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This is an invited survey on the relation between the partition function of the Potts
model and the Tutte polynomial. On the assumption that the Potts model is more
familiar we have concentrated on the latter and its interpretations. In particular we
highlight the connections with Abelian sandpiles, counting problems on random
graphs, error correcting codes, and the Ehrhart polynomial of a zonotope. Where
possible we use the mean field and square lattice as illustrations. We also discuss in
some detail the complexity issues involved. ©2000 American Institute of Phys-
ics. @S0022-2488~00!00203-6#

I. INTRODUCTION

The classical Potts model was introduced by Potts in 1952 and in its most basic form c
described as follows.

Consider a finite latticeLn of N sites or general graphG of N vertices and suppose that ea
site ~5vertex! can have associated with it a spin, which can have one ofQ values. The energy
between two interacting spins is taken to be zero if the spins are the same and equal to a c
if they are different.

In the simplest description of the Potts model withQ states$1,2,...,Q%, the HamiltonianH is
given by

H5J(
i; j

~12d~s i ,s j !!, ~1!

where the sum is over all nearest-neighbor pairs of sitesi, j ands i is the spin at sitei. HereJ is
the ~constant! interaction. The model isferromagneticwhen J.0 and antiferromagneticif J
,0.

The probability of finding the system in states is then given by

Pr@s#5e2bH~s!/Z, ~2!

whereZ, the normalizing constant, is thepartition functionandb51/kT, wherek is Boltzmann’s
constant andT is the temperature.

Thus the partition function is

Z~G;Q,K !5(
s

expS 2K(
i; j

~12d~s i ,s j !! D , ~3!

whereK5J/kT, the summation in the exponential is over all near-neighbor pairs~i,j!, and the first
summation is over all possible spin configurations.

The Ising model with zero external field is just the special case whenQ52 and then the spins
are usually taken to be61.

a!Electronic mail: dwelsh@maths.ox.ac.uk
b!Electronic mail: merino@maths.ox.ac.uk
11270022-2488/2000/41(3)/1127/26/$17.00 © 2000 American Institute of Physics
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The Tutte polynomial is less familiar and will be precisely defined in Sec. II. However in
basic form it is just a two-variable polynomialT(G;x,y) associated with any finite graphG. Its
relation with the classical Potts model onG as described previously is thatZ(G;Q,K) as given in
~3! is, up to an easy multiplicative constant, just an evaluation ofT along the hyperbola

HQ[~x21!~y21!5Q.

To see and remember this is not difficult. The reparametrization (Q,K)↔(x,y) is just given by

x511
Qe2K

12e2K 5
eK1Q21

eK21
,

y5eK.

Thus the Tutte polynomialT can be regarded as a natural continuation ofZ from the countable
set of hyperbolae$HQ%,Q51, 2, ..., to the whole plane.

The interpretation is quite easy and allows an easy specification of various places of in
For example the following correspondences are easy to check:

Q-state Potts Tutte polynomial

Ferromagnetism Positive branchHQ
1 of HQ

Antiferromagnetism Negative branchHQ
2 of HQ

restricted toy.0
High temperature both ferromagnetic
and antiferromagnetic

Portion ofHQ asymptotic to
y51

Low temperature ferromagnetic HQ
1 asymptotic tox51

Absolute zero antiferromagnetic x512Q, y50

A partial extension of the Potts model is therandom clustermodel introduced by Fortuin and
Kasteleyn in 1972. This extends the ferromagnetic Potts model to the whole of the regionQ.0
but again this is only a part of the Tutte plane. More precisely the random cluster partition fun
ZRC(Q,p) which we define in Sec. IV corresponds to the quadrantx.1, y.1 in the Tutte plane.

In what follows we highlight some of the many other specializations of the Tutte polynom
concentrating on those in the region of the Potts or random cluster models or those o
boundary of this region, notably the intriguing degenerate hyperbolaH0 corresponding toQ50.
We also treat in some detail a curious interpretation in terms of the weight enumerator of
wheneverQ is a prime power.

We close this introduction by pointing out another way of thinking of the Potts model w
is useful in what follows. This is in terms of coloring. The possible colors are the integers 1,
Q and the sum of the right-hand side of~3! is just a sum over all possibleQ colorings of the vertex
set ofG. Given a particular colorings we see that its contribution to the sum is the term

exp~2KuE\B~s!u!,

where we useB(s) to denote the set of edges which arebad, that is, have end points with th
same color, unders.

Hence, if we writebj (G;l) to denote the number ofl colorings ofG in which exactlyj edges
are bad, then

Z~G;Q,K !5e2KuEu(
j 50

`

bj~G;Q!~eK! j . ~4!
r 2013 to 198.91.37.2. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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In other words, if as in Ref. 1 we define thebad coloring polynomialto be the generating
function

B~G;l,s!5(
j

bj~G;l!sj , ~5!

then

Z~G;Q,K !5e2KuEuB~G;Q,eK!. ~6!

An excellent, accessible review of the Potts model can be found in Wu.2

II. THE TUTTE POLYNOMIAL

The Tutte polynomial is a polynomial in two variablesx,y which can be defined for a graph
matrix, or even more generally a matroid. Most of the interesting applications arise whe
underlying structure is a graph or a matrix, but matroids are an extremely useful vehic
unifying the concepts and definitions. For example each of the following is a special case
general problem of evaluating the Tutte polynomial of a graph~or matrix! along particular curves
of the ~x, y! plane:

~i! the chromatic and flow polynomials of a graph;
~ii ! the all terminal reliability probability of a network;
~iii ! the partition function of aQ-state Potts model;
~iv! the Jones polynomial of an alternating knot;
~v! the weight enumerator of a linear code overGF(q).

In this section we will briefly review the standard theory of the Tutte polynomial and in
V we list its well-known evaluations. The graph terminology used is standard. The ma
terminology follows Oxley.3 Further details of many of the concepts treated here can be foun
Welsh.1

First consider the following recursive definition of the functionT(G;x,y) of a graphG and
two independent variablesx, y.

If G has no edges, thenT(G;x,y)51, otherwise for anyePE(G).
2.1: T(G;x,y)5T(Ge8 ;x,y)1T(Ge9 ;x,y), whereGe8 denotes the deletion of the edgee from

G andGe9 denotes the contraction ofe in G, and the edgee is not a loop or an isthmus,
2.2: T(G;x,y)5xT(Ge9 ;x,y), whenevere is an isthmus, that is an edge whose remo

increases the number of connected components,
2.3: T(G;x,y)5yT(Ge8 ;x,y), whenevere is a loop.
From this, it is easy to show by induction thatT is in fact a two-variable polynomial inx,y,

which we call theTutte polynomialof G.
In other words,T may be calculated recursively by choosing the edges inany order and

repeatedly using 2.1–2.3 to evaluateT. The remarkable fact is thatT is well defined in the sense
that the resulting polynomial is independent of the order in which the edges are chosen.

Example:In Fig. 1 we show an example of computing the Tutte polynomial of the graphG,
that is K4 minus one edge. By adding the monomials at the bottom of Fig. 1, we get
T(G;x,y)5x312x21x12xy1y1y2.

Alternatively, and this is often the easiest way to prove properties ofT, we can show thatT
has expansion shown in Fig. 1.

First recall that ifA#E(G), the rank of A,r (A) is defined by

r ~A!5uV~G!u2k~A!, ~7!

where k(A) is the number of connected components of the graphG:A having vertex setV
5V(G) and edge setA.
r 2013 to 198.91.37.2. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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It is now straightforward to prove the following.
The Tutte polynomialT(G;x,y) can be expressed in the form

T~G;x,y!5 (
A#E

~x21!r ~E!2r ~A!~y21! uAu2r ~A!. ~8!

One feature of the Tutte polynomial which is rather surprising in view of the states m
expansion~8! is that for any graphT has an expansion of the form

T~G;x,y!5(
i , j

t i , j x
iy j ,

where thet i , j are non-negative integers. Typically thet i , j are represented in matrix form. Fo
example, the following table provides the matrix form for the graphK6 :

j \ i 0 1 2 3 4 5

0 0 24 50 35 10 1
1 24 106 90 20 0 0
2 80 145 45 0 0 0
3 120 105 15 0 0 0
4 120 60 0 0 0 0
5 96 24 0 0 0 0
6 64 6 0 0 0 0
7 35 0 0 0 0 0
8 15 0 0 0 0 0
9 5 0 0 0 0 0

10 1 0 0 0 0 0

It is easy and useful to extend these ideas to matroids and hence matrices.
A matroid M is just a generalization of a matrix and can be simply defined as a pair~E,r!

whereE is a finite set andr is a submodularrank functionmapping 2E→Z and satisfying the
conditions

FIG. 1. An example of computing the Tutte polynomial recursively.
r 2013 to 198.91.37.2. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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0<r ~A!<uAu, A#E,

A#B⇒r ~A!<r ~B!, and

r ~AøB!1r ~AùB!<r ~A!1r ~B!, A,B#E.

The edge set of any graphG with its associated rank function, as defined by~7!, is a matroid,
but this is just a very small subclass of matroids, known as graphic matroids.

A much larger class is obtained by taking any matrixB with entries in a fieldF, letting E be
its set of columns and forX#E defining the rankr (X) to be the maximum size of a linearl
independent set inX. Any abstract matroid which can be represented in this way is calledrepre-
sentableover F.

A matroid M is representable over every field if and only if it has a representation ove
reals by a matrixB which is totally unimodular. Such a matroid is calledregular. Every graphic
matroid is regular.

Given M5(E,r ), its dual matroidis M* 5(E,r * ), wherer * is defined by

r * ~E\A!5uEu2r ~E!2uAu1r ~A!. ~9!

Duality is of fundamental importance as it allows duality concepts to be extended to nonp
graphs. WhenM is the matroid of a planar graphG, M* is the matroid of any planar dual grap
of G. However whenG is not planar thenM* is not graphic but is still representable as a matr

A set X is independentif r (X)5uXu, it is a baseif it is a maximal independent subset ofE.
We now just extend the definition of the Tutte polynomial from graphs to matroids by

T~M ;x,y!5 (
A#E~M !

~x21!r ~E!2r ~A!~y21! uAu2r ~A!. ~10!

Much of the theory developed for graphs goes through in this more general setting and
are many applications as we shall see. For example, routine checking shows that

T~M ;x,y!5T~M* ;y,x!. ~11!

In particular, whenG is a planar graph andG* is any plane dual ofG, ~11! becomes

T~G;x,y!5T~G* ;y,x!.

III. INTERPRETATIONS IN TERMS OF THE ISING AND POTTS MODELS

We start this section with what it is called the ‘‘recipe theorem’’ from Oxley and Welsh.4 Its
crude interpretation is that whenever a functionf on some class of matroids can be shown
satisfy an equation of the formf (M )5a f(Me8)1b f(Me9), for anyePE(M ), thenf is essentially
an evaluation of the Tutte polynomial.

HereMe8 is the restriction of M5(E,r ) to the setE\$e% with r unchanged. Thecontraction
Me9 can be defined byMe95(M* )e8 or more usefully by its rank functionr 9(A)5r (Aøe)
2r (e) for A#E\$e% and is the exact analog of contraction in graphs. For matrices it corresp
to projectionalong the column vectore. A minor of M is any matroidN obtainable fromM by a
sequence of contractions and deletions. There is also a natural definition of thedirect sumof two
matroidsM andN, whereE(M ) andE(N) are disjoint sets. The rank function ofM % N is given

by r M % N(Aø̇B)5r M(A)1r N(B) for A#E(M ) andB#E(N). Finally, we define a loop~coloop!
as a single element matroid$e% with rank functionr 1(e)50(r c(e)51).

The recipe theorem can now be stated as follows:
Theorem 1: Let C be a class of matroids which is closed under direct sums and the takin

minors and suppose that f is well defined onC and satisfies
r 2013 to 198.91.37.2. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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f ~M !5a f~Me8!1b f~Me9!, ePE~M !, ~12!

f ~M1% M2!5 f ~M1! f ~M2!, ~13!

then f is given by

f ~M !5auEu2r ~E!br ~E!TS M ;
x0

b
,
y0

a D ,

where x0 and y0 are the values f takes on coloops and loops, respectively.
Any invariant f which satisfies~12! and ~13! is called aTutte–Grothendieck (TG)-invariant.
Thus, what we are saying is that any TG-invariant has to have an interpretation as an

ation of the Tutte polynomial. As examples we consider the Ising and Potts models.
Consider the bad coloring polynomial defined in~5!,

B~G;l,s!5(
i 50

uEu

sibi~G;l!.

Clearly b0(G;l) is the chromatic polynomial ofG and it is easy to check that the followin
relationships hold.

3.1. If G is connected, then providede is not a loop or coloop,

B~G;l,s!5B~Ge8 ;l,s!1~s21!B~Ge9 ;l,s!.

3.2. B(G;l,s)5sB(Ge8 ;l,s), if e is a loop.
3.3. B(G;l,s)5(s1l21)B(Ge9 ;l,s), if e is a coloop.
Combining these, we get the following by using the recipe theorem for the class of conn

graphs.

3.4. B~G;l,s!5l~s21! uVu21TS G;
s1l21

s21
,sD .

Consider now the relation with the Potts model. From~6! we get

ZPotts~G;Q,K !5Q~eK21! uVu21e2KuEuTS G;
eK1Q21

eK21
,eKD . ~14!

It is not difficult ~with hindsight! to verify thatT(G;x,y) can be recovered from the polyno
mial B and therefore from the Potts partition function by using the following formula:

T~G;x,y!5
1

~y21! uVu~x21!
B~G;~x21!~y21!,y!.

For connected graphs, the classical Ising model is just the caseQ52 in ~14!. WhenG hask
connected components then there is an extra factor ofQk21 on the right-hand side of~14!.

IV. THE RANDOM CLUSTER MODEL AND FERROMAGNETIC POTTS MODEL

The general random cluster model on a finite graphG was introduced by Fortuin and
Kasteleyn.5 It is a correlated bond percolation model on the edge setE of G defined by the
probability distribution,

m~A!5ZRC
21S )

ePA
~pe! D S )

e¹A
~12pe! DQk~A! ~A#E!, ~15!
r 2013 to 198.91.37.2. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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wherek(A) is the number of connected components~including isolated vertices! of the subgraph
G:A5(V,A),pe(0<pe<1) are parameters associated with each edge ofG, Q>0 is a parameter
of the model, andZRC is the normalizing constant introduced so that

(
A#E

m~A!51.

Then m(A) is interpreted as the probability that the set of edges ofG openin the random
cluster model is exactly the setA. The complementE\A is closed.

We will sometimes usev(G) to denote the random configuration produced bym, andPm to
denote the associated probability distribution.

Thus, in particular,m(A)5Pm$v(G)5A%. WhenQ51, m is what Fortuin and Kasteleyn ca
a percolation modeland when each of thepe are made equal, say top, thenm(A) is clearly seen
to be the probability that the set of open edges isA in classical ordinary bond percolation.

For an account of the many different interpretations of the random cluster model we re
the original paper of Fortuin and Kasteleyn5 or to Grimmett.6,7

Here we shall be concentrating on the percolation problem when each of thepe are equal, to
sayp, and henceforth this will be assumed.

Thus we will be concerned with a two parameter family of probability measurem
5m(p,Q) where 0<p<1 andQ.0, which are defined on the edge set of the finite graphG
5(V,E) by

m~A!5puAuquE\AuQk~A!/ZRC,

whereZRC is the appropriate normalizing constant, andq512p.
The reason for studying percolation in the random cluster model is its relation with p

transitions via the two-point correlation function. This was pointed out first by Fortuin and K
leyn and given further prominence by Edwards and Sokal8 in connection with the Swendsen
Wang algorithm9 for simulating the Potts model. We describe briefly the connection.

The key result is the following:
Theorem 2: For any pair of sites (vertices) i, j, and positive integer Q, the probability thats i

equalss j in the Q-state Potts model is given by

1

Q
1

~Q21!

Q
Pm$ i j %,

where Pm is the random cluster measure on G given by taking p512exp(2K), and $ i j % is the
event that underm there is an open path from i to j.

The attractive interpretation of this is that the expression on the right-hand side ca
regarded as being made up of two components.

The first term, 1/Q, is just the probability that under a purely randomQ-coloring of the
vertices ofG, i and j are the same color. The second term measures the probability of long
interaction. Thus we interpret the above as expressing an equivalence between long ran
correlations and long range percolatory behavior.

Phase transition~in an infinite system! occurs at the onset of an infinite cluster in the rand
cluster model and corresponds to the spins on the vertices of the Potts model having a lon
two-point correlation.

Thus the random cluster model can be regarded as the analytic continuation of the Potts
to nonintegerQ.0.

It is not hard to check that the relation of the random cluster model withT is that

ZRC~G;Q,p!5pr ~E!qr* ~E!Qk~G!TS G;11
Qq

p
,
1

qD , ~16!
r 2013 to 198.91.37.2. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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wherer * is the dual rank,k(G) is the number of connected components ofG, andq512p.
It follows that for any givenQ.0, determining the partition functionZRC reduces to deter-

mining T along the hyperbolaHQ given by (x21)(y21)5Q. However, since in its physica
interpretations,p is a probability, the reparametrization means thatZRC is evaluated only along the
positive branch of this hyperbola. In other words,ZRC is the specialization ofT to the quadrant
x.1, y.1.

The antiferromagnetic Ising and Potts models are contained inT along the negative branche
of the hyperbolaeHQ , but do not have representations in the random cluster model. For mo
this model and its relation toT see Ref. 1, Chap. 4.

V. SOME WELL-KNOWN INVARIANTS

Having shown in detail how the Potts, Ising, and random cluster models are related
Tutte polynomial we now collect together some of the naturally occurring interpretations o
Tutte polynomial. ThroughoutG is a graph,M is a matroid, andE will denote E(G), E(M ),
respectively.

In each of the following cases, the interesting quantity~on the left-hand side! is given~up to
an easily determined term! by an evaluation of the Tutte polynomial. We shall use the phr
‘‘ specializes to’’ to indicate this.

When talking about the Tutte polynomial and Potts model, it turns out that the hyperbolaHa

defined by

Ha5$~x,y!:~x21!~y21!5a%

seem to have a special role in the theory. We note several important specializations in the
ing.

~1! Along H1 , T(G;x,y)5xuEu(x21)r (E)2uEu.
~2! Along H2 , whenG is a graph,T specializes to the partition function of the Ising mod
~3! Along HQ , for general positive integerQ,T specializes to the partition function of th

Q-state Potts model.
~4! Along HQ for any positive, not necessarily integer,Q,Tspecializes to the partition functio

of the random cluster model discussed in Sec. IV.
~5! At ~1, 1!, T counts the number of bases ofM ~spanning trees in a connected graph!.
~6! At ~2, 1!, T counts the number of independent sets ofM ~forests in a graph!.
~7! At ~1, 2!, T counts the number of spanning connected subgraphs of the graphG.
~8! At ~2, 0!, T counts the number of acyclic orientations ofG.10

~9! Another interpretation at~2,0!, and this for any real matrix was discovered by Zaslavsky11

If $H1 ,...,Hr% is a set of hyperplanes ind-dimensional Euclidean space with nonempty inters
tion, thenT counts the number of unbounded regions of this hyperplane arrangement.

~10! At ~0, 2!, T counts the number of totally cyclic orientations, that is, those in which ev
edge of the graphG is contained in some directed cycle.

~11! At ~1, 0!, T counts the number of acyclic orientations with exactly one source.
~12! At ~0, 1!, if G is a directed graph having a fixed ordering on its edges,T counts the

number of totally cyclic reorientationst of G such that in each cycle oft the lowest edge is no
reoriented. IfG is planar,T counts the number of totally cyclic orientations in which there is
clockwise cycle.

~13! Whenl is a positive integerT(G;12l,0) gives the number ofl colorings because, the
chromatic polynomialx(G;l) is given by

x~G;l!5~21!r ~E!lk~G!T~G;12l,0!,

wherek(G) is the number of connected components.
~14! Similarly T(G;0,12l) counts the number of nowhere zero flows over any Abelian gr

of orderl. Then the flow polynomialF(G;l), is given by
r 2013 to 198.91.37.2. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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F~G;l!5~21! uEu2r ~E!T~G;0,12l!.

~15! The ~all terminal! reliability R(G;p) defined as the probability that when each edge
the connected graphG is independently deleted with probability 12p the remaining graph stay
connected is given by

R~G;p!5quEu2r ~E!pr ~E!T~G;1,1/q!,

whereq512p.
~16! At ~0, 22!, if G is a four-regular graph,T counts the number of ice configurations ofG.

An ice configurationof G is an orientation of the edges so that at each vertex exactly two e
are directed in and two out. It is easy to see that this counts exactly the number of nowher
three-flows onG.

~17! T(G;21,21)5(21)uEu(22)d(B) where B is the bicycle space ofG, see Read and
Rosenstiehl.12 When G is planar it also has interpretations in terms of the Arf invariant of
associated knot.

~18! The number of forests of sizei of G, f i(G), is related toT by the following:

(
i 50

uVu21

f i~G!si5suVu21TS G;
1

s
11,1D .

~19! Also, the generating function of connected subgraphs of sizek of G, ck(G), is related to
T by

(
k50

uEu2uVu11

ck~G!sk5suEu2uVu11TS G;1;
1

s
11D .

~20! Along Hq , whenq is a prime power, for a matrixM of column vectors overGF(q), T
specializes to the weight enumerator of the linear code overGF(q), with generator matrixM.
Equation ~11! relating T(M ) to T(M* ) gives the MacWilliams identity of coding theory, w
return to this in Sec. IX.

~21! Along the hyperbolaxy51 whenG is planar,T specializes to the Jones polynomial
the alternating link or knot associated withG. This connection was first discovered b
Thistlethwaite13 and is explained in Ref. 1.

Other more specialized interpretations can be found in the survey of Brylawski and Ox14

and the book of Welsh.1

VI. MEAN FIELD RESULTS

The mean field Potts model refers to the case where the underlying graph is the co
graph. This has been considered by Wu2 and Kesten and Schonmann15 for the classical Potts
model, and more generally for the random cluster model by Bolloba´s, Grimmett, and Janson.16

First, however, as a useful example to illustrate what is known, we consider the behav
Tn(x,y)5T(Kn ;,x,y) for some of the points and curves described in Sec. V.

First some easy and not so easy known evaluations.
~1! Along H1 , (x21)(y21)51,

Tn~x,y!5S x

x21D Sn2D
~x21!n21.

~2! Tn(1,1) is the number of trees onn vertices and hence

Tn~1,1!5nn22.
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~3! The number of acyclic orientations is

Tn~2,0!5n!.

~4! The number of acyclic orientations with exactly one source is

Tn~1,0!5~n21!!.

~5! The number ofk-colorings, for any fixedk, is given by the Stirling polynomials so

Tn~12k,0!5~21!n21k~k21!¯~k2n11!.

~6! The number of forests is

Tn~2,1!;Aenn22 as n→`.

See for example Renyi17 or Dénes.18

Hence this gives a good picture of the sort of asymptotics one might expect.
It would be nice if there was a compact useful formula for the Tutte polynomial of

complete graph as there is for the chromatic polynomial. Unfortunately this does not seem
the case and all that seems possible is to obtain a generating function expansion which is
useful. It was originally obtained by Tutte.19 Two different forms of this are in Refs. 20 and 2

Welsh20 gives

11~x21! (
n51

`
~y21!nsnTn~x,y!

n!
5S (

j 50

`
sjySn2D

j !
D ~x21!~y21!

. ~17!

Substituting (x21)(y21)nTn(x,y)5Bn(Q,y) we get the following generating function fo
the bad coloring polynomial or equivalentlyZ(Kn):

11 (
n51

`
snBn~Q,y!

n!
5S (

j 50

`
sjySn2D

j !
D Q

.

One way of obtaining this directly is the following.
Let

(
n50

`
Bn~Q;s1 ,...,sQ!

n!
un

be the generating function in which the coefficient of

s1
m1s2

m2
¯sQ

mQun

is the number of ways of coloringKn with Q colors$1, 2, ...,Q% wheremi is the number of edges
with both end points colored i, for 1< i<Q.

Then clearly as

B~Kn ;s1 ,...,sQ!5 (
k11¯1kQ5n

n!

k1!¯kQ!
s

1

S k1
2 D
¯s

Q

S kQ
2 D

we conclude that
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(
n50

`
B~Kn ;s1 ,...,sQ!

n!
un5)

i 51

Q S (
r 50

` si
S r
2D

r !
ur D .

Now, this gives more information than we are asking for and putting

s15s25¯5sQ5s

we get

(
n50

`
B~Kn ;Q,s!

n!
un5S (

r 50

`
sSn2D
r !

ur D Q

.

One of the annoying features of the above-mentioned expansions is that they seem to
little help in attacking problems we wish to solve. As an example of this consider the evalu
at x52, y51 which givesF(n) the number of forests in the complete graph. Direct substitu
in ~17! does not seem to give us anything useful, in particular, we do not see how to g
following result from~17!.

Takacs22 gives the following exponential generating function forF(n):

(
n51

`
F~n!

n!
sn5expF (

n51

`
nn22

n!
snG .

He also gives the more useful

F~n!5(
r 50

n S n
r Dnn2rHr 11~1!,

whereHn(x) is thenth Hermite polynomial defined by

Hn~x!5n! (
j 50

@n/2#
~21! j xn22 j

2 j j ! ~n22 j !!
.

An extension of this by Stanley23 gives the numberF( i ,n) of forests withi edges onKn as
having generating function

(
n>0

(
i

F~ i ,n!
si tn

n!
5expS nn22

sn21tn

n! D .

We now turn to the recent work of Bolloba´s, Grimmett, and Janson16 on the asymptotics of
the random cluster model. Recall that ifZ(n,p,Q) denotes the partition function ofZRC(Kn ;p,Q)
then this gives the Potts model onKn by the substitution

p512e2k

One of the main results~Theorem 2.616! is the following:
Theorem 3: If Q>1 and l.0, then

1

n
logZS n,

l

n
,QD→f~l,Q!

as n→`, where the free energyf(l,Q) is given by
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f~l,Q!5
g~u~l!!

2Q
2

~Q21!l

2Q
1 logQ

and where g(u) is defined by

g~u!52~Q21!~22u!log~12u!2$21~Q21!u% log$11~Q21!u%.

The functionu(l)(5u(l,Q)) is defined as

u~l,Q!5H 0 i f l,lc~Q!

umax if l>lc~Q!,

where

lc~Q!5H Q if 0 ,Q<2

2S Q21

Q22D log~Q21! if Q.2

and umax is the largest root of the equation

e2lu5
12u

11~Q21!u
.

This explains the asymptotics in the regionx>1, y>1 of the Tutte plane but note that it say
nothing about the antiferromagnetic part.

VII. THE COMPLEXITY OF THE TUTTE PLANE

We have seen that along different curves of thex,y plane, the Tutte polynomial evaluate
many diverse quantities. Since it is also the case that for particular curves and at particular
the computational complexity of the evaluation can vary from being polynomial time compu
to being #P-hard a more detailed analysis of the complexity of evaluation is needed in ord
give a better understanding of what is and is not computationally feasible for these sort of
lems. The main result of Jaeger, Vertigan, and Welsh24 is the following:

Theorem 4: The problem of evaluating the Tutte polynomial of a graph at a point (a,b
#P-hard except when (a,b) is on the special hyperbola

H1[~x21!~y21!51

or when (a,b) is one of the special points~1, 1!, ~21, 21!, ~0, 21!, ~21, 0!, (i ,2 i ), (2 i ,i ),
( j , j 2) and ( j 2, j ), where j5e2p i /3. In each of these exceptional cases the evaluation can be d
in polynomial time.

As far as the easy real points are concerned, with one exception, the explanation is st
forward. The hyperbolaH1 is trivial, ~1, 1! gives the number of spanning trees,~21, 0! and ~0,
21! give the number of two-colorings and two flows respectively, and are easy evaluations
antiferromagnetic Ising. The point~21, 21! is less well known but has been explained, see S
V. It lies on the four-state Potts curve but as far as we are aware has no natural explanation

Finally the complex points (i ,2 i )(2 i ,i ) lie on the Ising curve and the points (j , j 2)( j 2, j ) lie
on the three-state Potts. Again there seems to be no natural interpretation to explain wh
evaluation is easy. The only reason why they appear in Theorem 4 is that they ‘‘turn up
calculations.’’
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For planar graphs there is a significant difference. The technique developed using the P
to solve the Ising problem for the plane square lattice by Kasteleyn25 can be extended to give
polynomial time algorithm for the evaluation of the Tutte polynomial of any planar graph a
the special hyperbola

H2[~x21!~y21!52.

HoweverH3 cannot be easy for planar graphs since it contains the point~22, 0! which counts the
number of three-colorings and since deciding whether a planar graph is three-colorable is NP
this must be at least NP-hard. However it does not seem easy to show thatH4 is hard for planar
graphs. The decision-problem is after all trivial by the four-color theorem. The fact that
#P-hard is just part of the following extension of Theorem 4 due to Vertigan and Welsh.26

Theorem 5: The evaluation of the Tutte polynomial of bipartite planar graphs at a point (a
is #P-hard except when

~a,b!PH1øH2ø$~1,1!,~21,21!,~ j , j 2!,~ j 2, j !%

when it is computable in polynomial time.
It follows immediately from the fact that any graph can be represented as a totally unimo

matrix that if a problem is hard~in any formal sense! for graphs then it will be at least as hard fo
matrices.

VIII. APPROXIMATIONS

Since exact evaluation is provably hard, we turn to the possibility of obtaining good app
mations or Monte Carlo estimates.

For positive numbersa and r>1, we say that a third quantityâ approximates a within ratio
r or is an r-approximation to a, if

r 21a<â<ra. ~18!

In other words the ratioâ/a lies in @r 21,r #.
First consider what it would mean to be able to find a polynomial time algorithm which g

an approximation withinr to the number of three-colorings of a graph. We would clearly hav
polynomial time algorithm which would decide whether or not a graph is three-colorable. Bu
is NP-hard. Thus no such algorithm can exist unless NP5P.

The same argument can be applied to any function which counts objects whose existe
NP-hard to decide. Hence

Proposition 6: UnlessNP5P there can be no polynomial time approximation to T(G;1
2k,0) for integer k>3.

However this argument only applies to a few points of the Tutte plane and it seems a di
problem to decide on the existence of good approximations elsewhere.

We now consider a randomized approach to counting problems and make the follo
definition.

An e-d-approximation schemefor a counting problemf is a Monte Carlo algorithm which on
every input^x, e, d&, e.0, d.0, outputs a numberỸ such that

Pr $~12e! f ~x!<Ỹ<~11e! f ~x!%>12d.

Now let f be a function from input strings to the natural numbers. Arandomized approxima-
tion scheme for f is a probabilisticalgorithm that takes as an input a stringx and a rational numbe
e, 0,e,1, and produces as output a random variableY, such thatY approximatesf (x) within
ratio 11e with probability greater or equal 3/4.

In other words,
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Pr H 1

11e
<

Y

f ~x!
<11eJ >

3

4
. ~19!

A fully polynomial randomized approximation scheme~fpras! for a function f :(* →N is a
randomized approximation scheme which runs in time which is a polynomial function ofn and
e21.

Suppose now we have such an approximation scheme and suppose further that it w
polynomial time. Then we can boost the success probability up to 12d for any desiredd.0, by
using the following trick of Jerrum, Valiant, and Vazirani.27 This consists of running the algorithm
O(logd21) times and taking the median of the results.

We make this precise as follows:
Proposition 7: If there exists a fpras for computing f then there exists ane–d approximation

scheme for f which on input^x, e, d& runs in time which is bounded by O(logd21)poly(x,e21).
The existence of a fpras for a counting problem is a very strong result, it is the analog

randomized polynomial time~RP! algorithm for a decision problem and corresponds to the no
of tractability. However we should also note

Proposition 8: If f:(* →N is such that deciding if f is nonzero is NP-hard then there can
exist a fpras for f unless NP is equal to random polynomial time RP.

Hence we have immediately from the NP-hardness ofk-coloring, fork>3, that:
Unless NP5RP there cannot exist a fpras for evaluatingT(G;2k,0) for any integerk>2.
Recall now that along the hyperbola,HQ , for positive integerQ,T evaluates the partition

function of theQ-state Potts model.
In an important paper, Jerrum and Sinclair28 have shown that there exists a fpras for t

ferromagnetic Ising problem. Their result can be restated in our terminology as follows.
~1! There exists a fpras for estimatingT along the positive branch of the hyperbolaH2 .
However it seems to be difficult to extend the argument to prove a similar result fo

Q-state Potts model withQ.2 and this remains one of the outstanding open problems in this
A second result of Jerrum and Sinclair is the following:
~2! There is no fpras for estimating the antiferromagnetic Ising partition function un

NP5RP.
In the context of its Tutte plane representation this can be restated as follows.
~3! Unless NP5RP, there is no fpras for estimatingT along the curve

$~x,y!:~x21!~y21!52, 0,y,1%.

The following extension of this result is proved in Welsh.29

Theorem 9: On the assumption that NPÞRP, the following statements are true.
~a! Even in the planar case, there is no fully polynomial randomized approximation sc

for T along the negative branch of the hyperbola H3 , that is for the antiferromagnetic three-stat
Potts model.

~b! For Q52,4,5,...,there is no fully polynomial randomized approximation scheme fo
along the curves

HQ
2ù$x,0%.

It is worth emphasizing that the above-mentioned statements do not rule out the possib
there being a fpras atspecific pointsalong the negative hyperbolas. For example;

~1! T can be evaluated exactly at~21, 0! and ~0, 21!, which both lie onH2
2 .

~2! There is no inherent obstacle to there being a fpras for estimating the number ofk-colorings of
a planar graph for anyk>4.

Positive results:Mihail and Winkler30 have shown that there exists a fpras for counting
number of ice configurations in a four-regular graph. This is equivalent to the statement:
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There is a fpras for computingT at ~0, 22! for four-regular graphs.
The reader will note that all the ‘‘negative results’’ are about evaluations ofT in the region

outside the quadrantx>1, y>1. In Welsh1 it is conjectured that the following is true:
Conjecture 10: There exists a fpras for evaluating T at all points of the quadrant x>1, y

>1.
Some evidence in support of this is the following.
If we let Ga be the collection of graphsG5(V,E) such that each vertex has at leastauVu

neighbors, then we call a classC of graphsdenseif C#Ga for some fixeda.0.
Annan31 showed that:
Proposition 11: For any class of dense graphs, there is a fpras for evaluating T(G;x,1) for

positive integer x.
Extending this, Alon, Frieze, and Welsh32 show
Theorem 12:~a! There exists a fully polynomial randomized approximation scheme for ev

ating T(G;x,y) for all x>1, y>1, for any dense class of graphs.
~b! For any class of strongly dense graphs, meaning GPGa for a. 1

2, there is also such a
scheme for x,1, y>1.

Even more recently Karger33 has proved the existence of a similar scheme for the clas
graphs with no small edge cut set. This can be stated as follows.

For c.0 define the classGc by GPGc if and only if its edge connectivity is at leas
c loguV(G)u. A class of graphs iswell connectedif it is contained inGc for some fixedc.

Theorem 13: For any fixed (x,y), y.1, there exists c, depending on (x,y), such that for a
classC#Gc, there is a fpras for evaluating T(G;x,y).

Notice that though the properties of being well connected and dense are very similar n
property implies the other.

Notice also that part~a! of Theorem 12 can be loosely reinterpreted as~a! There is a good
Monte Carlo scheme for estimating the partition function of the random cluster model on any
of dense graphs.

Unfortunately there are several important classes of graphs, in particular lattices, whi
not dense.

IX. THE POTTS MODEL AND ERROR CORRECTING CODES

We now turn to a curious correspondence between the partition functions of theQ-states Potts
model wheneverQ is a power of a prime and the weight enumerator polynomial of linear co
over the finite field withQ elements. This correspondence is reasonably well known for the
Q52, the Ising model. It has been pointed out for example by Hoede34 and Rosengren and
Lindström.35 In Ref. 25 this correspondence was used to derive terms of the low temperature
expansion of the partition functionZ of the three-dimensional cubic lattice.

For the purpose of this section takeq to be any prime power and letC be alinear codeover
the field GF(q).

A compact description ofC is by a k3n generator matrix G. The code words ofC are all
linear combinations of rows ofG. Now let E5$e1 ,...,en% be the column vectors ofG and takeM
to be the matroid~E,r!, where each subsetA of columns has rankr (A) equal to the maximum
number of linearly independent columns inA as in Sec. II.

Theweightof a code word is the number of nonzero entries. Given a codeC, let Ai denote the
number of code words which have weighti. Theweight enumeratorof C is

A~C;t !5( Ait
i . ~20!

Then we have the following theorem of Greene.36

Theorem 14:Let C be a linear code of dimension k and length n over the fieldGF(q). Let G
be a k3n generator matrix ofC and let M be the matroid on the set of columns. Then the we
enumeratorA(C;t) is given by
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A~C;t !5~12t !ktn2kTS M ;
11~q21!t

12t
,
1

t D . ~21!

The proof of this is not that difficult and can be found for example in Ref. 37.
If we compare this with the expression~14! for the partition functionZPotts(G) we can rewrite

it as

ZPotts~G;Q,K !5Q~12e2K! uVu21e2K~ uEu2uVu11!TS G;
11~Q21!e2K

12e2K ,
1

e2KD
so that there is a direct translation via

Q→q5pa,

e2K→parametert.

Under this correspondence we get

A~C;t !5Q21ZPotts~e2K5t !.

Now let us consider what this means in the context of a graphic matroid. Given any
graph it is easy to find a representation of it as a generator matrix of a linear code over any
field.

The edges of the graph correspond to the columns of the matrix and a setA of columns is
linearly independent if and only if the corresponding edges form a forest.

Example:Working with the field GF~2!, K4 minus one edge has a representation

The resulting code generated by this matrix has eight code words of length 5 and w
enumerator 112z214z31z4.

Now lets consider how this can be interpreted in general. Writing the weight enumerator
~20!, we see that we have another expansion for the Potts partition function namely,

ZPotts~G;Q,K !5Q(
i 50

uEu

Aie
2Ki .

Note however that this only works whenQ is a prime power.

X. THE POTTS MODEL AND COUNTING IN RANDOM GRAPHS

Although the theory of random graphs is highly developed, less attention seems to hav
paid to counting problems. Here we give some results obtained in Welsh20 which give new
interpretations of the Tutte polynomial as the expected value of classical counting function

Given an arbitrary graphG and pP@0,1# we denote byGp the random subgraphof G
obtained by deleting each edge ofG independently with probability 12p.

This is a generalization of the standard random graph modelGn,p which corresponds to
(Kn)p .
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First an easy result to illustrate the notation. Iff (Gp) denotes the number of forests inGp

then, for G and p fixed this is a random variable and has an expectation which we deno
^ f (Gp)&.

Routine calculation gives that for any connected graphG,

^ f ~Gp!&5puVu21TS G;11
1

p
,1D .

Turning now to colorings, we have:
Theorem 15: For any connected graph G and0,p<1, the random subgraph Gp has chro-

matic polynomial whose expectation is given by

^x~Gp ;l!&5~2p! uVu21lT~G;12lp21,12p!.

For the flow polynomial there is a similar, but more complicated evaluation, namely
Theorem 16: For any graph G the flow polynomial F(Gp ;l) has expectation given by

~a! if pP(0,1
2)ø( 1

2,1), then

^F~Gp ;l!&5pr ~G!~q2p!r* ~G!TS G;qp21,11
lp

q2pD ,

whereq512p;
~b! if p5 1

2, then

^F~G1/2;l!&5l uEu2uVu1k~G!22uEu.

Notice that parametrized in terms of the Potts model these give interpretations in the a
romagnetic region.

XI. THE LIMIT AS Q\0

Several authors~See Wu2! have considered the formal limiting behavior of theQ-state Potts
model asQ→0. This makes more sense in the context of the random cluster model whic
recall is defined for allQ.0. Let us now consider this convergence in more detail.

Suppose in the random cluster model,p andQ both tend to zero withp/Q kept constant at 1.
Then easy calculations show that in this case

lim
ZRC~G;p,Q!

pr ~E! 5T~G;2,1!.

In other words, from Sec. V, the limit is the number of forests ofG.
There are various other cases to consider.
~a! If Q→0 with p fixed then

lim
Q→0

ZRC~G;p,Q!5cTS G;1,
1

12pD ,

wherec is a constant. In other words we are getting
~1! the reliability probability, which we have already mentioned and is a much studied t
~2! the chip-firing game~Abelian sandpile model!,

as two different realizations of this limiting behavior. We consider the latter in s
detail in Sec. XI B.

~b! For the other part of the hyperbolaH0 , consisting ofy51, x>1, it is clear that if we let
Q→0 in such a way thatQ/p is fixed ata.0, then in the random cluster model
r 2013 to 198.91.37.2. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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x511
Qq

p
→11a,

y5
1

12p
→1

and so

p2r~12p!2uEu1r ~E!ZRC~G;Q,p!→T~G;11a,1!.

We have already mentioned the casea51 where the limit is the number of forests. Mor
generally we have the interesting specialization

l rT~G;111/l,1!5 i ~P~G!,l!,

wherei is the Ehrhart polynomial of a particular family of zonotopesP(G) determined by a
graphG.
We now discuss in more detail these two separate problems areas.

A. The Ehrhart polynomial

Let Zn denote then-dimensional integer lattice inRn and letP be ann-dimensional lattice
polytope inRn, that is a convex polytope whose vertices have integer coordinates. Consid
function i (P;t) which whent is a positive integer counts the number of lattice points which
inside the dilated polytopetP. Ehrhart38 initiated the systematic study of this function by provin
that it was always a polynomial int, and that in fact

i ~P,t !5x~P!1c1t1¯1cn21tn211vol~P!tn.

Herec05x(P) is the Euler characteristic ofP and vol(P) is the volume ofP.
Until recently the other coefficients ofi (P,t) remained a mystery, even for simplices, see

example Diaz and Robins.39

However, in the special case thatP is a unimodular zonotope there is a nice interpretation
these coefficients. First recall that ifA is anr 3n matrix, written in the formA5@a1 ,...,an#, then
it defines azonotope Z(A) which consists of those pointsp of Rr which can be expressed in th
form

p5(
i 51

n

l iai , 0<l i<1.

In other words,Z(A) is theMinkowski sumof the line segments@0,ai #,1< i<n.
Z(A) is a convex polytope which, whenA is a totally unimodular matrix, has all intege

vertices and in this case it is described as aunimodular zonotope. For these polytopes a result from
Stanley40 shows that

i ~Z~A!;t !5 (
k50

r

i kt
k,

wherei k is the number of subsets of columns of the matrixA which are linearly independent an
have cardinalityk.

In other words, the Ehrhart polynomiali (Z(A);t) is the generating function of the number
independent sets in the matroidM (A). But from ~2.3! we know that for any matroidM, the
evaluation ofT(M ;x,y) along the liney51 also gives this generating function. Hence, combin
these observations we have the result
r 2013 to 198.91.37.2. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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Theorem 17: If M is a regular matroid and A is any totally unimodular representation of
then the Ehrhart polynomial of the zonotope Z(A) is given by

i ~Z~A!;l!5l rTS M ;11
1

l
,1D ,

where r is the rank of M.
Another new interpretation ofT follows from what is sometimes known as the Ehrhar

Macdonald reciprocity law. This states that for any convex polytopeP with integer vertices inRn

and for any positive integert, the functionk(P;t) counting the number of lattice points lyin
strictly insidetP is given by

k~P;t !5~21!ni ~P;2t !.

This gives
Corollary 18: If A is an r3n totally unimodular matrix of rank r then for any positive integ

l the number of lattice points ofRr lying strictly inside the zonotopelZ(A) is given by

k~Z~A!;l!5~2l!rTS M ~A!;12
1

l
,1D .

In particular we have the following new interpretations:
The number of lattice points strictly insideZ(A) is (21)r (M )T(M ;0,1).

B. Sandpiles

Self-organized criticality is a concept widely considered in various domains since Bak, T
and Wiesenfeld41 introduced it ten years ago. One of the paradigms in this framework is
Abelian sandpile model, introduced by Dhar.42

We start by recalling the definition of the general Abelian sandpile model on a set ofN sites
labeled 1, 2, ...,N, that we referred to as the system. At each site the height of the sandpile is
by an integerhi . The sethW 5$hi% is called theconfigurationof the system. For every sitei, a
thresholdHi is defined; configurations withhi,Hi are calledstable. For every stable configura
tion, the heighthi increases in time at a constant rate, this is called theloadingof the system. This
loading continues until at some sitei, its heighthi exceeds the thresholdHi , then the sitei topples
and all the valueshj , 1< j <N, are updated according to the rule:

hj5hj2D i j for all j , ~22!

whereD i j is an integer matrix satisfying

D i i .0, D i j <0, si5(
j

D i j >0.

If after this redistribution some height exceeds its threshold we apply the toppling rule~22! and so
on, until we arrive at a stable configuration and the loading resumes. The sequence of topp
called anavalanche. We assume that an avalanche is ‘‘instantaneous,’’ and thus, no loa
occurs during an avalanche.

The valuesi is called thedissipationat site i. It may happen that an avalanche continu
without end. We can avoid this possibility by requiring that from everynondissipativesite i, i.e.,
si50, there exists a path to adissipativesite j, i.e., sj.0. In other words, there is a sequen
i 0 ,...,i n , with i 05 i , i n5 j , andD i k21 ,i k

,0, for k51,...,n. In this case we said that the system
weakly dissipative.43 From now on, we assume that the system is always weakly dissipative
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When the matrixD i j is symmetric and the loading of the system at sitei equals the dissipation
at i, the Abelian sandpile model coincides with the chip-firing game on a graph.44 We now explain
this.

Every site of the Abelian sandpile model corresponds to a vertex in a graphG containingN
11 vertices, that is the number of vertices is one more than the number of sites in the syste
label the vertices 0, 1, ...,N. The graph has multiple edges, and the number of edges between
i andj, i andj both nonzero, equalsuD i j u. For all iÞ0, we connect sitei to site 0 usingu( j 51

N D i j u
edges.

Every vertexi, 1< i<N, has a number of chipsu i that represents its heighthi ~when seen as
a site of the system! at every moment of time and vertex 0 has a negative number of chips g
by ( i 51

N (2hi). A toppling at sitei corresponds tofiring vertexi, that is, to redistribute some of th
chips at vertexi according to the following rule: At vertexj, the new number of chips isu j

2D i j , for all j, that is, each neighbork of i in G receivesuD iku chips and vertexi losesD i i chips.
The loading of the system is represented by the firing of the vertex 0, in this case the height
i ~its number of chips inG! is increased by the number of edges from 0 toi. The vertex 0 may
~must! fire only when no ordinary vertex can fire.

This process of firing vertices in the graphG is called a chip-firing game. The process
infinite, although the number of firings corresponding to an avalanche in the system, tha
sequence of firings of the vertices 1, ...,N without firing the vertex 0, is finite. The number o
stable configurations is also finite, hence certain configurations arerecurrent, that is, a configu-
ration is recurrent if there exists an avalanche which starts and ends with it. A configurat
critical if it is recurrent and stable.

Using the chip-firing game it can be proved that this sandpile model has an important Ab
property, namely the stable configuration of the system after an avalanche, and the num
breaks at any site during an avalanche, do not depend on the order of breaks duri
avalanche.44 Even more, there is a close relation between the critical configurations of the sy
and the Tutte polynomial ofG. We now explain this more precisely.

The level of a configurationhW is defined by

level~hW !5(
iÞ0

hi1deg~0!2uE~G!u.

The theorem conjectured by Biggs45 and proved by Merino46 is the following
Theorem 19: If ci denotes the number of critical configurations of level i in a graph G w

special site 0, then

Pq~G;y!5(
i 50

`

ciy
i5T~G;1,y!.

A first, nontrivial consequence of this is that it showsPq(G;y) is independent of choice of th
vertex 0 inG.

Critical configurations possess some interesting mathematical properties: they form a
Abelian group whose order equals the number of spanning trees of the graphG. For the structure
of this group for planar graphs,n-wheels, and complete graphs, and in this case its relation
parking functions see Ref. 47.

XII. RESISTOR NETWORKS

The problem of finding the effective resistance in a network of resistors was solve
Kirchhoff ~1847! but Fortuin and Kasteleyn5 showed that it also appears naturally as a limit of t
Potts partition function asQ→0.

Suppose we letJi j , the interaction energy between neighbor verticesi, j , be given by
r 2013 to 198.91.37.2. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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Ji j ;2kTri j
21,

wherer i j is the resistance of the resistor connecting sitesi and j.
Now we wish to find the effective resistanceRkl between two fixed sitesk andl, wherek and

l are joined inG. Then the result in Ref. 5 can be stated as in Ref. 2, namely

Rkl5 lim
Q→0

]

]xkl
ln ZRC~G;Q,Qaxi j !,

wherexi j 5r i j
21 for each edge (i , j )PE(G) anda is arbitrary in the open interval~0, 1!.

As explained in Ref. 2 this is essentially obtained from a fairly well known interpretatio
the effective resistance in terms of aspanning tree polynomialwhich goes back to Kirchhoff. This
spanning tree polynomial which is denoted byS(G;xi j ) is multivariate and defined by

S~G;xi j !5 (
A#E

S (
T#G:A

S )
~ i , j !PT

xi j D D ,

where the variablesxi j are indeterminates associated with each edge and the inner sum is o
spanning treesT of the subgraphG:A5(V(G),A).

Then the claim@~Ref. 2!, 4.26# is that for anya, 0,a,1,

lim
Q→0

Qa~12N!21ZRC~G;Q,Qaxi j !5S~G;xi j !.

Taking xi j 5r i j
21 gives the result of Kirchhoff.

Now let us reappraise this in terms of the Tutte polynomial. First of all, we should emph
that because it is a general result with variablesr i j and hence variable interaction strengthsJi j , its
description cannot be exactly covered by the Tutte polynomial which is just two variable. H
ever the basic ingredients are there. It is well known and easy to prove that in the case wh
resistances are constant, say equal to 1, then the effective resistanceRe between two vertices ofG
which are joined by an edgee is given by

Re5
T~Ge9 ;1,1!

T~G;1,1!
.

Puttingxi j 5r 21 in S(G;xi j ) gives

SS G;
1

r D5r 2n11 (
A#E

T~GuA;1,1!5
2uEu2uVu11

r uVu21 T~G;1,1!.

Hence

T~Ge9 ;1,1!

T~G;1,1!
5r

S~Ge9 ;r 21!

S~G;r 21!
.

XIII. THE SQUARE LATTICE

For obvious reasons the two-dimensional lattice is a graph of fundamental importance
Potts model.

It is also the case that the square lattice is the fundamental separation point betwe
classes of graphs of bounded tree width and unbounded tree width, in the sense of Robert
Seymour.48
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Thus, in a very technical sense, it can be regarded as the separation point between h
easy problems as all evaluations of the Tutte polynomial are known to be in polynomial tim
graphs of bounded tree width~see Andrzejak49 and Noble50!. This was the motivation for the
Merino–Welsh paper51 which is the basis for the work of this section.

Here we review what is known about the Tutte polynomial on the square lattice.
The square lattice Ln is the set of ordered pairs$( i , j )PN2u0< i , j <n21%. There is an edge

between the vertices~i,j! and (i 8, j 8) if u i 2 i 8u1u j 2 j 8u51.
It is easy to show that asn→` for any fixed ~x,y!, T(Ln ;x,y) is O(un2

) for a suitableu
5u(x,y). We focus on the limit of the sequence

$~T~Ln ,i , j !!1/n2
%

for certain values of the integersi and j.
We note that we already know from the results of Grimmett52,53 and Biggs,54 that except in

certain special cases, these limits exist.
We first consider the trivial hyperbolaH1 where

T~Ln ;x,y!5xn221y~n21!2
.

We next highlight the special hyperbola (x21)(y21)52. On the positive branch of this
hyperbola, which corresponds to the ferromagnetic version of the Ising model, convergenc
the classical limit of the Onsager solution, see, e.g., Ref. 55.

Consider nowx(Ln ;k), the number ofk-colorings of the square latticeLn . Clearly the
number of two-colorings ofLn is 2. Hence

lim
n→`

~x~Ln ;2!!1/n2
51.

For k.2 the problem becomes much harder and exact results are not known. An easy
ment gives

k22<~x~Ln ;k!!1/n2
<k21.

For the rest of this section we assumen.2 to avoid trivialities. LetLn
T be the graph obtained

from the square latticeLn11 by identifying the boundary vertices (i ,0) and (i ,n), for 0< i<n,
and the vertices (0,j ) and (n, j ), for 0< j <n, and deleting any parallel edge. This is the toroid
square lattice. Letx(Ln

T ;k) be the number ofk-colorings ofLn
T . It is known56 that for a fixed

integerk>3 the limits of the sequences$(x(Ln
T ;k))1/n2

% and $(x(Ln ;k))1/n2
% are equal and we

call this limit x̂(k).
In a classical paper, Lieb57 showed that the number of ice configurations, see Sec. V, ofLn

T is
asymptotically (4/3)3/2. If we now assumeLn

T is self-dual, which is not strictly true because it
nonplanar, it is generally accepted~Ref. 56, p. 56! that the result of Lieb implies that

x̂~3!5~4/3!3/2'1.539 600 718.

Biggs and Meredith in Ref. 58 obtained the estimate

x̂~k!; 1
2~k231Ak222k15!.

Lower and upper bounds forx̂(k) were given by Biggs in Ref. 56. He used the transfer ma
technique to obtain

k223k13

k21
<x̂~k!<

1

2
~k221Ak224k18!.
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In Ref. 59, Nagel used an induced subgraph expansion for the chromatic polynomial to
the first terms of a power series that converges tox̂(k).

Kim and Enting60 gave a more accurate approximation of the same power series by comb
an expansion ofx̂(k) due to de Neef and the transfer matrix technique.

Numerical values obtained by using this approximation give for examplex̂(10);8.111... .
We uset(n) to denote the number of spanning trees ofLn . Let an be the number of one

factors or perfect matchings ofL2n . It is shown in Ref. 61 that

lim
n→`

ln an

n2 5
4

p2 E
0

p/2E
0

p/2

ln~4 cos2 x14 cos2 y!dx dy5c'1.166 243 696.

Now, let bn be the number of one-factors in the graphLn8 , which is obtained from the (2n
21)3(2n21) square lattice by taking out one corner vertex, that is,Ln85L2n21\(0,0). In Ref.
62, a bijection has been established between the one factors ofLn8 and the spanning trees ofLn .
Sincean /bn;1 asn→` we get

lim
n→`

~ t~n!!1/n2
5ec'3.209 912 556.

The number of spanning forests ofLn , which we denote byf (n), seems a much more elusiv
quantity to approximate accurately. Nowf (n) corresponds toT(Ln ;2,1) and the related point
T(Ln ;2,0) andT(Ln ;0,2) are the number of acyclic orientations ofLn ,a(n), and the number of
acyclic orientations with~0,0! as the only source,a0(n), respectively. In Ref. 51 we show

7
3< lim

n→`

~a0~n!!1/n2
< lim

n→`

~ t~n!!1/n2
'3.209 912 556,

22

7
< lim

n→`

~a~n!!1/n2
<3.709 259 278...,

and

3.209 912 556< lim
n→`

~ f ~n!!1/n2
<3.841 619 541... .

More recently, Calkinet al.63 have improved some of these upper bounds. By using
transfer matrix method, they obtain

lim
n→`

~a~n!!1/n2
<3.563 221 504 771 6...,

lim
n→`

~ f ~n!!1/n2
<3.746 981 401 399 4... .

Also, Merino and Noy64 have improved previous lower bounds by using generating func
techniques, their results are

lim
n→`

~a~n!!1/n2
>A131A61

2
'3.225 697 573 851 8...,

lim
n→`

~ f ~n!!1/n2
>21&'3.414 213 562 373 1... .
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By using the transfer matrix method together with the Perron–Frobenius Theorem, they hav
obtained the following improvements:

lim
n→`

~a~n!!1/n2
>3.413 580 975 034 92...,

lim
n→`

~ f ~n!!1/n2
>3.644 975 653 386 48... .

To sum up, the above-mentioned results give

7
3< lim

n→`

~a0~n!!1/n2
< lim

n→`

~ t~n!!1/n2
'3.209 912 556,

3.413 580 975 034 92...< lim
n→`

~a~n!!1/n2
<3.563 221 504 771 6...,

and

3.644 975 653 386 48...< lim
n→`

~ f ~n!!1/n2
<3.746 981 401 399 4... .

Our objective is to find exact results for other evaluationsT(Ln ;x,y) but this includes some
very difficult problems.

XIV. CONCLUSION

We hope that the above gives a reasonably coherent picture of the intimate relatio
between the Tutte polynomial and its physical interpretations associated with the Potts mo

One problem which has particularly engaged us is the question of whether there exists
Monte Carlo scheme for the ferromagnetic Potts or random cluster model. A recent attack o
problem in Ref. 65 works as follows.

For any graphG, thewin polytope WG is the convex polytope defined by

(
i PU

xi<e~U !, U#V, xi>0,

wheree(U) is the number of edges incident withU.
It has the property that its bounding base face is combinatorially equivalent toZ(A) whereA

is any totally unimodular representation of the graphG as in Sec. XI A. Now carry out simple
random walkXt in a slightly dilated version ofWG , call it WG8 . Associate with each lattice poin
a box of equal volume, ensuring that the boxes are disjoint but otherwise as large as possibl
let t be large enough, sayt5T so that the stopping pointXT is almost uniform inWG8 , and map
XT to the lattice point associated with the box containing it. Accept the output as an a
uniform point ofWG if it lies inside it. RepeatN times, whereN is large enough to ensure we hav
a good estimate of the number of lattice points insideWG . Ideally this process would work
successfully enough to enable us also to get a good estimate of the number of lattice point
bounding face and hence inZ(A).

Curiously, and somewhat depressingly, in order for the method to work in polynomial tim
need exactly the same density condition on the underlying graph as did Annan.31 This suggests
that it might be more profitable to look for a mathematical reason why good approxim
schemes should not exist forZ(G;p,Q) for generalp andQ.

Accordingly, problems which seem to us particularly interesting are the following:

~a! Settle the Conjecture 10 that in the ferromagnetic regionx>1, y>1 there is a good Monte
Carlo approximation forT(x,y).
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~b! Decide the question of whether the number of acyclic orientations has a good approxim
~c! Clarify, or at least explain more convincingly than the reasons given in Ref. 65 why it

hard to approximate the number of forests.
~d! Understand better the region of the Tutte plane where the random cluster model

positively correlated.
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