sub>):  $\delta$  7.38 (d, *J*=5.2 Hz, 1H, H-4), 7.79 (d, *J*=5.2 Hz, 1H, H-5); <sup>13</sup>C NMR (DMSO-d<sub>6</sub>):  $\delta$  130.1 (C-4), 130.9



Scheme 2. Synthesis of 3-methyl-4,8-dihydrobenzo[1,2-b:5,4-b']dithiophene-4,8-dione (17) and its derivatives.

| Table 1. | Inhibition of | in vitro cance | r cell lines by | compounds 8, 9 | , 12–15, 17, and 19 |
|----------|---------------|----------------|-----------------|----------------|---------------------|
|----------|---------------|----------------|-----------------|----------------|---------------------|

|                            |       | Cytotoxicity logGI <sub>50</sub> (M) <sup>a,b</sup> |       |         |         |         |       |       |  |  |
|----------------------------|-------|-----------------------------------------------------|-------|---------|---------|---------|-------|-------|--|--|
| Cell line                  | 8     | 9                                                   | 12    | 13      | 14      | 15      | 17    | 19    |  |  |
| Melanoma                   |       |                                                     |       |         |         |         |       |       |  |  |
| LOXIMVI                    | -6.89 | -5.87                                               | -7.57 | < -8.00 | < -8.00 | < -8.00 | -5.97 | -5.50 |  |  |
| MALME-3M                   | -6.80 | < -8.00                                             | -6.79 | -7.48   | -7.42   | -7.98   | -6.55 | -5.61 |  |  |
| M14                        | -6.80 | -5.75                                               | -7.43 | < -8.00 | < -8.00 | < -8.00 | -6.25 | -6.11 |  |  |
| SK-MEL-2                   | -6.44 | -5.68                                               | -6.74 | -7.50   | -7.17   | -6.93   | -5.76 | -5.83 |  |  |
| SK-MEL-28                  | -6.71 | -5.71                                               | -6.77 | < -8.00 | < -8.00 | -7.67   | -5.83 | -5.56 |  |  |
| SK-MEL-5                   | -6.82 | -5.77                                               | -7.00 | < -8.00 | -7.74   | -7.92   | -6.24 | -6.50 |  |  |
| UACC-257                   | -6.74 | -5.70                                               | -6.78 | -7.64   | -7.26   | -6.74   | -5.83 | -5.91 |  |  |
| UACC-62                    | -6.72 | -5.76                                               | -6.75 | -7.26   | -6.79   | -6.76   | -5.79 | -5.79 |  |  |
| Leukemia                   |       |                                                     |       |         |         |         |       |       |  |  |
| HL-60(TB)                  | -6.48 | -5.32                                               | -6.60 | -7.14   | -6.89   | -7.68   | -5.61 | -6.55 |  |  |
| Non-small cell lung cancer |       |                                                     |       |         |         |         |       |       |  |  |
| NCI-H23                    | -6.77 | -5.68                                               | -6.85 | -7.84   | -7.82   | -7.65   | -5.95 | -5.76 |  |  |
| NCI-H522                   | -6.61 | -5.82                                               | -6.24 | -6.99   | -6.85   | -6.77   | -5.79 | -6.77 |  |  |
| Ovarian cancer             |       |                                                     |       |         |         |         |       |       |  |  |
| OVCAR-3                    | -6.28 | -4.81                                               | -6.68 | -6.74   | -6.68   | -6.76   | -5.77 | -5.79 |  |  |
| OVCAR-8                    | -6.39 | -5.37                                               | -6.77 | -6.97   | -6.79   | -6.69   | -5.55 | -5.61 |  |  |
| Breast cancer              |       |                                                     |       |         |         |         |       |       |  |  |
| HS578T                     | -6.38 | -5.58                                               | -6.75 | -6.74   | -6.80   | -6.63   | -5.74 | -5.72 |  |  |
| MDA-MB-435                 | -6.75 | -5.76                                               | -7.73 | -7.76   | -7.75   | -7.73   | -6.67 | -5.74 |  |  |
| MDA-N                      | -6.77 | -5.73                                               | -7.70 | -7.75   | -7.73   | -7.74   | -6.53 | -5.84 |  |  |
| BT-549                     | -     | -                                                   | —     | _       | -       | -       | -     | -5.76 |  |  |
| Mean value <sup>c</sup>    | -6.15 | -5.18                                               | -6.50 | -6.99   | -6.66   | -6.59   | -5.62 | -5.78 |  |  |
|                            |       |                                                     |       |         |         |         |       |       |  |  |

<sup>a</sup>Data obtained from NCI's in vitro disease-oriented tumor cells screen.

<sup>b</sup>Data are an average of at least two testings.

<sup>c</sup>Mean value over all 58 cell lines tested.

(C-5), 136.9 (C-3), 137.3 (C-2), 162.7 C-3-C=O), 165.3 (C-2-C=O); MS m/z (relative intensity): 172 (M<sup>+</sup>, 32), 128 (55), 111 (100); UV  $\lambda_{max}$  (MeOH) nm (log  $\varepsilon$ ): 256 (4.01).

**Thiophene-2,3-dicarbonyl chloride (6).** A stirred suspension of thiophene-2,3-dicarboxylic acid (5) (8.6 g, 50 mmol) in thionyl chloride (20 mL) was maintained at reflux for 1 h. The dark solution was cooled and the excess thionyl chloride was removed under reduced pressure. The residue was treated with two 10 mL portions of dry benzene, followed by the evaporation of each portion. The tan solid (6) was dried in vacuum for 1 h and used without further purification.

**2-Methyl-4,8-dihydrobenzo**[1,2-*b*:5,4-*b*']dithiophene-4,8dione (8). A solution of the acid chloride (6) obtained above in dry 1,2-dichloroethane (50 mL) was added dropwise to a stirred suspension of AlCl<sub>3</sub> (14.6 g, 109 mmol) in dry 1,2-dichloroethane (50 mL) maintained at 4°C. The mixture was allowed to stir at 4°C for 10 min and a solution of 2-methylthiophene (7) (4.9 g, 50 mmol) in 1,2-dichloroethane (25 mL) was slowly added. The yellow suspension stirred at room temperature for 18h and then was poured into ice and HCl (50 mL, 2 M). CHCl<sub>3</sub> (300 mL) was added and the mixture was shaken vigorously. The layers were separated and the aqueous layer was extracted with CHCl<sub>3</sub>. The combined organic portions were washed with saturated NaHCO<sub>3</sub> and water, dried over anhydrous MgSO<sub>4</sub>, and concentrated to dryness. The resulting yellow mixture was purified by column chromatography (silica gel, benzene), and a yellow fraction  $(R_f)$ value = 0.29 in benzene) was collected. After evaporation, the residue was recrystallized from acetic acid to give yellow needles of 8 (mp 193-194°C) in an 18%

yield. IR (KBr): 1600, 1630 (C=O) cm<sup>-1</sup>; <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  2.59 (s, 3H, C-2-CH<sub>3</sub>), 7.27 (s, 1H, H-3), 7.57 (d, J = 5.1 Hz, 1H, H-5), 7.68 (d, J = 5.1 Hz, 1H, H-6); <sup>13</sup>C NMR (CDCl<sub>3</sub>):  $\delta$  16.1 (C-2-CH<sub>3</sub>), 124.9 (C-3), 126.7 (C-5), 133.2 (C-6), 142.4 (C-4a), 142.6 (C-3a), 143.2 (C-7a), 144.9 (C-8a), 150.1 (C-2), 172.9 (C-4), 176.9 (C-8); MS *m*/*z* (relative intensity): 234 (M<sup>+</sup>, 100), 177 (31); UV  $\lambda_{max}$  (MeOH) nm (log  $\epsilon$ ): 237 (4.31), 293 (4.21); Anal. calcd for C<sub>11</sub>H<sub>6</sub>O<sub>2</sub>S<sub>2</sub>: C, 56.39; H, 2.58. Found: C, 56.30; H, 2.65.

4,8-Dihydrobenzo[1,2-b:5,4-b']dithiophene-4,8-dione-2carboxylic acid (9). Method I: A suspension of compound 8 (1.2 g, 5.1 mmol) and  $CrO_3$  (2 g) in glacial acetic acid (15 mL) was refluxed for 3 h. The remainder of the  $CrO_3$  (1.5 g) was added portionwise over a 5 min period. The dark solution began to reflux vigorously. Reflux was maintained for 4h after the addition was completed. The mixture was then poured into cool water. The resulting precipitate was filtered, washed with water and recrystallized from acetic acid to give yellow needles of 9 (mp > 350 °C) in a 10% yield. IR (KBr): 1650, 1660 (C=O), 2400–3300 (OH) cm<sup>-1</sup>; <sup>1</sup>H NMR (DMSO- $d_6$ ):  $\delta$ 7.52 (d, J = 5.0 Hz, 1H, H-5), 7.80 (s, 1H, H-3), 8.14 (d, J = 5.0 Hz, 1H, H-6); <sup>13</sup>C NMR (DMSO- $d_6$ ):  $\delta$  126.4×2 (C-3, C-5), 129.6 (C-6), 141.8 (C-4a), 142.4 (C-3a), 143.6 (C-7a), 147.3 (C-8a), 158.0 (C-2), 161.7 (C-2-C=O), 172.5 (C-4), 174.5 (C-8); MS m/z (relative intensity): 264  $(M^+, 100), 247 (51); UV \lambda_{max} (MeOH) nm (log \epsilon): 253$ (4.28), 293 (4.12); Anal. calcd for C<sub>11</sub>H<sub>4</sub>O<sub>4</sub>S<sub>2</sub>: C, 49.99; H, 4.03. Found: C, 50.02; H, 3.88.

Method II: To an aqueous solution of 1 mL of NaOH (0.08 g, 2.0 mmol) was added 1 mL of silver nitrate (0.14 g, 0.8 mmol) aqueous solution; this mixture was stirred until a dark brown suspension appeared. Then a solution of **12** (0.1 g, 0.4 mmol) in 1,4-dioxane (5 mL) was added, and stirring continued for 30 min at room temperature until a black metal silver sediment was produced. The reaction mixture was filtered and washed with hot water several times, then the filtrate was acid-ified with concd HCl to form a yellow precipitate. The precipitate was filtered, washed with water, and recrystallized from acetic acid to give yellow needles of **9** (mp > 350 °C) in a 47% yield. The spectral data have been described above.

**4,8-Dihydrobenzo**[**1,2-***b***:<b>5,4-***b'***]dithiophene-<b>4,8-dione** (**10**). Compound **9** (0.06 g, 0.22 mmol) and active copper (25 mg, 0.4 mmol) were added to a hot solution of quinoline (5 mL) at 190–200 °C. The mixture was heated at 190–200 °C for 2 h, then 5% HCl (5 mL) was added, and the resulting mixture was extracted with CHCl<sub>3</sub>. The organic layer was separated, washed with saturated NaHCO<sub>3</sub> and water, dried, and evaporated. The residue was subjected to column chromatography (silica gel, benzene) to give **10** as a yellow solid (mp 235–237 °C) in a 52% yield.

#### Preparation of active copper

To a 80 mL aqueous solution of cupric sulfate pentahydrate (10 g, 40.0 mmol) was added Zn powder (2.6 g, 39.8 mmol). The mixture was stirred for 1 h, then filtered to give red brown metal copper, washed with water and dried in a desiccator.

2-Formyl-4,8-dihydrobenzo[1,2-b:5,4-b']dithiophene-4,8dione (12). To a suspension of 2-methyl-4,8-dihydrobenzo[1,2-b:5,4-b']dithiophene-4,8-dione (8) (3.5 g, 15 mmol) in glacial acetic acid (50 mL) was added dropwise concd H<sub>2</sub>SO<sub>4</sub> (98%, 2mL) and CrO<sub>3</sub> (4.5g, 45 mmo1) at 5-10 °C. The mixture was stirred at below 10°C for 4h. Then the mixture was poured into ice water and was extracted with CHCl<sub>3</sub>. The organic layer was washed with saturated NaHCO<sub>3</sub> and water, dried over anhydrous MgSO4 and concentrated under reduced pressure to give crude intermediate 11. EtOH (95%, 60 mL) and dil. H<sub>2</sub>SO<sub>4</sub> (30%, 40 mL) were added to 11, and the mixture was maintained at reflux for 1 h, then cooled and poured into ice water. The mixture was extracted with CHCl<sub>3</sub>. The organic layer was washed with saturated NaHCO<sub>3</sub> and water, dried, and condensed. The residue was purified by column chromatography (silica gel, benzene) to give yellow 2-formyl-4,8dihydro-benzo[1,2-*b*:5,4-*b*']dithiophene-4,8-dione (12)(mp 202-203 °C) in a 30% yield. IR (KBr): 1650, 1680  $(C=O) \text{ cm}^{-1}$ ; <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  7.66 (d, J=5.1/Hz, 1H, H-5), 7.76 (d, J=5.1 Hz, 1H, H-6), 8.21 (s, 1H, H-3), 10.04 (s, 1H, 2-CHO); <sup>13</sup>C NMR (CDCl<sub>3</sub>): δ 127.0 (C-3), 132.9 (C-5), 134.9 (C-6), 142.4 (C-4a), 143.0 (C-3a), 144.6 (C-7a), 148.5 (C-8a), 150.0 (C-2), 172.9 (C-4), 174.9 (C-8), 182.9 (C-2-C=O); MS m/z (relative intensity): 248 (M<sup>+</sup>, 22), 247 (100), 219 (5); UV  $\lambda_{max}$  (acetonitrile) nm (log ɛ): 244 (4.82), 275 (4.38); Anal. calcd for C<sub>11</sub>H<sub>4</sub>O<sub>3</sub>S<sub>2</sub>: C, 53.21; H, 1.62. Found: C, 52.99, H, 1.68.

2-Hydromethyl-4,8-dihydrobenzo[1,2-b:5,4-b']dithiophene-**4,8-dione (13).** To a suspension of compound **12** (1.2 g, 4.8 mmol) in CH<sub>3</sub>OH (200 mL) was added sodium borohydride (0.2 g, 5.2 mmol). The mixture was stirred for 2h. After acidification with 5% hydrochloric acid solution, the solution was extracted with CHCl<sub>3</sub>. The organic layer was washed with water, dried, and condensed. The residue was purified by column chromatography on silica gel eluting with CHCl<sub>3</sub>:CH<sub>3</sub>OH (10:1) to give 13 as an orange solid (mp 183–184 °C) in a 90% yield. IR (KBr) 1050 (C-O), 1640 (C=O), 3300-3500 (OH) cm<sup>-1</sup>; <sup>1</sup>H NMR (DMSO- $d_6$ ):  $\delta$  4.76 (d, J = 5.4 Hz, 2H, 2-CH<sub>2</sub>-), 5.99 (t, J = 5.4 Hz, OH), 7.42 (s, 1H, H-3), 7.57 (d, J = 5.1 Hz, 1H, H-5), 8.09 (d, J = 5.1 Hz, 1H, H-6); <sup>13</sup>C NMR (DMSO-*d*<sub>6</sub>): δ 58.5 (C-2-CH<sub>2</sub>-), 121.8 (C-3), 126.3 (C-5), 135.5 (C-6), 141.9 (C-4a), 142.1 (C-3a), 142.3 (C-7a), 144.1 (C-8a), 158.0 (C-2), 172.7 (C-4), 175.6 (C-8); MS m/z (relative intensity): 250 (M<sup>+</sup>, 100), 221 (24); UV  $\lambda_{max}$  (MeOH) nm (log  $\varepsilon$ ): 237 (4.28), 293 (4.18); Anal. calcd for  $C_{11}H_6O_3S_2$ : C, 52.79; H, 2.42. Found: C, 52.79; H, 2.54.

**2-Acetoxymethyl-4,8-dihydrobenzo**[1,2-b:5,4-b']dithiophene-4,8-dione (14). To a solution of compound 13 (0.3 g, 1.2 mmol) in 1,2-dichloroethane (30 mL) was added dropwise acetyl chloride (0.2 g, 2.5 mmol). The mixture was heated at reflux for 4 h, then the mixture was cooled, poured into ice water, and extracted with CHCl<sub>3</sub>. The organic layer was washed with saturated NaHCO<sub>3</sub> and water, dried, and evaporated. The residue was purified by column chromatography (silica gel, CHCl<sub>3</sub>) to give 14 as a yellow solid (mp 140–141  $^{\circ}$ C) in a 92 % yield. IR (KBr): 1240 (C-O), 1600, 1660, 1720 (C=O) cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  2.11 (s, 3H, COCH<sub>3</sub>), 5.25 (s, 2H, 2-CH<sub>2</sub>-), 7.49 (s, 1H, H-3), 7.55 (d, J = 5.1 Hz, 1H, H-5), 7.65 (d, J = 5.1 Hz, 1H, H-6); <sup>13</sup>C NMR (CDCl<sub>3</sub>): δ 20.6 (C-2-CH<sub>3</sub>), 60.2 (C-2-CH<sub>2</sub>-), 126.0 (C-3), 126.7 (C-5), 133.8 (C-6), 142.3 (C-4a), 142.4 (C-3a), 144.5 (C-7a), 144.7 (C-8a), 147.4 (C-2), 170.2 (C-2-C=O), 172.8 (C-4), 175.4 (C-8); MS m/z (relative intensity): 292 (M<sup>+</sup>, 29), 250 (100), 221 (34); UV  $\lambda_{max}$ (MeOH) nm (log ε ): 237 (4.30), 292 (4.17); Anal. calcd for C<sub>13</sub>H<sub>8</sub>O<sub>4</sub>S<sub>2</sub>: C, 53.41; H, 2.76. Found: C, 53.20: H, 2.82.

2-Chloromethyl-4,8-dihydrobenzo[1,2-b:5,4-b']dithiophene-**4.8-dione (15).** To a suspension of compound **13** (0.3 g, 1.2 mmol) in dry benzene (30/mL) was added thionyl chloride (0.4 g, 3.4 mmol). The mixture was heated at reflux for 1h and the excess thionyl chloride was removed under reduced pressure. The resulting yellow mixture was purified by column chromatography on silica gel eluting with benzene:  $CHCl_3$  (10:1) to give 15 as a yellow solid (mp 165-166 °C) in a 86% yield. IR (KBr): 1650 (C=O)  $cm^{-1}$ ; <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  4.77 (s, 2H, CH<sub>2</sub>), 7.55 (s, IH, H-3), 7.59 (d, J=5.1 Hz, 1H, H-5), 7.67 (d, J = 5.1 Hz, 1H, H-6); <sup>13</sup>C NMR (CDCl<sub>3</sub>):  $\delta$ 39.5 (C-2-CH<sub>2</sub>-), 126.1 (C-3), 126.8 (C-5), 133.8 (C-6), 142.5×2 (C-3a, C-4a), 144.5 (C-7a), 144.9 (C-8a), 149.2 (C-2), 172.8 (C-4), 175.5 (C-8); MS m/z (relative intensity): 270 ( $M^+$  + 2, 20), 268 ( $M^+$ , 43), 233 (100); UV  $\lambda_{max}$  (MeOH) nm (log  $\epsilon$ ): 242 (4.28), 293 (4.16); Anal. calcd for C<sub>11</sub>H<sub>5</sub>O<sub>2</sub>S<sub>2</sub>Cl: C, 49.16; H, 1.88. Found: C, 48.98; H, 1.76.

3-Methyl-4,8-dihydrobenzo[1,2-b:5,4-b']dithiophen-4,8dione (17). A solution of the acid chloride (6) obtained above in dry 1,2-dichloroethane (50 mL) was added dropwise to a stirred suspension of  $AlCl_3$  (14.6 g, 109 mmol) in dry 1,2-dichloroethane (50 mL) maintained at 4°C. The mixture was allowed to stir at 4°C for 10 min and a solution of 3-methylthiophene (16) (4.9 g, 50 mmol) in 1,2-dichloroethane (25 mL) was slowly added. The yellow suspension was allowed to stir at room temperature for 18h and was poured into ice and HCl (50 mL, 2 M). CHCl<sub>3</sub> (300 mL) was added and the mixture was shaken vigorously. The layers were separated and the aqueous layer was extracted with CHCl<sub>3</sub>. The combined organic portions were washed with saturated NaHCO<sub>3</sub> and water, dried over anhydrous MgSO<sub>4</sub>, and concentrated to dryness. The resulting yellow mixture was purified by column chromatography (silica gel, benzene) to give the yellow solid 17 (mp 146–147 °C) in a 16% yield. IR (KBr): 1660 (C=O) cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  2.58 (s, 3H, C-3-CH<sub>3</sub>), 7.31 (s, 1H, H-2), 7.60 (d, J = 5.2 Hz, 1H, H-5), 7.64 (d, J = 5.2 Hz, 1H, H-6); <sup>13</sup>C NMR (CDCl<sub>3</sub>): 16.0 (C-2-CH<sub>3</sub>), 126.3 (C-6), 130.3 (C-2), 133.2 (C-7), 139.2 (C-4a), 140.9 (C-3a), 143.3 (C-7a), 144.4 (C-8a), 146.2 (C-3), 174.6 (C-4), 175.9 (C-8); MS m/z (relative intensity): 234 (M<sup>+</sup>, 100), 206 (19), 197 (50); UV  $\lambda_{max}$  (MeOH)

nm (log  $\epsilon$ ): 245 (4.23), 281 (4.09); Anal. calcd for  $C_{11}H_6O_2S_2$ : C, 56.39; H, 2.58. Found: C, 56.45; H, 2.50.

3-Bromomethyl-4,8-dihydrobenzo[1,2-b:5,4-b']dithiophene-**4.8-dione (18).** To a solution of compound **17** (1.4 g, 6.0 mmol) and benzovl peroxide (0.1 g, 0.4 mmol) in dry benzene (30 mL) were added several drops of hydrobromic acid. The mixture was refluxed for 10 min, then N-bromosuccinimide (1.2 g, 9.6 mmol) and benzoyl peroxide (0.2 g, 0.8 mmol) were added portionwise. Reflux was then continued for 5h. After filtration, the dry benzene was removed in vacuum. The residue was purified by column chromatography on silica gel eluting with *n*-hexane:benzene (1:5) to give **18** as a yellow solid (mp 179–180 °C) in a 37% yield. IR (KBr): 1650 (C=O) cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>): δ 4.89 (s, 2H, 3-CH<sub>2</sub>-), 7.63 (d, J = 4.9 Hz, 1H, H-5), 7.69 (d, J = 4.9 Hz, 1H, H-6), 7.73 (s, 1H, H-2); <sup>13</sup>C NMR (CDCl<sub>3</sub>): δ 26.5 (C-3-CH<sub>2</sub>-), 126.4 (C-5), 133.5 (C-2), 133.8 (C-6), 137.6 (C-3a), 140.1 (C-4a), 142.1×2 (C-7a, C-8a), 148.2 (C-3), 174.3 (C-4), 175.2 (C-8); MS m/z (relative intensity): 314 (M<sup>+</sup>+2, 9), 312 (M<sup>+</sup>, 9), 233 (100); UV  $\lambda_{max}$  (MeOH) nm (log  $\varepsilon$ ): 239 (4.29), 291 (4.17); Anal. calcd for C<sub>11</sub>H<sub>5</sub>O<sub>2</sub>S<sub>2</sub>Br: C, 42.19; H, 1.61. Found: C, 42.30; H, 1,60.

3-Hydroxymethyl-4,8-dihydrobenzo[1,2-b:5,4-b']dithiophene-4,8-dione (19). To an aqueous solution of acetone (70%, 65 mL) and silver nitrate (1.4 g, 8.2 mmol) was added compound 18 (0.6 g, 1.9 mmol). The mixture was stirred for 2.5 h at 28-30 °C. After filtration, the filtrate was extracted with diethyl ether. The organic layer was dried, and evaporated. The residue was purified by column chromatography on silica gel eluting with CHCl<sub>3</sub>:CH<sub>3</sub>OH (12:1) to give **19** as a yellow solid (mp 139–140 °C) in a 42% yield. IR (KBr): 1275 (C-O), 1650 (C=O), 3200-3600 (OH) cm<sup>-1</sup>; <sup>1</sup>H NMR (DMSOd<sub>6</sub>): δ 5.54 (s, 1H, OH), 5.85 (s, 2H, 3-CH<sub>2</sub>-), 7.61 (d, J = 5.0 Hz, 1H, H-5), 8.14 (d, J = 5.0 Hz, 1H, H-6), 8.24 (s, 1H, H-2); <sup>13</sup>C NMR (DMSO-*d*<sub>6</sub>): δ 68.5 (C-3-CH<sub>2</sub>-), 126.0 (C-5), 133.3 (C-2), 135.7 (C-6), 135.9×2 (C-7a, C-8a), 136.2 (C-4a), 138.2 (C-3a), 141.7 (C-3), 173.9 (C-4), 174.7 (C-8); MS m/z (relative intensity): 250 (M<sup>+</sup>, 100), 221 (40); UV  $\lambda_{max}$  (MeOH) nm (log  $\varepsilon$ ): 237 (4.22), 290 (4.16); Anal. calcd for C<sub>11</sub>H<sub>6</sub>O<sub>3</sub>S<sub>2</sub>: C, 52.79: H, 2.42. Found: C, 52.86; H, 2.30.

## Acknowledgements

This work was supported by grants from the National Science Council of the Republic of China (S. C. K.) and the U. S. National Cancer Institute, CA 17625 (K. H. L.).

#### References

- 1. Field, T. L.; Lin, Y. I.; Warren, J. D.; Lang, S. A. J. Heterocyclic Chem., 1988, 25, 1917.
- 2. Chao, Y. H.; Kuo, S. C.; Wu, C. H.; Lee, C. Y.; Mauger, A.; Sun, I. C.; Morris-Natschke, S. L.; Lee, K. H. J. Med. Chem., submitted.
- 3. MacDowell, D. W. H.; Wisowaty, J. C. J. Org. Chem., 1971, 36, 4004.
- 4. Paull, K. D.; Shoemaker, R. H.; Hodes, L.; Monks, A.; Scudiero, D. A.; Rubinstein, L.; Plowman, J.; Boyd, M. R. J. Natl. Cancer Inst. **1989**, 81, 1088.

5. Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Woiff, A.; Gray-Goodrich, M.; Campbell, H; Mayo, J.; Boyd, M. J. Natl. Cancer Inst. **1991**, *83*, 757.

6. Boyd, M. R.; Paull, K. D.; Rubinstein, L. R. In *Cytotoxic Anticancer Drugs: Models and Concepts for Drug Discovery and Development*, Valeriote, F. A.; Corbett, T.; Baker, L., Eds; Kluwer Academic Publishers: Amsterdam, **1992**, 11–34.