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The Potts model and the Tutte polynomial

D. J. A. Welsh® and C. Merino®
Mathematical Institute, Oxford University, Oxford OX1 2HP, United Kingdom

(Received 18 November 1999; accepted for publication 30 Novembern 1999

This is an invited survey on the relation between the partition function of the Potts
model and the Tutte polynomial. On the assumption that the Potts model is more
familiar we have concentrated on the latter and its interpretations. In particular we
highlight the connections with Abelian sandpiles, counting problems on random
graphs, error correcting codes, and the Ehrhart polynomial of a zonotope. Where
possible we use the mean field and square lattice as illustrations. We also discuss in
some detail the complexity issues involved. Z000 American Institute of Phys-

ics. [S0022-24880)00203-9

I. INTRODUCTION

The classical Potts model was introduced by Potts in 1952 and in its most basic form can be
described as follows.

Consider a finite latticé , of N sites or general grapB of N vertices and suppose that each
site (=verteX can have associated with it a spin, which can have on@ wélues. The energy
between two interacting spins is taken to be zero if the spins are the same and equal to a constant
if they are different.

In the simplest description of the Potts model w@tstates{1,2,...Q}, the HamiltoniarH is
given by

H=Ji2j (1-8(07,09)), D)

where the sum is over all nearest-neighbor pairs of $jteando; is the spin at sité. HereJ is
the (constank interaction. The model i$erromagneticwhen J>0 and antiferromagneticif J
<0.

The probability of finding the system in stadeis then given by

Plo]=e Pz, 2

whereZ, the normalizing constant, is thgartition functionand 8= 1/kT, wherek is Boltzmann’s
constant and’ is the temperature.
Thus the partition function is

Z(G;Q,K)=2> ex —KE (1= 8(ay,09) |, &)

whereK = J/kT, the summation in the exponential is over all near-neighbor figiysand the first
summation is over all possible spin configurations.

The Ising model with zero external field is just the special case @2 and then the spins
are usually taken to be1.

@E|ectronic mail: dwelsh@maths.ox.ac.uk
YElectronic mail: merino@maths.ox.ac.uk
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The Tutte polynomial is less familiar and will be precisely defined in Sec. Il. However in its
basic form it is just a two-variable polynomi@l G;x,y) associated with any finite graph. Its
relation with the classical Potts model @has described previously is tha{G;Q,K) as given in
(3) is, up to an easy multiplicative constant, just an evaluatiom afong the hyperbola

Ho=(x-1)(y-1)=Q.
To see and remember this is not difficult. The reparametriza@iKj«— (x,y) is just given by

Qe e+Q-1

=1+ =
x=1 1-e K ek—1

y=ef.
Thus the Tutte polynomidl can be regarded as a natural continuatiod fbm the countable
set of hyperbolagHq},Q=1,2, ..., to the whole plane.
The interpretation is quite easy and allows an easy specification of various places of interest.
For example the following correspondences are easy to check:

Q-state Potts Tutte polynomial
Ferromagnetism Positive branctH g of Hq
Antiferromagnetism Negative branctig of Hg

restricted toy>0
High temperature both ferromagnetic Portion ofHg asymptotic to
and antiferromagnetic y=1
Low temperature ferromagnetic H5 asymptotic tox=1
Absolute zero antiferromagnetic x=1—-Q, y=0

A partial extension of the Potts model is trendom clustemodel introduced by Fortuin and
Kasteleyn in 1972. This extends the ferromagnetic Potts model to the whole of the €@gibn
but again this is only a part of the Tutte plane. More precisely the random cluster partition function
Zrc(Q,p) which we define in Sec. IV corresponds to the quadranaf, y>1 in the Tutte plane.

In what follows we highlight some of the many other specializations of the Tutte polynomial,
concentrating on those in the region of the Potts or random cluster models or those on the
boundary of this region, notably the intriguing degenerate hypeidglaorresponding t@=0.

We also treat in some detail a curious interpretation in terms of the weight enumerator of codes,
wheneverQ is a prime power.

We close this introduction by pointing out another way of thinking of the Potts model which
is useful in what follows. This is in terms of coloring. The possible colors are the integers 1, 2, ...,
Q and the sum of the right-hand side (8 is just a sum over all possibi@ colorings of the vertex
set of G. Given a particular coloringr we see that its contribution to the sum is the term

exp(—K|E\B(a)|),
where we usé3( o) to denote the set of edges which dr&d that is, have end points with the
same color, undews.

Hence, if we writeb;(G;\) to denote the number af colorings ofG in which exactlyj edges
are bad, then

2(G;Q.K)=e  F1 X bj(G;Q)(e")". (@
P
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In other words, if as in Ref. 1 we define th@ad coloring polynomiato be the generating
function

B(G;\,5)=2, b;(G;\)s, (5)
J

then
Z(G;Q,K)=e XEIB(G;Q,e"). (6)

An excellent, accessible review of the Potts model can be found if Wu.

II. THE TUTTE POLYNOMIAL

The Tutte polynomial is a polynomial in two variabley which can be defined for a graph,
matrix, or even more generally a matroid. Most of the interesting applications arise when the
underlying structure is a graph or a matrix, but matroids are an extremely useful vehicle for
unifying the concepts and definitions. For example each of the following is a special case of the
general problem of evaluating the Tutte polynomial of a gregghmatriX along particular curves
of the (x, y) plane:

(i)  the chromatic and flow polynomials of a graph;
(i)  the all terminal reliability probability of a network;
(iii)  the partition function of &@-state Potts model;

(iv) the Jones polynomial of an alternating knot;

(v)  the weight enumerator of a linear code o&F(q).

In this section we will briefly review the standard theory of the Tutte polynomial and in Sec.
V we list its well-known evaluations. The graph terminology used is standard. The matroid
termin?logy follows Oxley’ Further details of many of the concepts treated here can be found in
Welsh:

First consider the following recursive definition of the functid(G;x,y) of a graphG and
two independent variables vy.

If G has no edges, theR(G;x,y)=1, otherwise for ange E(G).

2.1: T(G;x,y)=T(Gg;x,y) + T(Gg;x,y), whereG, denotes the deletion of the edgérom
G and G} denotes the contraction efin G, and the edge is not a loop or an isthmus,

2.2: T(G;x,y)=xT(Gg;x,y), whenevere is an isthmus, that is an edge whose removal
increases the number of connected components,

2.3: T(G;x,y)=yT(G,;x,y), whenever is a loop.

From this, it is easy to show by induction thits in fact a two-variable polynomial ir,y,
which we call theTutte polynomiabf G.

In other words,T may be calculated recursively by choosing the edgeany order and
repeatedly using 2.1-2.3 to evaludteThe remarkable fact is thatis well defined in the sense
that the resulting polynomial is independent of the order in which the edges are chosen.

Example:In Fig. 1 we show an example of computing the Tutte polynomial of the g@&ph
that is K, minus one edge. By adding the monomials at the bottom of Fig. 1, we get that
T(G;X,y) =x342x2+x+ 2xy+y+y?.

Alternatively, and this is often the easiest way to prove propertieg @fe can show that
has expansion shown in Fig. 1.

First recall that ifACE(G), therank of A,r(A) is defined by

r(A)=|V(G)|—k(A), @)

where k(A) is the number of connected components of the grgpA having vertex seV
=V(G) and edge seA.
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FIG. 1. An example of computing the Tutte polynomial recursively.
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It is now straightforward to prove the following.
The Tutte polynomiall (G;x,y) can be expressed in the form

T(G;X,y)zAEC:E (X_1)r(E)*r(A)(y_l)\A\fr(A)_ ®)

One feature of the Tutte polynomial which is rather surprising in view of the states model
expansion(8) is that for any grapf has an expansion of the form

T(G;X,Y)ZE ti i X'yl
]

where thet; ; are non-negative integers. Typically thg are represented in matrix form. For
example, the following table provides the matrix form for the gr&gh

j\i 0 1 2 3 4 5
0 0 24 50 35 10 1
1 24 106 90 20 0 0
2 80 145 45 0 0 0
3 120 105 15 0 0 0
4 120 60 0 0 0 0
5 96 24 0 0 0 0
6 64 6 0 0 0 0
7 35 0 0 0 0 0
8 15 0 0 0 0 0
9 5 0 0 0 0 0
10 1 0 0 0 0 0

It is easy and useful to extend these ideas to matroids and hence matrices.
A matroid Mis just a generalization of a matrix and can be simply defined as apajr
whereE is a finite set and is a submodularank functionmapping £—Z and satisfying the

conditions
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O<r(A)<|A[, ACE,
ACB=r(A)<r(B), and
r(AuB)+r(ANB)<r(A)+r(B), A,BCE.

The edge set of any grafh with its associated rank function, as defined(By is a matroid,
but this is just a very small subclass of matroids, known as graphic matroids.

A much larger class is obtained by taking any maBiwith entries in a fieldt, letting E be
its set of columns and foKCE defining the rankr (X) to be the maximum size of a linearly
independent set iX. Any abstract matroid which can be represented in this way is cedleict-
sentableover I

A matroid M is representable over every field if and only if it has a representation over the
reals by a matriXB which istotally unimodular Such a matroid is callecegular. Every graphic
matroid is regular.

Given M= (E,r), its dual matroidis M* =(E,r*), wherer* is defined by

r*(E\A)=|E|—r(E)—|A|+r(A). (9)

Duality is of fundamental importance as it allows duality concepts to be extended to nonplanar
graphs. WhemM is the matroid of a planar gragh, M* is the matroid of any planar dual graph
of G. However wherG is not planar thetM™* is not graphic but is still representable as a matrix.

A set X is independentf r(X)=|X|, it is abaseif it is a maximal independent subset Bf

We now just extend the definition of the Tutte polynomial from graphs to matroids by

TM;xy)= 2 (x=1) B & y—1)A-ra), (10
ACE(M)

Much of the theory developed for graphs goes through in this more general setting and there
are many applications as we shall see. For example, routine checking shows that

T(M;x,y)=T(M*;y,x). (17)
In particular, wherG is a planar graph an@* is any plane dual o6, (11) becomes
T(Gxy)=T(G*}y,X).

IIl. INTERPRETATIONS IN TERMS OF THE ISING AND POTTS MODELS

We start this section with what it is called the “recipe theorem” from Oxley and Wels$.
crude interpretation is that whenever a functioon some class of matroids can be shown to
satisfy an equation of the forf(M)=af(M,) +bf(M}), for anyee E(M), thenf is essentially
an evaluation of the Tutte polynomial.

Here M| is therestriction of M= (E,r) to the setE\{e} with r unchanged. Theontraction
M7 can be defined byM.=(M*), or more usefully by its rank functiom”(A)=r(AUe)
—r(e) for ACE\{e} and is the exact analog of contraction in graphs. For matrices it corresponds
to projectionalong the column vectoe. A minor of M is any matroidN obtainable fromM by a
sequence of contractions and deletions. There is also a natural definitiondifeébesumof two
matroidsM andN, whereE(M) andE(N) are disjoint sets. The rank function Bf&N is given
by rpen(AUB) =1\ (A)+ry(B) for ACE(M) andBCE(N). Finally, we define a loogcoloop
as a single element matro{d} with rank functionr(e)=0(r.(e)=1).

The recipe theorem can now be stated as follows:

Theorem 1: LetC be a class of matroids which is closed under direct sums and the taking of
minors and suppose that f is well defined®and satisfies
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f(M)=af(M{)+bf(M}), eeE(M), (12
f(Mi®&My)=f(M)f(My), (13
then f is given by
_ Xo Yo
— olEl-1(E)yr(E) .20 Y0
f(M)=a b T(M'b’a)’

where % and y, are the values f takes on coloops and loops, respectively

Any invariantf which satisfieg12) and(13) is called aTutte-Grothendieck (TG)-invariant

Thus, what we are saying is that any TG-invariant has to have an interpretation as an evalu-
ation of the Tutte polynomial. As examples we consider the Ising and Potts models.

Consider the bad coloring polynomial defined(8),

|E|

B(G;)\,s)=20 S'h;(G;\).

Clearly bg(G;\) is the chromatic polynomial o6 and it is easy to check that the following
relationships hold.
3.1 If Gis connected, then provideglis not a loop or coloop,

B(G;\,s)=B(Gg;\,5)+(s—1)B(G:;\,S).

3.2 B(G;\,s)=sB(G;;\,s), if eis a loop.

3.3 B(G;\,s)=(s+N\—1)B(G.;\,s), if eis a coloop.

Combining these, we get the following by using the recipe theorem for the class of connected
graphs.

-1

Consider now the relation with the Potts model. Fr@nhwe get
e“+Q-1
-1

s+A—1
3.4 B(G;)\,s)=)\(s—1)v‘1T(G; ,s)

Zpons(G;Q,K)=Q(eK—1)V16KET(G; (14)

It is not difficult (with hindsigh} to verify thatT(G;x,y) can be recovered from the polyno-
mial B and therefore from the Potts partition function by using the following formula:

1
T(G;xy)= (y_—l)me(G:(X—l)(y— 1).y).

For connected graphs, the classical Ising model is just the@as2 in (14). WhenG hask
connected components then there is an extra fact@*of on the right-hand side dfL4).

IV. THE RANDOM CLUSTER MODEL AND FERROMAGNETIC POTTS MODEL

The general random cluster model on a finite graphwas introduced by Fortuin and
Kasteleyr® It is a correlated bond percolation model on the edgeEsef G defined by the
probability distribution,

M(A)=Z§é<£A (pe))(J;IA (1—pe))Qk(A) (ACE), (19
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wherek(A) is the number of connected componeftiteluding isolated verticesof the subgraph
G:A=(V,A),p.(0=p=<1) are parameters associated with each edds, =0 is a parameter
of the model, an@yc is the normalizing constant introduced so that

> w(A)=1.
ACE

Then w(A) is interpreted as the probability that the set of edge§&ajpenin the random
cluster model is exactly the sét The complemenE\A is closed

We will sometimes us@(G) to denote the random configuration producedpyandP,, to
denote the associated probability distribution.

Thus, in particular(A) =P ,{0(G) =A}. WhenQ=1, u is what Fortuin and Kasteleyn calll
a percolation modelnd when each of thg, are made equal, say @ thenw(A) is clearly seen
to be the probability that the set of open edgeé is classical ordinary bond percolation.

For an account of the many different interpretations of the random cluster model we refer to
the original paper of Fortuin and Kasteléyor to Grimmett’

Here we shall be concentrating on the percolation problem when each pf #re equal, to
sayp, and henceforth this will be assumed.

Thus we will be concerned with a two parameter family of probability measures
= u(p,Q) where G=sp=<1 andQ>0, which are defined on the edge set of the finite gré&ph
=(V,E) by

w(A)=plAlgE QKA Z

whereZgc is the appropriate normalizing constant, apd1—p.

The reason for studying percolation in the random cluster model is its relation with phase
transitions via the two-point correlation function. This was pointed out first by Fortuin and Kaste-
leyn and given further prominence by Edwards and Sokalonnection with the Swendsen—
Wang algorithm for simulating the Potts model. We describe briefly the connection.

The key result is the following:

Theorem 2: For any pair of sites (vertices) i, j, and positive integer Q, the probability that
equalsa; in the Q-state Potts model is given by

1 Q-1 _ .
6+ Q P#{|WJ},

where P, is the random cluster measure on G given by takirglp- exp(—K), and{i~-j} is the
event that undej there is an open path from i to j

The attractive interpretation of this is that the expression on the right-hand side can be
regarded as being made up of two components.

The first term, 1, is just the probability that under a purely randdpacoloring of the
vertices ofG, i andj are the same color. The second term measures the probability of long range
interaction. Thus we interpret the above as expressing an equivalence between long range spin
correlations and long range percolatory behavior.

Phase transitiofin an infinite systemoccurs at the onset of an infinite cluster in the random
cluster model and corresponds to the spins on the vertices of the Potts model having a long range
two-point correlation.

Thus the random cluster model can be regarded as the analytic continuation of the Potts model
to nonintegeiQ>0.

It is not hard to check that the relation of the random cluster model Withthat

ZRc(G;Q,p)=p“E)qr*(E)Q"(G)T(G;1+ %,%), (16)
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wherer* is the dual rankk(G) is the number of connected componentsGpfandg=1—p.

It follows that for any givenQ>0, determining the partition functioBr: reduces to deter-
mining T along the hyperbolalg given by x—1)(y—1)=Q. However, since in its physical
interpretationsp is a probability, the reparametrization means thgt is evaluated only along the
positive branch of this hyperbola. In other words is the specialization of to the quadrant
x>1,y>1.

The antiferromagnetic Ising and Potts models are containddallong the negative branches
of the hyperbolaéi, but do not have representations in the random cluster model. For more on
this model and its relation td see Ref. 1, Chap. 4.

V. SOME WELL-KNOWN INVARIANTS

Having shown in detail how the Potts, Ising, and random cluster models are related to the
Tutte polynomial we now collect together some of the naturally occurring interpretations of the
Tutte polynomial. Throughou® is a graph,M is a matroid, ancE will denote E(G), E(M),
respectively.

In each of the following cases, the interesting quariity the left-hand sideis given(up to
an easily determined tepnby an evaluation of the Tutte polynomial. We shall use the phrase
“ specializes to to indicate this.

When talking about the Tutte polynomial and Potts model, it turns out that the hypekbplas
defined by

Ha:{(XaY)Z(X_l)(y_l): a,}

seem to have a special role in the theory. We note several important specializations in the follow-
ing.

(1) Along Hy, T(G;x,y)=xEl(x—1)"®~IEl

(2) Along H,, whenG is a graph,T specializes to the partition function of the Ising model.
(3) Along Hq, for general positive intege®,T specializes to the partition function of the
Q-state Potts model.

(4) Along H, for any positive, not necessarily integ@, T specializes to the partition function
of the random cluster model discussed in Sec. IV.

(5) At (1, 1), T counts the number of bases Mf (spanning trees in a connected graph

(6) At (2, 1), T counts the number of independent setdvbfforests in a graph

(7) At (1, 2), T counts the number of spanning connected subgraphs of the Graph

(8) At (2, 0), T counts the number of acyclic orientations ®f°

(9) Another interpretation &2,0), and this for any real matrix was discovered by Zaslavky.
If {H4,...,H,} is a set of hyperplanes id-dimensional Euclidean space with nonempty intersec-
tion, thenT counts the number of unbounded regions of this hyperplane arrangement.

(10) At (0, 2), T counts the number of totally cyclic orientations, that is, those in which every
edge of the grapls is contained in some directed cycle.

(11) At (1, 0, T counts the number of acyclic orientations with exactly one source.

(12) At (0, 1), if G is a directed graph having a fixed ordering on its eddespunts the
number of totally cyclic reorientationsof G such that in each cycle afthe lowest edge is not
reoriented. IfG is planar,T counts the number of totally cyclic orientations in which there is no
clockwise cycle.

(13) When\ is a positive integelm(G;1—\,0) gives the number of colorings because, the
chromatic polynomialy(G;\) is given by

X(GN)=(—1)"ENOT(G;1-1,0),

wherek(G) is the number of connected components.
(14) Similarly T(G;0,1-\) counts the number of nowhere zero flows over any Abelian group
of order\. Then the flow polynomiaF (G;\), is given by
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F(G:\)=(—1)E"®T(G;0,1-)).

(15) The (all termina) reliability R(G;p) defined as the probability that when each edge of
the connected grapB is independently deleted with probability-1p the remaining graph stays
connected is given by

R(G;p)=q/E"®p ET(G;1,1h),

wheregq=1-p.

(16) At (0, —2), if Gis a four-regular graphl counts the number of ice configurations@f
An ice configurationof G is an orientation of the edges so that at each vertex exactly two edges
are directed in and two out. It is easy to see that this counts exactly the number of nowhere zero
three-flows onG.

(17) T(G;—1,—1)=(—1)El(=2)4®) where B is the bicycle space 06, see Read and
Rosenstieht? When G is planar it also has interpretations in terms of the Arf invariant of the
associated knot.

(18) The number of forests of sizeof G, f;(G), is related taT by the following:

[V]—1 1
> fi(G)sist‘lT(G; ~+1,1).
i=0 S

(19) Also, the generating function of connected subgraphs oflsafeG, ¢, (G), is related to
T by

[E|—[V[+1
> c(G)sk=glEI-VI+iT

1
G1l,—+1
S

(20) Along H,, whenq is a prime power, for a matriM of column vectors oveGF(q), T
specializes to the weight enumerator of the linear code @&/ €fq), with generator matrixv.
Equation(11) relating T(M) to T(M*) gives the MacWilliams identity of coding theory, we
return to this in Sec. IX.

(21) Along the hyperbolacy=1 whenG is planar,T specializes to the Jones polynomial of
the alternating link or knot associated witB. This connection was first discovered by
Thistlethwaité® and is explained in Ref. 1.

Other more specialized interpretations can be found in the survey of Brylawski and'Oxley
and the book of Welsh.

VI. MEAN FIELD RESULTS

The mean field Potts model refers to the case where the underlying graph is the complete
graph. This has been considered by 34md Kesten and Schonmdnrfor the classical Potts
model, and more generally for the random cluster model by BodioBaimmett, and Jansdfi.
First, however, as a useful example to illustrate what is known, we consider the behavior of
T,(X,y)=T(K,;,X,y) for some of the points and curves described in Sec. V.

First some easy and not so easy known evaluations.

(1) Along Hy, (x=1)(y—1)=1,

X

2]
Ta(X,y)= m) (x=1)" %,

(2) T,(1,1) is the number of trees anvertices and hence

To(1,)=n""2
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(3) The number of acyclic orientations is
T,(2,00=n!.
(4) The number of acyclic orientations with exactly one source is
To(1,00=(n—=1)!.
(5) The number ok-colorings, for any fixed, is given by the Stirling polynomials so
To(1-k,0)=(—1)""tk(k—1)---(k—n+1).
(6) The number of forests is
Th(2,)~Jen" 2 as n—o.

See for example Renlfior Denes®®

Hence this gives a good picture of the sort of asymptotics one might expect.

It would be nice if there was a compact useful formula for the Tutte polynomial of the
complete graph as there is for the chromatic polynomial. Unfortunately this does not seem to be
the case and all that seems possible is to obtain a generating function expansion which is not that

useful. It was originally obtained by Tutlé Two different forms of this are in Refs. 20 and 21.
WelsH® gives

©

—1)g" = giyl2l
HS (y 1)sTn(><,y):(]E sy’

1+(x— (17)

=0 J!

(x=1)(y—1)
n=1 n! . )

Substituting k—1)(y—1)"T,(x,y) =B,(Q,y) we get the following generating function for
the bad coloring polynomial or equivalent®(K,,):

. (nj\ Q
5 $B(Qy) [ < slylzl)
1*%7‘(% T

One way of obtaining this directly is the following.
Let

n!

io Bn(Qist, - Sq)

be the generating function in which the coefficient of

MMz Mo n
S1 52 SQ u

is the number of ways of coloring, with Q colors{1, 2, ...,Q} wherem; is the number of edges
with both end points colored i, for€i<Q.
Then clearly as

n! (kl]
B(K,;S1,...,50)= —S
(Kn;sy Q) Kt Fhg=n k1!"'kQ! 1 Q

we conclude that
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Now, this gives more information than we are asking for and putting
Sl:SZZ"':SQ:S

we get

: = g5l \©

n=0 nl

One of the annoying features of the above-mentioned expansions is that they seem to be of
little help in attacking problems we wish to solve. As an example of this consider the evaluation
atx=2, y=1 which givesF(n) the number of forests in the complete graph. Direct substitution
in (17) does not seem to give us anything useful, in particular, we do not see how to get the
following result from(17).

Takac$? gives the following exponential generating function fon):

o = o n—-2
> (n)snzexr{E nn| sh|.

=1 N n=1

He also gives the more useful

Fn=3 (?)n“"HrH(l).

whereH(x) is thenth Hermite polynomial defined by

[n2] jyN—2j
(—1)ix"2
= ' .
a0 =n! 2, o2t
An extension of this by Stanléygives the numbeF(i,n) of forests withi edges orK,, as
having generating function

n!

Sitn Snfltn
2 F(i,n)W=ex;<n”‘2 )
i .

n=0

We now turn to the recent work of BollobaGrimmett, and Jansthon the asymptotics of
the random cluster model. Recall tha¥ifn,p,Q) denotes the partition function @z(K,;p,Q)
then this gives the Potts model &4, by the substitution

p=1—e K

One of the main resultéTheorem 2.8 is the following:
Theorem 3:1f Q=1 and A >0, then

1 A
ﬁlOgZ(n, H,Q)—>¢()\,Q)

as n—o, where the free energg(\,Q) is given by
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O(N —1)\
¢()\,Q):9(2(Q))_(Q2Q) N

logQ

and where ¢6) is defined by
9(0)=—-(Q—1)(2—0)log(1—6)—{2+(Q—1)A}log{1+(Q—1)6}.

The functiond(\) (= 6(\,Q)) is defined as

[0 if A<A(Q)
0(A,Q)—{9max if A=\(Q),
where
Q if 0<Q=2
\(Q)=1 (Q-1 i
Z(Q—z)'og@_l) e

and 6,4« is the largest root of the equation

e”“’z—l_ o .
1+(Q—-1)6
This explains the asymptotics in the regioe 1, y=1 of the Tutte plane but note that it says
nothing about the antiferromagnetic part.

VII. THE COMPLEXITY OF THE TUTTE PLANE

We have seen that along different curves of i plane, the Tutte polynomial evaluates
many diverse quantities. Since it is also the case that for particular curves and at particular points
the computational complexity of the evaluation can vary from being polynomial time computable
to being #P-hard a more detailed analysis of the complexity of evaluation is needed in order to
give a better understanding of what is and is not computationally feasible for these sort of prob-
lems. The main result of Jaeger, Vertigan, and Wélihthe following:

Theorem 4: The problem of evaluating the Tutte polynomial of a graph at a point (a,b) is
#P-hard except when (a,b) is on the special hyperbola

Hi=(x-1)(y-1)=1

or when (a,b) is one of the special poir(ts, 1), (-1, —1), (0, —1), (=1, 0), (i,—i), (—i,i),
(j,i® and(j?,j), where j=e?™”. In each of these exceptional cases the evaluation can be done
in polynomial time
As far as the easy real points are concerned, with one exception, the explanation is straight-
forward. The hyperbol&l, is trivial, (1, 1) gives the number of spanning tre¢s;1, 0) and (0,
—1) give the number of two-colorings and two flows respectively, and are easy evaluations of the
antiferromagnetic Ising. The poiit-1, —1) is less well known but has been explained, see Sec.
V. It lies on the four-state Potts curve but as far as we are aware has no natural explanation there.
Finally the complex pointsi(—i)(—i,i) lie on the Ising curve and the pointg,[?)(j2,]) lie
on the three-state Potts. Again there seems to be no natural interpretation to explain why their
evaluation is easy. The only reason why they appear in Theorem 4 is that they “turn up in the
calculations.”
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For planar graphs there is a significant difference. The technique developed using the Pfaffian
to solve the Ising problem for the plane square lattice by Kastélezan be extended to give a
polynomial time algorithm for the evaluation of the Tutte polynomial of any planar graph along
the special hyperbola

Ho=(x-1)(y—-1)=2.

HoweverH 5 cannot be easy for planar graphs since it contains the peidt 0) which counts the

number of three-colorings and since deciding whether a planar graph is three-colorable is NP-hard,

this must be at least NP-hard. However it does not seem easy to shol tiethard for planar

graphs. The decision-problem is after all trivial by the four-color theorem. The fact that it is

#P-hard is just part of the following extension of Theorem 4 due to Vertigan and \&Ish.
Theorem 5: The evaluation of the Tutte polynomial of bipartite planar graphs at a point (a,b)

is #P-hard except when

(a,b) € H1U HZU{(lal)!(_l!_ 1)!(] !jz)i(jzij)}

when it is computable in polynomial time

It follows immediately from the fact that any graph can be represented as a totally unimodular
matrix that if a problem is harfin any formal sensefor graphs then it will be at least as hard for
matrices.

VIIl. APPROXIMATIONS

Since exact evaluation is provably hard, we turn to the possibility of obtaining good approxi-
mations or Monte Carlo estimates.

For positive numbera andr=1, we say that a third quanti approximates a within ratio
r or is an r-approximation to a, if

rlasas<ra. (18
In other words the ratié/a lies in[r ~1,r].

First consider what it would mean to be able to find a polynomial time algorithm which gave
an approximation within to the number of three-colorings of a graph. We would clearly have a
polynomial time algorithm which would decide whether or not a graph is three-colorable. But this
is NP-hard. Thus no such algorithm can exist unless=RP

The same argument can be applied to any function which counts objects whose existence is
NP-hard to decide. Hence

Proposition 6: UnlessNP=P there can be no polynomial time approximation t¢GFE1
—k,0) for integer k=3.

However this argument only applies to a few points of the Tutte plane and it seems a difficult
problem to decide on the existence of good approximations elsewhere.

We now consider a randomized approach to counting problems and make the following
definition.

An e-S-approximation schemfr a counting problenfiis a Monte Carlo algorithm which on

every input(x, €, &), >0, 5>0, outputs a humbeY such that
Pr{(1-e)f(x)<Y<(1+e)f(x)}=1-4.

Now letf be a function from input strings to the natural numbergaAdomized approxima-
tion scheme for f is a probabilistiglgorithm that takes as an input a strixgnd a rational number
€, 0<e<1, and produces as output a random variajlsuch thaty approximates (x) within
ratio 1+ e with probability greater or equal 3/4.

In other words,
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1 Y 3
<-—<l+e¢ =7 (19

P T e =T

A fully polynomial randomized approximation scheffigas for a functionf:=* —N is a
randomized approximation scheme which runs in time which is a polynomial functionaot
e L.

Suppose now we have such an approximation scheme and suppose further that it works in
polynomial time. Then we can boost the success probability up-té for any desireds>0, by

using the following trick of Jerrum, Valiant, and VaziréiiThis consists of running the algorithm
O(log 1) times and taking the median of the results.

We make this precise as follows:

Proposition 7: If there exists a fpras for computing f then there exists-ahapproximation
scheme for f which on inpyk, €, 8) runs in time which is bounded by(@gs Hpoly(x,e1).

The existence of a fpras for a counting problem is a very strong result, it is the analog of a
randomized polynomial tim&RP) algorithm for a decision problem and corresponds to the notion
of tractability. However we should also note

Proposition 8: If .=* — NN is such that deciding if f is nonzero is NP-hard then there cannot
exist a fpras for f unless NP is equal to random polynomial time RP

Hence we have immediately from the NP-hardnesk-obloring, fork=3, that:

Unless NR=RP there cannot exist a fpras for evaluatings; —k,0) for any integek=2.

Recall now that along the hyperbolb,,, for positive integerQ,T evaluates the partition
function of theQ-state Potts model.

In an important paper, Jerrum and Sindlaihave shown that there exists a fpras for the
ferromagnetic Ising problem. Their result can be restated in our terminology as follows.

(1) There exists a fpras for estimatifigalong the positive branch of the hyperbdia.

However it seems to be difficult to extend the argument to prove a similar result for the
Q-state Potts model wit>2 and this remains one of the outstanding open problems in this area.

A second result of Jerrum and Sinclair is the following:

(2) There is no fpras for estimating the antiferromagnetic Ising partition function unless
NP=RP.

In the context of its Tutte plane representation this can be restated as follows.

(3) Unless NR=RP, there is no fpras for estimatifigalong the curve

{(x,y):(x=1)(y—1)=2, 0<y<1}.

The following extension of this result is proved in Wefsh.

Theorem 9: On the assumption that N®PR P, the following statements are true

(@ Even in the planar case, there is no fully polynomial randomized approximation scheme
for T along the negative branch of the hyperbolg,Hhat is for the antiferromagnetic three-state
Potts model

(b) For Q=2,4,5,...,there is no fully polynomial randomized approximation scheme for T
along the curves

HqoN{x<0}.

It is worth emphasizing that the above-mentioned statements do not rule out the possibility of
there being a fpras apecific pointsalong the negative hyperbolas. For example;

(1) T can be evaluated exactly &t1, 0) and (0, —1), which both lie onH, .
(2) There is no inherent obstacle to there being a fpras for estimating the nunibeolofrings of
a planar graph for ank=4.

Positive resultsMihail and Winkler® have shown that there exists a fpras for counting the
number of ice configurations in a four-regular graph. This is equivalent to the statement:
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There is a fpras for computing at (0, —2) for four-regular graphs.

The reader will note that all the “negative results” are about evaluationk iofthe region
outside the quadrant=1, y=1. In WelsH it is conjectured that the following is true:

Conjecture 10: There exists a fpras for evaluating T at all points of the quadrartt, ¥
=1.

Some evidence in support of this is the following.

If we let G, be the collection of graph&=(V,E) such that each vertex has at lea$V|
neighbors, then we call a cla§sof graphsdenseif CC G, for some fixeda>0.

Annart! showed that:

Proposition 11: For any class of dense graphs, there is a fpras for evaluat{@yx;1) for
positive integer x

Extending this, Alon, Frieze, and Wefrshow

Theorem 12:(a) There exists a fully polynomial randomized approximation scheme for evalu-
ating T(G;x,y) for all x=1, y=1, for any dense class of graphs

(b) For any class of strongly dense graphs, meaning &, for a>3, there is also such a
scheme for xX1, y=1.

Even more recently Karg&thas proved the existence of a similar scheme for the class of
graphs with no small edge cut set. This can be stated as follows.

For c>0 define the clasg® by GeG° if and only if its edge connectivity is at least
clog|V(G)|. A class of graphs isvell connectedf it is contained inG® for some fixedc.

Theorem 13: For any fixed (x,y)y>1, there exists ¢, depending on (X,y), such that for any
classCCG", there is a fpras for evaluating (IG; x,y).

Notice that though the properties of being well connected and dense are very similar neither
property implies the other.

Notice also that parta) of Theorem 12 can be loosely reinterpreted(@sThere is a good
Monte Carlo scheme for estimating the partition function of the random cluster model on any class
of dense graphs.

Unfortunately there are several important classes of graphs, in particular lattices, which are
not dense.

IX. THE POTTS MODEL AND ERROR CORRECTING CODES

We now turn to a curious correspondence between the partition functions Qfstetes Potts
model whenevef is a power of a prime and the weight enumerator polynomial of linear codes
over the finite field withQ elements. This correspondence is reasonably well known for the case
Q=2, the Ising model. It has been pointed out for example by Heded Rosengren and
Lindstram 2° In Ref. 25 this correspondence was used to derive terms of the low temperature series
expansion of the partition function of the three-dimensional cubic lattice.

For the purpose of this section takdo be any prime power and I€tbe alinear codeover
the field GF@).

A compact description of is by akXxn generator matrix GThe code words of are all
linear combinations of rows db. Now letE={e,,...,e,} be the column vectors @& and takeM
to be the matroidE,r), where each subsét of columns has rank(A) equal to the maximum
number of linearly independent columnsAnas in Sec. Il.

Theweightof a code word is the number of nonzero entries. Given a €ptlt A; denote the
number of code words which have weightThe weight enumeratoof C is

ACH = At (20)

Then we have the following theorem of Greefie.

Theorem 14:LetC be a linear code of dimension k and length n over the f&f{q). Let G
be a k< n generator matrix o€ and let M be the matroid on the set of columns. Then the weight
enumeratorA(C;t) is given by
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ACH)=(1— ) " kT M; (21)

1-t 't)

1+(g—1)t 1)

The proof of this is not that difficult and can be found for example in Ref. 37.
If we compare this with the expressi¢id) for the partition functiorZp,{ G) we can rewrite
it as

1+(Q-1)e X 1
Zeond G:Q.K)=Q(1—e M e KIEEMIIT| G ———=—, —¢
—e e

so that there is a direct translation via

Q—qg=p*,

e K- parametert.

Under this correspondence we get
AC)=Q 'Zpgude " =1).

Now let us consider what this means in the context of a graphic matroid. Given any finite
graph it is easy to find a representation of it as a generator matrix of a linear code over any finite
field.

The edges of the graph correspond to the columns of the matrix andfadfetolumns is
linearly independent if and only if the corresponding edges form a forest.

Example:Working with the field GF2), K, minus one edge has a representation

12345
T 0101
- 01101
000 11

The resulting code generated by this matrix has eight code words of length 5 and weight
enumerator ¥ 272+ 423+ 7%,

Now lets consider how this can be interpreted in general. Writing the weight enumerator as in
(20), we see that we have another expansion for the Potts partition function namely,

|E|
ZPotts(G;Q,K):QiZO Ae K,

Note however that this only works whépis a prime power.

X. THE POTTS MODEL AND COUNTING IN RANDOM GRAPHS

Although the theory of random graphs is highly developed, less attention seems to have been
paid to counting problems. Here we give some results obtained in ¥eldhich give new
interpretations of the Tutte polynomial as the expected value of classical counting functions.

Given an arbitrary graplG and pe[0,1] we denote byG, the random subgraphof G
obtained by deleting each edge @findependently with probability % p.

This is a generalization of the standard random graph m@jgJ which corresponds to

(Kn)p-
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First an easy result to illustrate the notationf(fG,) denotes the number of forests @y,
then, for G and p fixed this is a random variable and has an expectation which we denote by

(f(Gp))-

Routine calculation gives that for any connected gr&ph

<f(Gp)>=p|V—1T(G;1+ %,1

Turning now to colorings, we have:
Theorem 15:For any connected graph G arép<1, the random subgraph ghas chro-
matic polynomial whose expectation is given by

(X(Gpin)=(=p) M AT(Gi1-Ap L 1-p).

For the flow polynomial there is a similar, but more complicated evaluation, namely
Theorem 16: For any graph G the flow polynomial(l6,;\) has expectation given by

(@ if pe(0,3)U(3,1), then

. A
(F(Gp;N))=p" @ (g—p)" ©T G;qp’l,l+ﬁ :
whereq=1—p;
(b) if p=3, then

(F(Gypin))=NEIVITk@) o€l

Notice that parametrized in terms of the Potts model these give interpretations in the antifer-
romagnetic region.

XI. THE LIMIT AS Q—0

Several authoréSee Wd) have considered the formal limiting behavior of tBestate Potts
model asQ—0. This makes more sense in the context of the random cluster model which we
recall is defined for alQ>0. Let us now consider this convergence in more detail.

Suppose in the random cluster modebndQ both tend to zero witlp/Q kept constant at 1.
Then easy calculations show that in this case

Zrd(G;p,
Iim%zT(G;Z,D.

In other words, from Sec. V, the limit is the number of forestsGof
There are various other cases to consider.
(@ If Q—0 with p fixed then

1
lim ZRC(G;D,Q)ZCT<G;1,—),
Q-0 1-p

wherec is a constant. In other words we are getting
(1) the reliability probability, which we have already mentioned and is a much studied topic,
(2) the chip-firing gaméAbelian sandpile modgl
as two different realizations of this limiting behavior. We consider the latter in some
detail in Sec. XIB.
(b) For the other part of the hyperbol,, consisting ofy=1,x=1, it is clear that if we let
Q—0 in such a way tha®Q/p is fixed ata>0, then in the random cluster model
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and so
p"(1-p) BBz, (G;Q,p)—=T(G;1+a,1).

We have already mentioned the case 1 where the limit is the number of forests. More
generally we have the interesting specialization

NT(G;1+1\,1)=i(P(G),\),

wherei is the Ehrhart polynomial of a particular family of zonotog®&s) determined by a
graphG.
We now discuss in more detail these two separate problems areas.

A. The Ehrhart polynomial

Let 7" denote then-dimensional integer lattice iR" and letP be ann-dimensional lattice
polytope inR", that is a convex polytope whose vertices have integer coordinates. Consider the
functioni(P;t) which whent is a positive integer counts the number of lattice points which lie
inside the dilated polytop#. Ehrhart® initiated the systematic study of this function by proving
that it was always a polynomial ip and that in fact

i(P,t)=x(P)+cyt+--+c,_1t" 1+vol(P)t".

Herecy= x(P) is the Euler characteristic ¢ and vol(P) is the volume ofP.

Until recently the other coefficients ofP,t) remained a mystery, even for simplices, see for
example Diaz and Robin€.

However, in the special case tHatis a unimodular zonotope there is a nice interpretation of
these coefficients. First recall thatAfis anr X n matrix, written in the formA=[a,,...,a,], then
it defines azonotope ZA) which consists of those poingsof R" which can be expressed in the
form

n
p=> Naj, O=\<1.
i=1

In other wordsZ(A) is the Minkowski sunof the line segmentg0,a;],1<i<n.

Z(A) is a convex polytope which, wheA is a totally unimodular matrix, has all integer
vertices and in this case it is described asyanodular zonotopd-or these polytopes a result from
Stanley® shows that

r
H(Z(A)) =2 iy,
k=0
wherei, is the number of subsets of columns of the ma&iwhich are linearly independent and
have cardinalityk.

In other words, the Ehrhart polynomiglZ(A);t) is the generating function of the number of
independent sets in the matroM(A). But from (2.3) we know that for any matroidV, the
evaluation ofT(M;x,y) along the liney=1 also gives this generating function. Hence, combining
these observations we have the result
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Theorem 17:1f M is a regular matroid and A is any totally unimodular representation of M
then the Ehrhart polynomial of the zonotopéA] is given by

A

NAAxm=AW<Mn+lJ

where r is the rank of M

Another new interpretation of follows from what is sometimes known as the Ehrhart—
Macdonald reciprocity law. This states that for any convex polyf@péth integer vertices iR"
and for any positive integet; the functionk(P;t) counting the number of lattice points lying
strictly insidetP is given by

k(P;t)=(—=1)"i(P;—t).

This gives
Corollary 18: If A is an rxn totally unimodular matrix of rank r then for any positive integer
\ the number of lattice points df" lying strictly inside the zonotopeZ(A) is given by

k(Z(A);)\)Z(—)\)rT( M(A);1— %,1) .

In particular we have the following new interpretations:
The number of lattice points strictly insid&A) is (— 1) ™T(M:0,1).

B. Sandpiles

Self-organized criticality is a concept widely considered in various domains since Bak, Tang,
and Wiesenfeltt introduced it ten years ago. One of the paradigms in this framework is the
Abelian sandpile model, introduced by DHar.

We start by recalling the definition of the general Abelian sandpile model on a désités
labeled 1, 2, ...N, that we referred to as the system. At each site the height of the sandpile is given

by an integerh;. The setﬁz{hi} is called theconfigurationof the system. For every site a
thresholdH; is defined; configurations with;<H; are calledstable For every stable configura-
tion, the height, increases in time at a constant rate, this is calledaading of the system. This
loading continues until at some sitdts heighth; exceeds the thresholdi , then the site topples
and all the value$;, 1<j<N, are updated according to the rule:

hj=h;—4; for all j, (22)

whereA;; is an integer matrix satisfying
Aii>0’ Aijsoy S|:2 A”?O
J

If after this redistribution some height exceeds its threshold we apply the topplin@&)ilend so
on, until we arrive at a stable configuration and the loading resumes. The sequence of topplings is
called anavalanche We assume that an avalanche is “instantaneous,” and thus, no loading
occurs during an avalanche.

The values; is called thedissipationat sitei. It may happen that an avalanche continues
without end. We can avoid this possibility by requiring that from eweopdissipativesitei, i.e.,
s;=0, there exists a path to dissipativesite j, i.e., s;>0. In other words, there is a sequence
igy--espn, Withig=i, i,=], andAikil,ik<0, fork=1,...n. In this case we said that the system is
weakly dissipativé® From now on, we assume that the system is always weakly dissipative.
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When the matrixd;; is symmetric and the loading of the system at siéguals the dissipation
ati, the Abelian sandpile model coincides with the chip-firing game on a dfape now explain
this.

Every site of the Abelian sandpile model corresponds to a vertex in a @agmntainingN
+1 vertices, that is the number of vertices is one more than the number of sites in the system. We
label the vertices 0, 1, .N. The graph has multiple edges, and the number of edges between sites
i andj, i andj both nonzero, equalg\;;|. For alli+0, we connect siteto site 0 usindEjN:lAij|
edges.

Every vertexi, 1<i<N, has a number of chipg that represents its height (when seen as
a site of the systejrat every moment of time and vertex 0 has a negative number of chips given
by Ei’\':l(— h;). A toppling at site corresponds tfiring vertexi, that is, to redistribute some of the
chips at vertex according to the following rule: At vertek the new number of chips i,

—Ajj, for all j, that is, each neighbdrof i in G receiveg A, | chips and vertex losesA;; chips.

The loading of the system is represented by the firing of the vertex 0, in this case the height of site
i (its number of chips irfG) is increased by the number of edges from Q.tdhe vertex 0 may
(mus} fire only when no ordinary vertex can fire.

This process of firing vertices in the graghis called a chip-firing game. The process is
infinite, although the number of firings corresponding to an avalanche in the system, that is, a
sequence of firings of the vertices 1, N,without firing the vertex 0, is finite. The number of
stable configurations is also finite, hence certain configurationseaterent that is, a configu-
ration is recurrent if there exists an avalanche which starts and ends with it. A configuration is
critical if it is recurrent and stable.

Using the chip-firing game it can be proved that this sandpile model has an important Abelian
property, namely the stable configuration of the system after an avalanche, and the number of
breaks at any site during an avalanche, do not depend on the order of breaks during the
avalanché? Even more, there is a close relation between the critical configurations of the system
and the Tutte polynomial o&. We now explain this more precisely.

Thelevel of a configuratiorﬁ is defined by
levekh)= >, h;+deg0)—|E(G)|.
1#0

The theorem conjectured by Bigdgsand proved by Merin® is the following
Theorem 19:If c; denotes the number of critical configurations of level i in a graph G with
special site 0, then

o

Pq(G;y)=;0 cy'=T(G;1y).

A first, nontrivial consequence of this is that it sholg(G;y) is independent of choice of the
vertex 0 inG.

Critical configurations possess some interesting mathematical properties: they form a finite
Abelian group whose order equals the number of spanning trees of the @rduir the structure
of this group for planar graphs:-wheels, and complete graphs, and in this case its relation with
parking functions see Ref. 47.

Xll. RESISTOR NETWORKS

The problem of finding the effective resistance in a network of resistors was solved by
Kirchhoff (1847 but Fortuin and Kasteleyrshowed that it also appears naturally as a limit of the
Potts partition function aQ— 0.

Suppose we led;; , the interaction energy between neighbor verticésbe given by
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Jij~—kTryt,
wherer;; is the resistance of the resistor connecting sitasdj.
Now we wish to find the effective resistanBg, between two fixed sitek andl, wherek and
| are joined inG. Then the result in Ref. 5 can be stated as in Ref. 2, namely

) J
Rk|: lim Wln ZRC(G;QaQaXij)!

wherex;; zrﬁl for each edgei(j) e E(G) and« is arbitrary in the open intervaD, 1).

As explained in Ref. 2 this is essentially obtained from a fairly well known interpretation of
the effective resistance in terms o§panning tree polynomialhich goes back to Kirchhoff. This
spanning tree polynomial which is denoted $§G;x;;) is multivariate and defined by

S(Gixij)= 2, ,

Xij
ACE

TCG:A ((i,j)eT

where the variables;; are indeterminates associated with each edge and the inner sum is over all
spanning treed of the subgraplG:A=(V(G),A).
Then the clain{(Ref. 2, 4.26) is that for anya, 0<a<1,

lim Q*1~N~17,4(G;Q,Q i) =S(G;X;)).
Q—0

Taking x;; =ri}1 gives the result of Kirchhoff.

Now let us reappraise this in terms of the Tutte polynomial. First of all, we should emphasize
that because it is a general result with varialslesind hence variable interaction strenglh)s its
description cannot be exactly covered by the Tutte polynomial which is just two variable. How-
ever the basic ingredients are there. It is well known and easy to prove that in the case where all
resistances are constant, say equal to 1, then the effective resiBabegveen two vertices db
which are joined by an edgeis given by

. _T(Gg;LY
© T(G;1,))

Puttingx;; =r ' in S(G;x;;) gives
1 . |E[~|V|+1
o+t . _ .
S(G, r) r AEE T(G|A;1,2) — e T(GLD.

Hence

T(G;LD _ SGLr Y

TG:L,) | SGr 5"

Xlll. THE SQUARE LATTICE

For obvious reasons the two-dimensional lattice is a graph of fundamental importance in the
Potts model.

It is also the case that the square lattice is the fundamental separation point between the
classes l%graphs of bounded tree width and unbounded tree width, in the sense of Robertson and
Seymour”
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Thus, in a very technical sense, it can be regarded as the separation point between hard and
easy problems as all evaluations of the Tutte polynomial are known to be in polynomial time for
graphs of bounded tree widtfsee Andrzeja® and Noblé%. This was the motivation for the
Merino—Welsh papét which is the basis for the work of this section.

Here we review what is known about the Tutte polynomial on the square lattice.

The square lattice L, is the set of ordered paifgi,j) € N?|0<i,j<n—1}. There is an edge
between the vertice@,j) and (',j’) if |i—i'|+]j—j'|=1.

It is easy to show that as—« for any fixed(x,y), T(L,;X,y) is 0(0”2) for a suitable#
= 6(x,y). We focus on the limit of the sequence

{(T(Lo i, )%

for certain values of the integersand].

We note that we already know from the results of Grimiféftand Biggs>* that except in
certain special cases, these limits exist.

We first consider the trivial hyperbold, where

T(Lyixy)=x"ty=27

We next highlight the special hyperbola1)(y—1)=2. On the positive branch of this
hyperbola, which corresponds to the ferromagnetic version of the Ising model, convergence is to
the classical limit of the Onsager solution, see, e.g., Ref. 55.

Consider nowy(L,;k), the number ofk-colorings of the square lattice,,. Clearly the
number of two-colorings ok , is 2. Hence

lim (x(Ly;2))¥°=1.

n—o

For k>2 the problem becomes much harder and exact results are not known. An easy argu-
ment gives

k—2<(x(L,:k)¥°<k—1.

For the rest of this section we assume 2 to avoid trivialities. Leﬂ_l be the graph obtained
from the square lattické ,, ; by identifying the boundary vertices,0) and {,n), for 0O<i=<n,
and the vertices () and (,j), for 0O<j=n, and deleting any parallel edge. This is the toroidal
square lattice. Le]s((LI;k) be the number ok-colorings ofLI. It is knowrr® that for a fixed
integerk=3 the limits of the sequence{$X(LI;k))l’“2} and{(X(Ln;k))l’“z} are equal and we
call this limit y(k).

In a classical paper, Liébshowed that the number of ice configurations, see Sec. vlciﬁ
asymptotically (4/3Y2. If we now assumé;l is self-dual, which is not strictly true because it is
nonplanar, it is generally accepté@ef. 56, p. 56 that the result of Lieb implies that

%(3)=(4/3)%2~1.539 600 718.
Biggs and Meredith in Ref. 58 obtained the estimate
%(K)~ 3(k—3+ Vk?—2k+5).

Lower and upper bounds fgr(k) were given by Biggs in Ref. 56. He used the transfer matrix
technique to obtain

k?—3k+3 1
—oT =x=3(k-2+ Vk?—4k+8).
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In Ref. 59, Nagel used an induced subgraph expansion for the chromatic polynomial to obtain
the first terms of a power series that converge§ (k).

Kim and Enting® gave a more accurate approximation of the same power series by combining
an expansion of(k) due to de Neef and the transfer matrix technique.

Numerical values obtained by using this approximation give for exarpfl®)~8.111....

We uset(n) to denote the number of spanning treesLgf Let a,, be the number of one-
factors or perfect matchings af,,. It is shown in Ref. 61 that

) In a, 4 w2 (72
lim ?:?f J In(4 cog x+4 cof y)dx dy=c~1.166 243 696.
o 0 0

n

Now, letb,, be the number of one-factors in the graph, which is obtained from the (2
—1)X(2n—1) square lattice by taking out one corner vertex, thak [szL,,_1\(0,0). In Ref.
62, a bijection has been established between the one facttrsarid the spanning trees bf,.
Sincea, /b,~1 asn—x we get

lim (t(n))¥°=e°~3.209 912 556.

n—o

The number of spanning forestslof, which we denote by(n), seems a much more elusive
quantity to approximate accurately. Ndiyn) corresponds td (L, ;2,1) and the related points
T(L,;2,0) andT(L,;0,2) are the number of acyclic orientationslgf, «(n), and the number of
acyclic orientations witl0,0) as the only sourceyy(n), respectively. In Ref. 51 we show

I< lim (ap(n))¥"*< lim (t(n))¥"°~3.209 912 556,

n—o n—o

im ((n))¥°<3.709259278...,

—

—=<|
7 n
and

3.209 912 556 lim (f(n))¥"°<3.841619541.....

n—oo

More recently, Calkinet al®® have improved some of these upper bounds. By using the
transfer matrix method, they obtain

lim (a(n))¥"’<3.563 221504 7716...,

n—o

lim (f(n))¥"°<3.746 981 401399 4... .

n—o

Also, Merino and No§* have improved previous lower bounds by using generating function
techniques, their results are

13+ /61
lim (a(n))¥n’= —, —~3.2256075738518..,

n—o

lim (f(n))¥"*=2+v2~3.4142135623731....

n—oo
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By using the transfer matrix method together with the Perron—Frobenius Theorem, they have also
obtained the following improvements:

lim ((n))¥°=3.413580 975034 92...,

n—oe

lim (f(n))Y"*>3.644 975 653 386 48... .

n—oo

To sum up, the above-mentioned results give

I< lim (ap(n))¥"*< lim (t(n))¥n°~3.209 912 556,

n—o n—o

3.413580975034 92 lim (a(n))1/”2$ 3.5632215047716...,

n—oo

and

3.644 975653 386 48=.1im (f(n))1/”2$ 3.7469814013994....

n—oo

Our objective is to find exact results for other evaluatidi(k , ;x,y) but this includes some
very difficult problems.

XIV. CONCLUSION

We hope that the above gives a reasonably coherent picture of the intimate relationship
between the Tutte polynomial and its physical interpretations associated with the Potts model.

One problem which has particularly engaged us is the question of whether there exists a good
Monte Carlo scheme for the ferromagnetic Potts or random cluster model. A recent attack on this
problem in Ref. 65 works as follows.

For any graphG, the win polytope W is the convex polytope defined by

> xi<e(U), UCV, x=0,
ieU

wheree(U) is the number of edges incident with

It has the property that its bounding base face is combinatorially equival&titpwhereA
is any totally unimodular representation of the graplas in Sec. XIA. Now carry out simple
random walkX; in a slightly dilated version oV, call it Wg . Associate with each lattice point
a box of equal volume, ensuring that the boxes are disjoint but otherwise as large as possible. Now
let t be large enough, say=T so that the stopping poirX; is almost uniform inWg, and map
Xt to the lattice point associated with the box containing it. Accept the output as an almost
uniform point of W if it lies inside it. RepeaN times, whereN is large enough to ensure we have
a good estimate of the number of lattice points insWlg. Ideally this process would work
successfully enough to enable us also to get a good estimate of the number of lattice points in the
bounding face and hence #(A).

Curiously, and somewhat depressingly, in order for the method to work in polynomial time we
need exactly the same density condition on the underlying graph as did Ahfais suggests
that it might be more profitable to look for a mathematical reason why good approximation
schemes should not exist f@(G;p,Q) for generalp and Q.

Accordingly, problems which seem to us particularly interesting are the following:

(@) Settle the Conjecture 10 that in the ferromagnetic regisrl, y=1 there is a good Monte
Carlo approximation foif (x,y).
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(b) Decide the question of whether the number of acyclic orientations has a good approximation.

(c) Clarify, or at least explain more convincingly than the reasons given in Ref. 65 why it is so
hard to approximate the number of forests.

(d) Understand better the region of the Tutte plane where the random cluster model is not
positively correlated.
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