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Abstract: An efficient bismuth triflate catalyzed [1,3] rearrange-
ment of aryl 3-methylbut-2-enyl ethers has been developed. The re-
action proceeds rapidly and affords the corresponding para- and
ortho-prenylated phenols and naphthols in moderate to good yields
(up to 86%). ortho-Prenylphenols are immediately cyclized under
the reaction conditions to the corresponding chroman derivatives.

Key words: bismuth, bismuth triflate, [1,3] rearrangement, Lewis
acid, allyl phenyl ethers

The [3,3] sigmatropic shift (Claisen rearrangement) of al-
lyl aryl ethers provides a convenient access to ortho-allyl
phenols and naphthols,1 which are versatile intermediates
in the synthesis of biologically active compounds such as
1,4-naphthoquinones and anthracyclinones.2 The difficul-
ty in preparing 2,2-disubstituted ethers such as 1¢ renders
the Claisen rearrangement inconvenient for the prepara-
tion of terminally substituted ortho-allylphenols 2. A mild
and convenient method for the [1,3] rearrangement of
ether 1 is therefore desirable as an alternative to the Clais-
en rearrangement (Equation 1).

Although the [1,3] rearrangement provides an efficient
synthetic route for the preparation of ortho- or para-pre-
nylated phenols along with chroman derivatives 3, it usu-
ally requires high temperatures to proceed.3 These forcing
conditions lead to severe side reactions. Recently, syn-
thetic methods involving Al(III) derivatives, lanthanide
triflates, and clays as catalysts for the [1,3] sigmatropic re-
arrangement of allyl aryl ethers have been reported.4 Bis-

muth compounds have attracted recent attention due to
their low toxicity, low cost, and good stability.5 Bismuth
salts have been reported as catalysts for opening of ep-
oxides,6 Mukaiyama aldol and Mannich-type reactions,7

formation of acetals,8 Sakurai reactions,9 Friedel–Crafts
reactions and Fries rearrangements.10 Bi(OTf)3 is particu-
larly attractive because it is commercially available or can
be easily prepared from readily available starting materi-
als.11

We recently reported the bismuth(III)-catalyzed [3,3] re-
arrangement (Claisen rearrangement) of allyl 1-naphthyl
ethers.12 When a crotyl 1-naphthyl ether was used, a mix-
ture of [3,3] and [1,3] products was obtained, with the ex-
pected Claisen rearrangement being the major pathway.
The general effectiveness of Bi(OTf)3 as a Lewis acid
brought us to study the desired [1,3] shift. We found that
[1,3] rearrangement of substituted 3-methylbut-2-enyl
naphthyl ethers was efficiently catalyzed by
Bi(OTf)3·4H2O in mild conditions. Both ortho- and para-
prenylated naphthols and phenols are readily obtained in
the presence of 5 mol% of Bi(OTf)3. Among various cat-
alyst loadings tested, 5 mol% of Bi(OTf)3 was found to
give the rearranged products with the best yield. Under
our conditions, the corresponding Claisen [3,3] rearrange-
ment was never observed.

Initially, we screened the [1,3] rearrangement on differ-
ently 2- and 4-substituted allyl 1-naphthyl ethers
(Table 1). The substituted 1-naphthyl prenyl ethers 5a–d
were first prepared according to the usual procedure (pre-
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nyl bromide, Cs2CO3, DMF, 22 °C). The rearrangement
occurs with 5 mol% Bi(OTf)3·4H2O in an apolar solvent
such as toluene (Scheme 1). The ortho- and para-substi-
tuted naphthol derivatives 6 and 8, along with the corre-
sponding chroman derivatives 7 were isolated in moderate
to good yields. 1-Naphthyl prenyl ether 5a afforded ortho-
prenylnaphthol (6a) in a moderate yield (72%) (Table 1,
entry a). Whatever the substitution of the naphthol ring,
the reaction occurred smoothly to give the corresponding
ortho- or para-prenylnaphthols 6 or 8 (Table 1, entries a–
c). With ortho-substituted 1-naphthyl prenyl ethers, the
[1,3] rearrangement afforded the corresponding para-pre-
nylnaphthols 8b (Table 1, entry b). 1-(3-Methylbut-2-
enyloxy)-4-methoxynaphthalene (5c) was smoothly rear-
ranged into the ortho isomer 6c (Table 1, entry c). The
transfer of the allyl group in a [1,3] fashion was also effec-
tive with the 4-chloronaphthyl prenyl ether and was im-
mediately followed by a cyclization reaction affording 7d
in a good yield (Table 1, entry d). Such a sequential reac-
tion involving a [1,3] rearrangement and a cationic cy-
clization reaction has already been reported in a clay-
catalyzed rearrangement.4d,e 

From thereon, we further studied the scope and limitations
of this reaction with differently substituted 3-methylbut-
2-enyl phenyl ethers 1 (Scheme 2). The corresponding
para-prenylphenols 4 were obtained in moderate to good
yield with 5 mol% of Bi(OTf)3·4H2O in toluene (Table 2,
entries a, b, and g). With para-substituted substrates, the
[1,3] rearrangement immediately followed by a subse-
quent cationic cyclization occurred in moderate to good

yields to give chroman derivatives 3 (Table 2, entries c–
f). The rearrangement occurred in the presence of either
an ester or a ketone functionality (Table 2, entries f and g).

Scheme 2

It is likely that the reaction conditions promote formation
of a discrete, delocalized prenyl carbocation and bismuth
aryloxide, which recombine to give the desired product.
Detailed investigations on the mechanism of this transfor-
mation are in progress. 

In summary, we have found that Bi(OTf)3·4H2O is an ef-
ficient catalyst for the [1,3] rearrangement of aryl prenyl
ethers. The method offers several advantages including
mild reaction conditions, use of an environmentally be-
nign catalyst, and no formation of by-products.

1H NMR spectra were recorded on a 400 MHz (100 MHz for 13C
NMR) magnetic resonance spectrometer in CDCl3. Column chro-
matography was performed on silica gel (230–400 mesh) and ana-
lytical TLC was carried out using 250 mm commercial silica gel
plates. All glassware was stored in the oven and flame-dried prior
to use under an inert atmosphere of argon. Toluene was distilled
from sodium. Aryl 3-methylbut-2-enyl ethers 1 and 5 were synthe-
sized according to known literature procedures.13

Bismuth Triflate-Catalyzed [1,3] Rearrangement of Aryl 3-
Methylbut-2-enyl Ethers 1 and 5; General Procedure
To a solution of aryl 3-methylbut-2-enyl ether 1 or 5 (1 mmol) in
toluene (10 mL) at 0 °C was added Bi(OTf)3·4H2O (0.05 mmol).
The mixture was magnetically stirred at 0 °C for 2 h, allowed to
reach r.t., and then stirred at this temperature for 2.5–21 h. After ad-
dition of H2O, the mixture was extracted with EtOAc, washed with
H2O, dried (Na2SO4), filtered, and concentrated under vacuum (ro-
tatory evaporator). The residue was purified by column chromatog-
raphy on silica gel using hexanes–EtOAc (93:7–90:10) as eluent.
Products 3e,14a 3f,14b 3g,14c 4a,4e 4b,14d 4e,4d 4g,14e 6a,14f 7d,12 and
8b14g accord exactly with those previously reported in the literature.

Scheme 1
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Table 1 Bi(OTf)3-Catalyzed [1,3] Rearrangement of 3-Methylbut-
2-enyl 1-Naphthyl Ethers 5

Entry R1 Time 
(h)a

Yield 6 
(%)b

Yield 7 
(%)b

Yield 8 
(%)b

a H 4.5 72 (6a) – –

b 2-COMe 10 – – 52 (8b)

c 4-OMe 19 86 (6c) – –

d 4-Cl 23 – 80 (7d) –

a Conditions: 5 mol% Bi(OTf)3·4H2O, PhMe, 0 °C, 2 h, then 22 °C, 
2.5–21 h.
b Isolated yield.

OH
Bi(OTf)3⋅4H2O (5 mol%)

PhMe, 0–22 °C

4a–g

O

1a–g

O

3a–g

+

R1,R2,R3
R1,R2,R3R1,R2,R3

D
ow

nl
oa

de
d 

by
: U

ni
ve

rs
ity

 o
f L

iv
er

po
ol

. C
op

yr
ig

ht
ed

 m
at

er
ia

l.



PAPER Bi(OTf)2-Catalyzed [1,3] Rearrangement of Aryl 3-Methylbut-2-enyl Ethers 3965

Synthesis 2006, No. 23, 3963–3966 © Thieme Stuttgart · New York

4-Methoxy-2-(3-methylbut-2-enyl)naphthalen-1-ol (6c)
Yield: 86%.

IR (film): 3381, 3069, 2974, 2934, 2854, 1661, 1596, 1450, 1378
cm–1. 
1H NMR (400 MHz, CDCl3): d = 8.13 (d, J = 8.3 Hz, 1 H), 8.05 (d,
J = 8.4 Hz, 1 H), 7.53 (m, 1 H), 7.45 (m, 1 H), 6.64 (s, 1 H), 5.30

(m, 2H), 3.90 (s, 3 H), 3.50 (d, J = 7.2 Hz, 2 H), 1.78 (s, 3 H), 1.76
(s, 3 H). 
13C NMR (100 MHz, CDCl3): d = 147.9, 147.0, 133.1, 130.1, 129.0,
126.7, 124.9, 124.3, 123.0, 122.1, 110.3, 62.3, 28.4, 26.0, 18.2. 

Anal. Calcd for C16H18O2: C, 79.31; H, 7.49; O, 13.21. Found: C,
78.93; H, 7.69; O, 12.87.

Table 2 Bi(OTf)3-Catalyzed [1,3] Rearrangement of Various Substituted 3-Methylbut-2-enyl 1-Phenyl Ethers 1

Entry 1 Time (h)a Major product Yield 3 (%)b Yield 4 (%)b

a 12 – 64 (4a)

b 17 – 65 (4b)

c 18 80 (3c) –

d 14 78 (3d) –

e 12 76 (3e) 3 (4e)

f 16 80 (3f) –

g 14 11 (3g) 68 (4g)

a Conditions: 5 mol% Bi(OTf)3·4H2O, PhMe, 0 °C, 2 h, then 22 °C, 10–16 h.
b Isolated yield.
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2,2,6,8-Tetramethylchroman (3c)
Yield: 80%.

IR (film): 3004, 2975, 2925, 2852, 1481, 1449, 1382, 1368 cm–1. 
1H NMR (400 MHz, CDCl3): d = 6.80 (s, 1 H), 6.74 (s, 1 H), 2.72
(t, J = 6.8 Hz, 2 H), 2.24 (s, 3 H), 2.15 (s, 3 H), 1.78 (t, J = 6.8 Hz,
2 H), 1.33 (s, 6 H).
13C NMR (100 MHz, CDCl3): d = 150.2, 129.4, 128.1, 126.3, 120.2,
73.9, 33.4, 33.2, 27.3, 22.9, 20.8, 20.7, 6.3. 

Anal. Calcd for C13H18O: C, 82.06; H, 9.53; O, 8.41. Found: C,
81.70; H, 9.72; O, 8.04.

6-tert-2,2-Dimethylchroman (3d)
Yield: 78%.

IR (film): 2963, 2869, 1498, 1481, 1462 cm–1.
1H NMR (400 MHz, CDCl3): d = 7.10 (d, J = 8.6 Hz, 1 H), 7.03 (s,
1 H), 6.69 (d, J = 8.6 Hz, 1 H), 2.77 (t, J = 6.8 Hz, 2 H), 1.78 (t,
J = 6.8 Hz, 2 H), 1.20–1.30 (m, 15 H). 
13C NMR (100 MHz, CDCl3): d = 151.9, 142.4, 126.4, 124.6, 120.2,
116.8, 74.2, 34.2, 33.2, 31.9, 27.5, 23.2. 

Anal. Calcd for C15H22O: C, 82.52; H, 10.16; O, 7.33. Found: C,
82.25; H, 10.50; O, 6.98.
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