The Rotational Spectra, Molecular Structure, Dipole Moment, and Hyperfine Constants of HOBr and DOBr

YOSHINORI KOGA, HARUTOSHI TAKEO, SHIGEO KONDO, Masaaki Sugie, and Chi Matsumura

National Chemical Laboratory for Industry, Tsukuba, Ibaraki, 305 Japan

AND

G. A. $MCRAE^1$ AND E. A. COHEN²

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109

Pure rotational spectra of the ⁷⁹Br and ⁸¹Br isotopic species of gaseous hypobromous acid, HOBr and DOBr, as well the $v_3 = 1$ excited state of HOBr have been observed and analyzed. Structural parameters have been derived from the ground state rotational constants. The permanent molecular dipole moment of DOBr and the bromine nuclear quadrupole coupling and spin rotation constants of all the species have been determined. © 1989 Academic Press, Inc.

INTRODUCTION

Although the hypohalous acids, HOX (X = halogen), have been well studied in aqueous solution and their infrared spectra have been studied using matrix isolation techniques (1-3), gas-phase spectra have been observed in the infrared and microwave regions only for HOCl (4-17) and HOF (18-21). No gas-phase rotational or vibrational spectra of either HOBr or HOI have so far been reported.

We have observed the vibration-rotation and pure rotation spectra of hypobromous acid. This paper reports the results of the analysis of the rotational spectra of HOBr and DOBr in selected regions between 8 and 787 GHz. Analyses of the infrared vibration-rotation spectra will appear in subsequent publications.

The experiments were performed by groups at the National Chemical Laboratory for Industry, NCLI, and the Jet Propulsion Laboratory, JPL, using somewhat different techniques for synthesis and several spectrometers. HOBr was initially synthesized and its infrared and microwave spectra assigned at NCLI. The JPL measurements have been used to confirm and supplement the initial observations at NCLI by providing millimeter and submillimeter data as well as some high-resolution infrared data. Near the conclusion of this work, a number of additional lines were measured at high sensitivity using the millimeter spectrometer at the Institute for Molecular Science, IMS.

The U.S. Government's right to retain a nonexclusive royalty-free license in and to the copyright covering this paper, for governmental purposes, is acknowledged.

¹ Present address: Atomic Energy of Canada Limited, Chalk River Nuclear Laboratories, Chalk River, Ontario, Canada K0J 1J0.

² Visiting scientist, Institute for Molecular Science, Okazaki, Japan, Sept.-Dec. 1988.

KOGA ET AL.

The analysis of the pure rotational spectrum and its Stark effect has yielded rotational, centrifugal distortion, and bromine hyperfine constants for the four normal and deuterated species as well as the electric dipole moment for DO⁷⁹Br. A molecular structure has been derived from the ground state rotational constants and its relationship to the equilibrium structure is briefly discussed.

EXPERIMENTAL DETAILS

The initial microwave study at NCLI was done using a conventional Stark modulation spectrometer with a 1.5-m X-band stainless steel waveguide cell. Various computer-controlled sources were used to cover the 8-85 GHz region. Further microwave spectra, below 500 GHz, were observed with the modified commercial Stark modulated microwave spectrometer at JPL (22). Spectra above 600 GHz were obtained with the JPL far infrared (FIR) laser sideband spectrometer (23) using a 1.5-m glass cell. FIR frequencies were measured with respect to well predicted lines of HNO₃ (24). The IMS spectrometer has been described by Endo and Hirota (25) and was used with a 3-m glass cell.

HOBr was synthesized by reacting bromine with water in the presence of HgO using procedures similar to those used in the production of HOCl (11, 26). It was necessary to maintain a continuous slow flow of the gas through the sample cells at pressures of 10-100 mTorr. At NCLI this was done by flowing bromine and water vapors through a 400-mm-long by 15-mm-diameter pyrex glass tube packed loosely with yellow HgO. This reaction produced a sufficient concentration of HOBr for both the infrared and microwave spectra to be readily observed at room temperature. At JPL, the HOBr was produced by reacting an excess of liquid bromine with approximately 5 cm³ of a slurry of yellow HgO in water. The sample was degassed, excess bromine was removed by pumping on the reaction tube at -20 °C, and HOBr production was checked by monitoring a microwave transition which had been previously measured at NCLI. With the reaction tube at -20°C a relatively constant flow of HOBr could be maintained for several hours. This same procedure was used at IMS with freshly ground red rather than yellow HgO. The longer absorption path and very clean cell used at IMS allowed very slow flow, low pressure (10-mTorr) conditions to be employed. Under these conditions, a single synthesis would provide enough HOBr for several days of measurements.

ANALYSIS OF THE SPECTRA

The ground state rotational constants were initially estimated from conventional combination differences in the infrared spectrum of the v_1 band. After these constants were obtained, the spectrum was predicted and a careful search for *a*-type *R*-branch transitions was made. However, no absorptions assignable to these transitions were found. Later, the *a* dipole component was found to be very small. The search in the frequency region 26.5 to 50 GHz yielded several equal-intensity doublet transitions. From the predictions these were tentatively assigned to various high-*J b*-type transitions whose splittings were due to the bromine quadrupole coupling. Using these transitions to obtain an improved set of molecular constants, the millimeter- and submillimeter-wave spectra were predicted. In the absence of low-frequency *a*-type transitions, the

millimeter and submillimeter spectra of HOBr and DOBr are required to uniquely determine the ground state rotational constants. A small number of these predicted transitions with lower J were measured in order to remove correlations among the rotational and centrifugal distortion constants and to determine the hyperfine constants and dipole moment. The assignments of the high-J b-type transitions were later confirmed by a frequency fit that included many lower-J transitions for which the quadrupole splitting gave definite assignments. Finally a considerable number of weaker $\Delta F \neq \Delta J$ transitions for all species as well as higher- K_a transitions for DOBr were detected. The observed rotational transitions are listed in Tables I–IV for HO⁷⁹Br, HO⁸¹Br, DO⁷⁹Br, and DO⁸¹Br respectively. Several low-J transitions of the $v_3 = 1$ excited state of HOBr have also been observed and are listed in Table V.

The data were fit with an S-reduction rotational Hamiltonian in a I' prolate representation (27) including an exact treatment of the nuclear quadrupole and spinrotation hyperfine splittings. However, d_2 is determinable only for DOBr. For HOBr the $K_a = 2 \leftarrow 1$ transitions appear in the millimeter region at such high J that it is not possible to decorrelate D_K from other higher-order constants without extensive additional measurements. Consequently, the value for D_K has been taken from a preliminary analysis of the high-resolution spectrum of the v_1 band. The choice of sextic terms is not necessarily unique, but has little influence on the determination of the lower-order parameters. Although the magnitude of H_{KJ} is expected to lie between those of H_{JK} and H_K , it was excluded from the deuterated species fits because it was slightly smaller than its uncertainty. The remaining sextic constants are highly correlated with H_{KJ} and may show significant change with the inclusion of data which would allow its determination. The constant h_3 is not determinable from the present data.

Several $\Delta F \neq \Delta J$ transitions have been observed and provide precise determination of the hyperfine constants for all species. In the final fit only lines measured with a single spectrometer were included for any given hyperfine pattern. Table VI lists all the determined parameters in the form in which they are used by the fitting program.

The excited state has been fitted by allowing only the rotational and quadrupole coupling constants to vary while the remaining parameters are fixed at their ground state values. The results are given in Table VII.

The coefficients of the P_a^{2n} operators show a remarkable similarity to those of HOCI. A comparison of all the constants through the quartics is given in Table VIII. It is noteworthy that α_3^A is also almost the same in HOBr as it is in HOCI, 876 vs 895 MHz (13).

MOLECULAR STRUCTURE

Although it may seem that the presence of two bromine isotopes would allow r_0 structures to be separately determined for both the deuterated and normal species, the effect of the bromine substitution is too small for this to be done with any precision. Instead, Kraitchman's equations were used to determine the substitution coordinates of the H and Br atoms. The oxygen was not substituted. Its position was calculated from either first or second moment conditions. The results are quite consistent among the four possible sets of three molecules used to determine the structure. These are

TABLE I

Observed HO⁷⁹Br Transitions^a

$JK_aK_cF'_+$	$JK_aK_cF_+''$	Frequency	Unc	0-C	Wt	0-C
6166	7077	454294.169	30	-3		
6167	7078	454298.259	30	-25		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	454308.422	30	8		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 7 & 0 & 7 & 9 \\ 8 & 0 & 8 & 9 \end{array}$	454312.268 432446.564	30 30	-22 20		
$\begin{array}{cccccc} 7 & 1 & 7 & 9 \\ 7 & 1 & 7 & 7 \\ 7 & 1 & 7 & 8 \end{array}$	8088	432661.482	30	25		
7178	80 8 9	432665.005	- 30	2		
7176	80 8 7	432671.612	30	15		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	432674.925 432706.245	30 30	-15 9		
$\begin{array}{ccccc} 7 & 1 & 7 & 8 \\ 7 & 1 & 7 & 7 \\ 9 & 1 & 9 & 10 \end{array}$		432890.871	30	16		
	8089	787242.548	100	-97		
91 911	80 810	787247.878			556	-94
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	787247.878 787253.410	100 100	48 192	444	-94
10 1 10 12	11 0 11 12	366974.481	30	-39		
10 1 10 11	11 0 11 11	367229.355	30	-38		
10 1 10 10	11 0 11 10	367426.065	30	-40		
10 1 10 10 10 1 10 11	$\begin{array}{c} 11 & 0 & 11 & 11 \\ 11 & 0 & 11 & 12 \end{array}$	367196.522 367198.790	30 30	-15 -10		
10 1 10 9		367200.638	30	-11		
10 1 10 12	11 0 11 13	367202.725	30	-18		
11 1 11 11	$\begin{array}{c} 12 \ 0 \ 12 \ 12 \\ 12 \ 0 \ 12 \ 13 \end{array}$	345189.004	30	20		
11 1 11 12	12 0 12 13	345190.970	30	14		
$\begin{array}{c} 11 \ 1 \ 11 \ 10 \\ 11 \ 1 \ 11 \ 13 \end{array}$	12 0 12 11 12 0 12 14	345192.008 345193.967	30 30	-49 104		
11 1 11 13		344965.698	30	101		
11 1 11 12	12 0 12 12	345219.267	30	85		
	$\begin{array}{c} 12 & 0 & 12 & 13 \\ 12 & 0 & 12 & 12 \\ 12 & 0 & 12 & 11 \\ 13 & 0 & 13 & 14 \end{array}$	345418.610	30	-1	519	65
$\begin{array}{r} 13 & 1 & 12 & 14 \\ 13 & 1 & 12 & 13 \end{array}$	12 0 12 13 12 0 12 12 12 0 12 11 13 0 13 14 13 0 13 13	$611770.230 \\ 611770.230$	100 100		481	-65 -65
13 1 12 13 13 1 12 15	13 0 13 15	611776.368	100		558	66
13 1 12 12	13 0 13 12	611776.368	100	-285	442	66
$\begin{array}{c} 15 & 1 & 15 & 15 \\ 15 & 1 & 15 & 14 \end{array}$	16 0 16 16	256252.470	50	-30		
15 1 15 14 15 1 15 16	16 0 16 15 16 0 16 17	256253.212 256253.676	50 50	-35 -38		
15 1 15 10	16 0 16 18	256254.281	50	-16		
21 1 21 20	22 0 22 21	120234.230	50	-45	_	
21 1 21 21	22 0 22 22	120234.814	50		476	-5
21 1 21 23	22 0 22 24 22 0 22 23	120234.814	50 50	37 23	524	-5
$\begin{array}{c} 21 \ 1 \ 21 \ 22 \\ 23 \ 1 \ 23 \end{array}$	$\begin{array}{c} 22 & 0 & 22 & 23 \\ 24 & 0 & 24 \end{array}$	120235.564 74233.280	100	60		
24 1 24	25 0 25	51113.730	100	116		
25 1 25	26 0 26 27 1 27 28	27916.290	500	-262		
28 0 28 29	27 1 27 28	18703.738	20	-16 7		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27 1 27 27 27 1 27 29 27 1 27 29 27 1 27 26	18704.175 18705.062	20 20	í		
28 0 28 27	27 1 27 26	18705.266	20	-24		
29 0 29 30	28 1 28 29	42124.997	20	2		
29 0 29 29	28 1 28 28	42125.397	20	19		
29 0 29 31 29 0 29 28	28 1 28 30 28 1 28 27	42126.368 42126.552	20 20	11 -2		
29 1 28 30	29 0 29 30	645436.136	100		509	-18
29 1 28 29	29 0 29 29	645436.136	100	-79	491	-18
29 1 28 28	29 0 29 28	645439.309	100		474 526	18
29 1 28 31 30 0 30	29 0 29 31 29 1 29	645439.309 65618.900	100 500	39 -43	J20	18
31 0 31	30 1 30	89182.460	500	-13		
38 0 38 39	37 1 37 38	255965.250	50	94	520	-1
38 0 38 38 38 0 38 40	$\begin{array}{c} 37 & 1 & 37 & 37 \\ 37 & 1 & 37 & 39 \end{array}$	255965.250 255966.795	50 50	-104 -7	480 506	-1 -5
					0,00	-0

a. $F_+ = F + \frac{1}{2}$. Frequency given in MHz. Experimental uncertainty (Unc) and observed - calculated(O-C) given in kHz. Wt is the relative weight of a blended line. The second O-C heading refers to the positions of blended features. If no F_+ is given, the line is treated as a blend of all hyperfine components and the single O-C refers to the unsplit line.

TABLE II

$JK_aK_cF'_+$	$JK_aK_cF_{\pm}''$	Frequency	Une	0 C	147.	0-C
$\frac{5 n_a n_{c1+}}{6 1 6 6}$	$\frac{3R_aR_cr_+}{7077}$	454989.687	30	9-0	<u> </u>	0-0
6167	70 7 8	454993.117	30	34		
$61 \ 6 \ 5$	7076	455001.585	30	-9		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7079	455004.747	30	-15		
$\begin{array}{cccccccc} 7 & 1 & 7 & 7 \\ 7 & 1 & 7 & 8 \end{array}$	80 8 8	433453.000	30	6		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	433455.919 433461.473	30 30	-11 -12		
7179	80 810	433464.212	30	-12		
7178	80 8 8 80 8 7	433490.518	30	ī		
7177	80 8 7	433644.723	30	9		
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	80 8 9	786507.018	100			
$\begin{array}{cccc}9&1&9&11\\9&1&9&9\end{array}$	$\begin{array}{cccc} 8 & 0 & 8 & 10 \\ 8 & 0 & 8 & 8 \end{array}$	786511.508 786511.508	100 100		556 444	43 43
9199 9198	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	786515.782	100	-55	444	43
10 1 10 10	11 0 11 11	368281.532	30	-5		
10 1 10 11	11 0 11 12	368283.396	30	-10		
10 1 10 9	11 0 11 10	368284.969	30	-23		
10 1 10 12 10 1 10 12	$\begin{array}{c} 11 \ 0 \ 11 \ 13 \\ 11 \ 0 \ 11 \ 12 \end{array}$	368286.661 368096.192	30	-19 -13		
10 1 10 12		368309.117	30 30	-13		
10 i 10 10	11 0 11 10	368473.422	30	-18		
11 1 11 13	12 0 12 13	346187.099	30	18		
	$\begin{array}{c} 12 & 0 & 12 & 12 \\ 12 & 0 & 12 & 13 \\ 12 & 0 & 12 & 13 \end{array}$	346373.452	30	-8		
$\begin{array}{c} 11 \ 1 \ 11 \ 12 \\ 11 \ 1 \ 11 \ 10 \end{array}$	$\begin{array}{c} 12 \ 0 \ 12 \ 13 \\ 12 \ 0 \ 12 \ 11 \end{array}$	346375.111 346376.090	30 30	25 43		
11 1 11 13	12 0 12 11 12 14	346377.515	30	19		
11 1 11 12	12 0 12 12	346398.852	30	ĩ		
11 1 11 11	12 0 12 11	346565.445	30	19		
13 1 12 14	13 0 13 14	611736.533	100	301	519	36
$\begin{array}{c} 13 \ 1 \ 12 \ 13 \\ 13 \ 1 \ 12 \ 15 \end{array}$	$\begin{array}{c} 13 \ 0 \ 13 \ 13 \\ 13 \ 0 \ 13 \ 15 \end{array}$	611736.533	100		481	36
13 1 12 13 13 13 13 13 12 12	$\begin{array}{c} 13 \ 0 \ 13 \ 15 \\ 13 \ 0 \ 13 \ 12 \end{array}$	611741.476 611741.476	100 100	205 -340	558 442	-36 -36
1511515	16 0 16 16	257842.547	50	-13	444	-30
15 1 15 14	16 0 16 15	257843.187	50	-16		
15 1 15 16	16 0 16 17	257843.469	50	-87		
$\begin{array}{c} 15 \ 1 \ 15 \ 17 \\ 21 \ 1 \ 21 \ 20 \end{array}$	$\begin{array}{c} 16 \ 0 \ 16 \ 18 \\ 22 \ 0 \ 22 \ 21 \end{array}$	257844.025	50	-0		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	122454.066 122454.477	50 50	4 46	476	-10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2202222	122454.477	50	-62	524	-10
$21 \ 1 \ 21 \ 22$	22 0 22 23	122455.143	50	57		
23 1 23	24 0 24	76668.000	100	87		
$\begin{array}{c} 24 \ 1 \ 24 \\ 25 \ 1 \ 25 \ 24 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	53656.870	100	167		
25 1 25 24 25 1 25 27	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30568.030 30568.231	$\frac{20}{20}$	2 -1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26 0 26 26	30568.835	20	-4		
25 1 25 26	26 0 26 27	30569.222	$\tilde{20}$	-4		
28 0 28 29	27 1 27 28	15832.331	20	-3		
28 0 28 28	27 1 27 27	15832.667	20	4		~
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$15833.507 \\ 15833.507$	20 20		527 473	-2 -2
29 0 29	28 1 28	39143.800	100	-77 70	413	-2
30 0 30	29 1 29	62525.840	100	-29		
31 0 31	30 1 30	85978.020	100	73		
42 0 42 43	41 1 41 42	348113.051	30		506	2
42 0 42 42 42 0 42 44	41 1 41 41 41 1 41 43	348113.051 348114.378	30 30		494	2 2 -3
42 0 42 44	41 1 41 40	348114.378	30		518 482	-3 -3
					+04	-0

a. See footnote to Table I.

shown in Table IX. Extra significant figures are kept in the table to show the internal consistency among the individual calculations. The r_s type structure of HOBr is $r_{\text{O-Br}} = 1.834$ Å, $r_{\text{O-H}} = 0.961$ Å, and $\angle \text{H-O-Br} = 102.3^{\circ}$. The number of significant figures here reflects where differences from the equilibrium structure are expected to be significant.

TABLE III

Observed DO⁷⁹Br Transitions^a

		R U O O W U O O
$JK_aK_cF'_+$	$JK_{a}K_{c}F_{+}^{\prime\prime}$	Frequency Unc O-C Wt O-C
$\begin{array}{cccc}1&1&1&2\\1&1&1&3\end{array}$	0 0 0 2	340076.582 30 52
	0 0 0 2 0 0 0 2 1 0 1 2 1 0 1 2 1 0 1 2 1 0 1 3 1 0 1 3	340188.270 30 -28
11 1 1	0002	340277.178 30 -40 320628.005 50 -12
11 0 2	10 1 2	320628.005 50 -12 320744.922 50 42
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc}1&0&1&2\\1&0&1&2\end{array}$	320744.922 50 42 320837.837 50 -23
1101 1102	1013	320856.379 50 -40
1102 1103	10 1 3 10 1 3	320973.266 50 -16
$\begin{array}{ccc}1&1&0&3\\1&1&0&2\end{array}$	1011	321038.711 50 5
	1011	321248.561 200 12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2023	321014.591 50 -16
$\overline{2}$ $\overline{1}$ $\overline{1}$ $\overline{3}$	2023	321126.700 50 10
2114	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	321242.761 50 -39
3135	4045	241359.181 50 6
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	4044	241531.814 50 -7
3134	$40 \ 4 \ 5$	241533.034 50 29
3132	4043	241587.025 50 261 302 -22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	241587.025 50 -144 699 -22
3134	4044	241612.812 50 23 241760.461 50 53
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccc} 4 & 0 & 4 & 3 \\ 5 & 0 & 5 & 5 \end{array}$	241760.461 50 53 434705.089 30 48
61 6 5	5055 5056	434705.089 30 48
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	50 5 6	434906.286 30 -7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$5056 \\ 5055$	434919,953 30 156 414 -1
61 6 8	50 5 7	434919.953 30 -111 587 -1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	434933.629 30 4
6167	50 5 7	435134.189 30 -30
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7078	325030.958 50 10
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	7077	325033.922 70 11
7169	7079	325045.644 500 -73 Blended
7166	7076	325048.742 70 -5
11 1 11	12 0 12	76027.490 350 -465
12 1 12 1312 1313	13 0 13	54697.090 350 -258
13 1 13	14 0 14	33232.250 100 9
14 1 14	15 0 15	11635.370 100 31
$\begin{array}{r} 15 & 1 & 14 & 14 \\ 15 & 1 & 14 & 17 \end{array}$	15 0 15 15	339188.438 30 -3 339189.638 30 -27
$15\ 1\ 14\ 17$	15 0 15 15 0 15 15 15 0 15 15 15 0 15 16 15 0 15 16	
15 1 14 15 15 1 14 16	15 0 15 16 15 0 15 16	339389.160 30 -44 339411.618 30 11
$\begin{array}{c} 15 \ 1 \ 14 \ 16 \\ 15 \ 1 \ 14 \ 15 \end{array}$	15 0 15 16 15 0 15 15	339412.162 30 43
$\begin{array}{c} 15 & 1 & 14 & 15 \\ 15 & 1 & 14 & 17 \end{array}$	1501515 1501517	339412.102 30 43 339417.137 30 12
$\begin{array}{c} 15 \ 1 \ 14 \ 17 \\ 15 \ 1 \ 14 \ 14 \end{array}$	$\begin{array}{c} 15 & 0 & 15 & 17 \\ 15 & 0 & 15 & 14 \\ 15 & 0 & 15 & 14 \end{array}$	339417.625 30 15
15 1 14 14	15 0 15 15	339434.519 30 -4
15 1 14 16	15 0 15 17	339639.109 30 42
15 1 14 15	15 0 15 14	339641.310 30 22
16 0 16	15 1 15	10090.470 100 -11
17 0 17	15 1 15 16 1 16	31942.180 100 2
17 1 16 18	17 0 17 18	344675.164 50 198 514 4
17 1 16 17	17 0 17 17	344675.164 50 - 201 486 4
17 1 16 19	17 0 17 19	344680.066 50 164 543 -1
17 1 16 16	17 0 17 16	344680.066 50 - 198 457 -1

a. See footnote to Table I.

Although not a true r_s structure, the O-H bond length and H-O-Br bond angle are very close to those of the HOCl substitution structure (16). For HOCl the most significant change between the substitution and equilibrium structures was in the length of the O-Cl bond. Because of the similarity of the molecular parameters of HOBr and HOCl, the equilibrium O-Br length may be 0.005-0.006 Å shorter than the value given above. More detailed discussion of the equilibrium structure will be given in forthcoming publications on the infrared spectra.

$JK_aK_cF'_+$	$JK_aK_cF_+''$	Frequency	Unc	O-C W	t O-C
18 0 18	17 1 17	53916.660	100	118	
18 1 17 19	18 0 18 19	347569.579	30	161 514	
18 1 17 18	18 0 18 18	347569.579		-195 48	
18 1 17 20	18 0 18 20	347574.252	30	117 54	
18 1 17 17	18 0 18 17	347574.252		-200 459	9 -29
19 0 19	18 1 18	76009.890		-309	
20 1 19 21	20 0 20 21	353897.605	30	136 512	
20 1 19 20	20 0 20 20	353897.605		-156 48	
20 1 19 22 20 1 19 19	20 0 20 22	353901.979	30	126 53	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20 0 20 19 26 0 26 26	353901.979		-118 46 -103 49	
26 1 25 26 26 1 25 27	26 0 26 26 26 26 26 26 27	377415.725 377415.725	30	-103 492 77 51	
26 1 25 27 26 1 25 25	26 0 26 27	377419.556	30	-62 47	
26 1 25 25 26 1 25 28	26 0 26 28	377419.556	30	48 52	
26 2 25	20 0 20 20 27 1 26	376222.689	50	49 49	
27 2 26	28 1 27	352507.962	50	-43	
30 2 28 30	31 1 31 31	439602.614	30	18 49	2 -25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3113132	439602.614	30	-67 50	
30 2 28 29	31 1 31 30	439608.038	30	42 47	
30 2 28 32	31 1 31 33	439608.038	30	-19 52	
31 0 31 32	30 1 30 31	348997.604	30	175 50	89
31 0 31 31	30 1 30 30	348997.604	30	-162 493	29
31 0 31 33	30 1 30 32	348998.949	30	67 52	
31 0 31 30	30 1 30 29	348998.949	- 30	-94 470	
35 1 34 36	35 0 35 36	426795.688	50	55 50	
35 1 34 35	35 0 35 35	426795.688	50	-45 49	
35 1 34 37	35 0 35 37	426799.310	50	5 52	
35 1 34 34	35 0 35 34	426799.310	50	10 47	
35 2 33 35	36 1 36 36	374894.556	30	43 49	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	374894.556	30	-14 50	
35 2 33 34	36 1 36 35	374899.525 374899.525	30 30	-37 52 22 47	
36 2 34 36	37 1 37 37	362807.592	30	40 493	
36 2 34 37	37 1 37 38	362807.592	30	-13 50	
36 2 34 35	37 1 37 36	362812.528	30	36 48	
36 2 34 38	37 1 37 39	362812.528	30	-23 52	
37 2 35 37	38 1 38 38	351021.225	3 0	28 49	
37 2 35 38	38 1 38 39	351021.225	- <u>3</u> 0	-22 50	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38 1 38 37	351026.140	30	46 48	
37 2 35 39	38 1 38 40	351026.140	30	-16 520	
38 2 36 38	39 1 39 39	339542.264	50	-7 49	4 -31
38 2 36 39	39 1 39 40	339542.264	50	-54 50'	7 -31
38 2 36 37	39 1 39 38	339547.120	50	-12 48	
38 2 36 40	39 1 39 41	339547.120	50	-76 51	
$56\ 1\ 55\ 57$	55 2 54 56	360812.874	30	29 49	
$56\ 1\ 55\ 56$	55 2 54 55	360812.874	30	-2 50	
56 1 55 55	55 2 54 54	360814.487	30	95 48'	
56 1 55 58	$55 2 54 57 \\ 59 2 57$	360814.487		-117 514	4 -14
58 3 56 59 3 57	59 2 57 60 2 58	373497.961	30	1	
09301	00 2 38	349436.411	30	-1	
······					

TABLE III—Continued

Dipole Moment Measurement

The dipole moment was determined for DO⁷⁹Br from the Stark effects of two transitions: the $J = 2_{11}-2_{02}$, $F = \frac{7}{2}-\frac{7}{2}$ and the $J = 1_{10}-1_{01}$, $F = \frac{5}{2}-\frac{5}{2}$. The Stark shifts were calculated from the differences in the standard second-order Stark energy expressions for the two levels involved in the transitions. The direction cosine matrix elements were calculated in the basis that diagonalized the complete Hamiltonian.

The dipole moment was first determined by a least-squares fit of the shifts of all the M_F components for both transitions at a fixed field of 15.05 kV/cm to the squares of both μ_a and μ_b . This resulted in a very small negative value for μ_a^2 . Consequently

KOGA ET AL.

TABLE IV

Observed DO⁸¹Br Transitions^a

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>0-C</u>
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
11 0 1 10 1 1 321230.231 100 59 21 1 4 20 2 3 321082.149 50 -61	
21142023 321082.14950 -61	
2 1 1 4 2 0 2 3 321082.149 50 -61 2 1 1 3 2 0 2 3 321175.665 50 -23	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
3 1 3 5 4 0 4 5 241792.829 50 68	
3 1 3 3 4 0 4 4 241936.922 50 6	
3 1 3 4 4 0 4 5 241937.898 50 33	
3 1 3 4 0 4 241936.922 50 6 3 1 3 4 4 0 4 5 241937.898 50 33 3 1 3 2 4 0 4 3 241937.898 50 33 3 1 3 2 4 0 4 3 241983.077 50 308 302 3 1 3 5 4 0 4 6 241983.077 50 -52 698	56
3 1 3 5 4 0 4 6 241983.077 50 -52 698	56
3 1 3 4 4 0 4 4 242004.704 50 75	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
6 1 6 6 5 0 5 6 434405.672 30 15	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{2}_{2}$
6 1 6 8 5 0 5 7 434459.608 30 -91 586 6 1 6 5 5 0 5 4 434471.007 30 10	2
6 1 6 5 5 0 5 4 434471.007 30 10 6 1 6 7 5 0 5 7 434638.459 30 -29	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
7 1 6 7 7 0 7 7 325035.709 50 5	
7 1 6 9 7 0 7 9 325045.644 500 67 Bk	ended
7 1 6 9 7 0 7 9 325045.644 500 67 Bk 7 1 6 6 7 0 7 6 325048.097 70 6	
11 1 11 12 0 12 77211.490 200 -167	
12 1 12 13 0 13 55984.300 100 -44	
13 1 13 14 0 14 34623.620 100 28	
14 1 14 15 0 15 13131.820 200 -242	
15 1 14 14 15 0 15 15 339094.117 30 -28 15 1 14 17 15 0 15 16 339095.514 30 -52	
15 1 14 17 15 0 15 16 339095.514 30 -52	
15 1 14 15 15 0 15 16 339261.831 30 15	
15 1 14 16 15 0 15 16 339280.769 30 29	
15 1 14 15 15 0 15 15 339281.173 30 13	
15 1 14 17 15 0 15 17 339285.398 30 36 15 1 14 14 15 0 15 14 339285.735 30 -6	
15 1 14 16 15 0 15 15 339300.072 30 -13 15 1 14 16 15 0 15 17 339470.516 30 -21	
15 1 14 15 15 0 15 14 339472.784 30 28	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
16 1 15 17 16 0 16 17 341801.873 30 17	
16 1 15 16 16 0 16 16 341802.231 30 8	41
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41 41
16 1 5 16 16 0 16 341802.231 30 8 16 1 15 18 16 0 16 341806.399 50 187 546	

a. See footnote to Table I.

 μ_a was fixed to zero and only μ_b was fitted. The uncertainty was determined by fixing μ_a to different values until an unacceptable reproduction of the spectrum was obtained. The data and the results of the calculation are given in Table X. The *a* dipole component connects several levels which are very close in energy. This gives rise to very large second order Stark coefficients for μ_a . Thus, the absence of any observable contribution from μ_a allows a very low limit to be put on its magnitude. The dipole moment lies along the *b* axis and has a magnitude of 1.384(10) D. The magnitude along the *a* axis

475	

$JK_aK_cF'_+$	$JK_aK_cF_+^{\prime\prime}$	Frequency	Unc	O-C	Wt	0-C
19 0 19	18 1 18	74082.890	100	39		
20 1 19 21	20 0 20 21	353629.621	30	107	512	-6
20 1 19 20	20 0 20 20	353629.621	30	-126	488	-6
20 1 19 22	20 0 20 22	353633.255	30	64	486	-23
20 1 19 19	20 0 20 19	353633.255	30	-105	514	-23
26 1 25 26	26 0 26 26	376918.386	- 30	-66	490	3
26 1 25 27	26 0 26 27	376918.386	- 30	69	510	3
26 1 25 25	26 0 26 25	376921.568	30	-37	472	-13
26 1 25 28	26 0 26 28	376921.568	30	8	528	-13
26 2 25	27 1 26	379225.081	- 30	-23		
27 2 26	28 1 27	355634.735	- 30	19		
31 0 31 32	30 1 30 31	345724.932	- 30		508	$^{2}_{2}$
31 0 31 31	30 1 30 30	345724.932	- 30	-128		2
31 0 31 33	30 1 30 32	345726.076	- 30		524	-2
31 0 31 30	30 1 30 29	345726.076	30		476	-2
35 2 33 35	36 1 36 36	376994.495	30		493	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36 1 36 37	376994.495	30		507	4
35 2 33 34	36 1 36 35	376998.658	30		479	-4
35 2 33 37	36 1 36 38	376998.658	30		521	-4
36 2 34 36	37 1 37 37	364913.497	30		493	10
36 2 34 37	37 1 37 38	364913.497	30		507	10
36 2 34 35	37 1 37 36	364917.616	30		480	-1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37 1 37 39	364917.616	30		520	-1
37 2 35 37	38 1 38 38	353129.277	30		493	13
37 2 35 38	38 1 38 39	353129.277	30		507	13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38 1 38 37	353133.355	30		480	-6
	38 1 38 40	353133.355	30		520	-6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39 1 39 39	341648.537	50		494	-10
38 2 36 39	39 1 39 40	341648.537	50		506	-10
38 2 36 37	39 1 39 38	341652.590	50		481	-26
38 2 36 40	39 1 39 41	341652.590	50		519	-26
39 1 38 40	39 0 39 40	453518.498	30		506	-3
39 1 38 39	39 0 39 39	453518.498	30		494	-3
39 1 38 38	39 0 39 38	453521.541	30		481	5
39 1 38 41	39 0 39 41	453521.541	30		519	5
56 1 55 56	55 2 54 55	353864.058	30		496	-10
56 1 55 57	55 2 54 56	353864.058	30		504	-10
56 1 55 55	55 2 54 54	353865.460	30		487	14
56 1 55 58	55 2 54 57	353865.460	30	-128	513	14
57 1 56 57	56 2 55 56	380665.973	30		486	8
$57\ 1\ 56\ 58\ 57\ 1\ 56\ 56$	56 2 55 57	380665.973	30		514	8
	56 2 55 55 56 2 55 58 59 2 57	380667.338	30		487	-16
57 1 56 59 58 3 56	$56\ 2\ 55\ 58$	380667.338		-161	513	-16
		380116.077	30	2	400	22
59 1 58 59	58 2 57 58	434494.079	30		496	-33
59 1 58 60 59 1 58 58	58 2 57 59	434494.079	30		504	-33
	$\begin{array}{c} 58 & 2 & 57 & 58 \\ 58 & 2 & 57 & 59 \\ 58 & 2 & 57 & 57 \\ 58 & 2 & 57 & 60 \end{array}$	434495.555	30		488	36
59 1 58 61 59 3 57	58 2 57 60 60 2 58	434495.555		-116	512	36
09391	60 2 58	356212.399	30	-2	· -	

TABLE IV—Continued

is less than 0.010 D. Because of the slight rotation of axes between HOBr and DOBr, μ_a in HOBr may be as large as 0.05 D.

Effective bond moments for the O-D and O-Br bonds may be calculated using the dipole moment derived above and the structure determined in the previous section. These are 1.41 D and 0.39 D, respectively, with the Br and D atoms both being positive. A similar calculation may be done for HOCl using the dipole moment from Ref. (14), the substitution structure from Ref. (16), and the change in μ_a on deuteration from Ref. (6). It is the change of μ_a on deuteration which determines the relative direction of μ_a and μ_b . The HOCl calculation then gives 1.52 D for the O-H bond

KOGA ET AL.

TABLE V

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ir	HO ⁸¹ Bi	HO ⁷⁹ Br		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0-C	Frequency	equency O-C	$JK_aK_cF_+''$	$JK_aK_cF'_+$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 -5 3 2 0 0 11 -12 7 0	434054.381 434045.889 434048.826 434057.101 369405.684 369402.225 369404.100 369407.356 347673.727 347671.127	$\begin{array}{cccccc} 734.433 & 58\\ 720.221 & 7\\ 724.300 & -12\\ 738.217 & -20\\ 273.821 & -20\\ 263.458 & 17\\ 266.993 & 19\\ 276.912 & 64\\ 333.810 & 35\\ 329.700 & 1\\ 331.953 & -1\\ 331.953 & -1\\ 335.880 & 19\\ 503.357 & 8\\ 500.288 & -19\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Observed HOBr $v_3 = 1$ Transitions^{*a*}

a. See footnote to Table I. Unc = 30 kHz for all lines.

moment and a very small value of 0.02 D for that of O-Cl. The difference between the O-Br and O-Cl bond moments is similar to, but somewhat smaller than the 0.53 D difference observed in both of the pairs BrF, ClF (28, 29) and BrO, ClO (30, 31).

TABLE VI

Ground State Parameters for HOBr and DOBr

Parameter/MHz	HO ⁷⁹ Br	HO ⁸¹ Br	DO ⁷⁹ Br	DO ⁸¹ Br
Α	613677.34(100) ^a	613673.62(100) ^a	330577.9434(206)	330573.4045(140)
В	10576.60290(145)	10530.42754(144)	9937.14648(116)	9891.72822(97)
C	10383.05728(181)	10338.55141(172)	9630.63100(97)	9587.96056(97)
D_J	0.0128520(54)	0.0127530(56)	0.01064491(260)	0.01054950(147)
D_{JK}	0.74938(35)	0.74517(34)	0.434603(184)	0.431130(102)
D_K	135.30(100)*	135.30(100) ^b	41.8592(296)	41.8588(149)
$d_1 \times 10^3$	-0.21402(42)	-0.21053(40)	-0.312987(189)	-0.309146(98)
$d_{2} \times 10^{4}$			-0.27969(111)	-0.27263(66)
$H_J \times 10^8$			-0.782(194)	-0.613(54)
$H_{JK} \times 10^5$	0.3091(293)	0.31(fixed)	0.0459(231)	0.0713(56)
H _K			0.0480(55)	0.04393(128)
$h_{1} \times 10^{9}$			0.164(64)	0.172(58)
$h_2 \times 10^9$			0.077(95)	0.157(42)
$\frac{3}{2}\chi_{aa}$	1373.495(86)	1147.330(92)	1369.328(64)	1143.794(66)
$\frac{\overline{1}}{4}(\chi_{bb}-\chi_{cc})$	4.4631(193)	3.7260(197)	5.0891(160)	4.2591(159)
$C_{aa} - \frac{1}{2}(C_{bb} + C_{cc})$.) -0.008(61)	-0.094(65)	-0.0402(155)	-0.0290(156)
$\frac{1}{2}(C_{bb}+C_{cc})$	0.05827(117)	0.06194(121)	0.05514(81)	0.05808(81)
$\frac{1}{4}(C_{bb}-C_{cc})$	0.001261(270)	0.00104(38)	0.00125(57)	0.00157(56)
R.M.S ×10 ³	59	38	76	49

a. The uncertainty reflects that of D_k . The uncertainy in $A - D_k$ is 0.03 MHz.

b. From the infrared spectrum.

TABLE VII

Parameter/MHz	$v_{3} = 1$	Δ_{1-0}	$v_3 = 1$	Δ_{1-0}
	H	D ⁷⁹ Br	HO	⁸¹ Br
Α	612801.52(106)	-875.82(106)	612797.12(121)	-876.49(121)
В	10490.041(27)	-86.562(27)	10444.341(48)	-86.086(48)
C	10297.641(42)	-85.417(42)	10253.557(75)	-84.994(75)
$\frac{3}{2}\chi_{aa}$	1367.3(32)	-6.2(32)	1145.5(50)	-1.8(50)
$\frac{1}{4}(\chi_{bb}-\chi_{cc})$	4.478(53)	0.015(53)	3.701(64)	-0.025(64)
R.M.S × 10 ³	47		6	

 $v_3 = 1$ Parameters for HOBr

HYPERFINE CONSTANTS

The measurement of a significant number of $\Delta F \neq \Delta J$ transitions for all isotopic species has allowed the determination of a very precise set of nuclear spin rotation and quadrupole coupling constants for all four species. The internal consistency of the hyperfine parameters is, in fact, better than the quoted uncertainties seem to indicate. This is due to the fact that errors arising from lineshape and baseline effects tend to be the same for a single hyperfine pattern. This cancellation of errors in the determination of the hyperfine constants is not accounted for in the global fit, which treats all assigned uncertainties as uncorrelated. The parameters used in the fitting have been previously listed in Table VI and the individual diagonal components of the quadrupole coupling and nuclear spin rotation tensors are given in Table XI.

The quadrupole coupling is very similar to that observed in HOCl with the ⁷⁹Br/ ³⁵Cl χ_{cc} ratio of -7.475 being close to the -7.014 ratio of the atomic quadrupole couplings (32). Almost the same ratios are observed for the related molecules BrF, ClF (28, 29) and BrO, ClO (33, 34), these being -7.455 and -7.402, respectively.

There are apparent H–D isotope shifts in the values of χ_{cc} of 136 and 112 kHz for the ⁷⁹Br and ⁸¹Br isotopes. The ratio of these shifts, 1.21, is consistent with the observed ⁷⁹Br/⁸¹Br χ_{cc} ratio of 1.19713 in these compounds.

TABLE VIII

Parameter/MHz	HO ⁷⁹ Br	HO ³⁵ Cl ^a	DO ⁷⁹ Br	DO ³⁵ Cl ^b
A	613677.34(100)	613483.882(56)	330577.9434(206)	331338.764(114)
B	10576.60290(145)	15116.7899(10)	9937.14648(116)	14298.5405(78)
C	10383.05728(181)	14725.7769(12)	9630.63100(97)	13675.3910(79)
D_J	0.0128520(54)	0.0268885(32)	0.01064491(260)	0.0222427(330)
D_{JK}	0.74938(35)	1.25142(24)	0.434603(184)	0.77494(153)
D_K	135.30(100)	130.1899(256)	41.8592(296)	39.6826(863)
$d_1 \times 10^3$	-0.21402(42)	-0.63516(77)	-0.312987(189)	-0.91411(330)
$d_2 \times 10^4$		-0.5612(115)	-0.27969(111)	-1.0288(366)

HOBr and HOCI Parameter Comparison

a. From Reference 14

b. From Reference 16

TABLE IX

Species used for structure	O-Br/Å	O-H/Å	∠H-O-Br/°			
O position from a and b moments of reference species						
1 - 16 - 79, 1 - 16 - 81, 2 - 16 - 79	1.83415	0.9613	102.33			
1-16-81, 1-16-79, 2-16-81	1.83414	0.9613	102.33			
2-16-79, 2-16-81, 1-16-79	1.83417	0.9609	102.35			
2-16-81, 2-16-79, 1-16-81	1.83417	0.9609	102.35			
O position from center of mass conditions of reference species						
1-16-79, 1-16-81, 2-16-79	1.8328	0.9616	102.41			
1-16-81, 1-16-79, 2-16-81	1.8328	0.9616	102.41			
2-16-79, 2-16-81, 1-16-79	1.8329	0.9622	102.37			
2-16-81, 2-16-79, 1-16-81	1.8329	0.9622	102.37			

HOBr Structure Determination

Extra digits are carried in the parameters to demonstrate the internal consistency. Equilibrium bond lengths may differ by several mÅ and the angle by several tenths of a degree. See text.

The angle between the O-Br bond and the principal axis of the quadrupole tensor may be determined by considering the observed changes in the coupling constants upon deuteration. In the inertial principal axis system of HOBr, the quadrupole tensor has a small off-diagonal term, χ_{ab} . Except for the small, axis-independent isotope shift discussed above, the quadrupole tensors in the HOBr and DOBr principal axis systems are related by

$$\mathbf{T}^{-1} \begin{pmatrix} \chi_{aa} & \chi_{ab} & 0 \\ \chi_{ab} & \chi_{bb} & 0 \\ 0 & 0 & \chi_{cc} \end{pmatrix}_{\mathbf{H}} \mathbf{T} = \begin{pmatrix} \chi_{aa} & \chi_{ab} & 0 \\ \chi_{ab} & \chi_{bb} & 0 \\ 0 & 0 & \chi_{cc} \end{pmatrix}_{\mathbf{D}c}$$

where T is the unitary transformation for the axis rotation caused by isotopic substitution. The H and D subscripts refer to $HO^{79}Br$ or $DO^{79}Br$ values. In order for the relationship above to satisfy the requirement that the quadrupole tensor be traceless,

TABLE	Х
-------	---

J _{KaKc}	F	M _F	Stark Shift/MHz at $E^2 = 15.05 (kV/cm)^2$	Observed Shift⁴	Calc. Shift
110-101	2.5-2.5	2.5-2.5	$3088.\mu_a^2 + 6.973\mu_b^2$	13.32(16)	13.34
		1.5-1.5	$1641. \mu_a^2 + 4.719 \mu_b^2$	9.08(16)	9.03
2_{11} - 2_{02}	3.5-3.5	3.5-3.5	$459.8\mu_a^2 + 8.138\mu_b^2$	15.49(8)	15.59
		2.5 - 2.5	$264.7 \mu_a^2 + 5.532 \mu_b^2$	10.67(16)	10.60
		1.5-1.5	$134.6\mu_a^2+3.795\mu_b^2$	7.35(16)	7.27
		$\{\mu_a,\mu_b\}$	$= \{0.000(10), 1.384(10)\}$	D	

DOBr Dipole Moment

a. Numbers in parentheses are estimated errors in units of the least significant figures.

	HO ⁷⁹ Br	HO ⁸¹ Br	DO ⁷⁹ Br	$\rm DO^{81}Br$
χ_{aa}/MHz	915.663(57)	764.887(61)	912.885(43)	762.529(44)
$\chi_{bb}/{ m MHz}$	-448.905(48)	-374.991(50)	-446.264(39)	-372.746(39)
χ_{cc}/MHz	-466.758(48)	-389.895(61)	-466.622(39)	-389.783(39)
C_{aa}/kHz	50.(60)	-32.(65)	15.(16)	29.(16)
C_{bb}/kHz	60.8(14)	64.0(13)	57.6(14)	61.2(14)
$C_{ m cc}/{ m kHz}$	55.8(14)	59.9(13)	52.6(14)	54.9(14)
$A_{aa} \times 10^{-6}$	0.039(48)	-0.023(47)	0.022(23)	0.039(22)
$\Lambda_{bb} \times 10^{-6}$	2.73(6)	2.68(5)	2.75(7)	2.73(6)
$\Lambda_{cc} \times 10^{-6}$	2.55(6)	2.55(6)	2.60(7)	2.52(6)

TABLE XI

	HO ⁷⁹ Br	HO ⁸¹ Br	DO ⁷⁹ Br	DO ⁸¹ Br
χ_{aa}/MHz	915.663(57)	764.887(61)	912.885(43)	762.529(44)
$\chi_{bb}/{ m MHz}$	-448.905(48)	-374.991(50)	-446.264(39)	-372.746(39)
χ_{cc}/MHz	-466.758(48)	-389.895(61)	-466.622(39)	-389.783(39)
C_{aa}/kHz	50.(60)	-32.(65)	15.(16)	29.(16)
$C_{bb}/{ m kHz}$	60.8(14)	64.0(13)	57.6(14)	61.2(14)
$C_{ m cc}/{ m kHz}$	55.8(14)	59.9(13)	52.6(14)	54.9(14)
$\Lambda_{aa} imes 10^{-6}$	0.039(48)	-0.023(47)	0.022(23)	0.039(22)
$\Lambda_{bb} imes 10^{-6}$	2.73(6)	2.68(5)	2.75(7)	2.73(6)
$\Lambda_{cc} \times 10^{-6}$	2.55(6)	2.55(6)	2.60(7)	2.52(6)

Hyperfine Constants

the values of $(\chi_{gg})_{Dc}$ of the right hand side of the equation are those given in Table XI for DO⁷⁹Br multiplied by the ratio $(\chi_{cc})_{\rm H}/(\chi_{cc})_{\rm D}$. Thus,

$$(\chi_{ab})_{\rm H} = \frac{(\chi_{aa} - \chi_{bb})_{\rm Dc} - (\chi_{aa} - \chi_{bb})_{\rm H} \cos(2\theta)}{2\sin(2\theta)}$$

Using the rotation angle of 1.744° determined from the structure in Table IX, it is found that $|\chi_{ab}|$ in the HO⁷⁹Br principal axis system is 20.4(24) MHz. Here the uncertainty includes the uncertainty in the measurement of the diagonal quadrupole components as well as an estimate of 0.05° for the uncertainty in the angle. To transform to the principal axes of the quadrupole tensor one must rotate the inertial axes by 0.86(15)° toward the O-Br bond. From the structural calculation, the angle between the *a* principal axis and the O-Br bond is $2.01(2)^\circ$. Thus, the quadrupole *a* principal axis makes an angle of $1.15(17)^{\circ}$ with the O-Br bond.

Although the assumption that x_{aa} and x_{bb} individually scale as x_{cc} may not be entirely valid, large isotope shifts are required of χ_{aa} and χ_{bb} to reconcile the observed couplings with a principal quadrupole axis along the O-Br bond. If it is assumed that the α quadrupole principal axis is along the O-Br bond and the β axis is perpendicular to it in the molecular plane, then $\chi_{\alpha\alpha} = 917.34$ and 918.76 MHz and $\chi_{\beta\beta} = -450.58$ and -452.14 MHz for HO⁷⁹Br and DO⁷⁹Br, respectively. The change in $\chi_{\alpha\alpha}$ on deuteration would be nearly as large as that observed in HBr (35, 36) and of opposite sign. Moreover, the changes in both $\chi_{\alpha\alpha}$ and $\chi_{\beta\beta}$ are an order of magnitude greater than that observed for χ_{cc} . These seem too large to be attributable to a single H-D substitution at a site one atom removed from the coupling nucleus.

The change in quadrupole coupling constant with excitation of the O-Br stretching mode is quite small compared with its uncertainty, but it is consistent with the changes observed in the excited vibrational state of BrF (28).

The nuclear spin rotation coupling is at first surprising in that the element containing the largest rotational constant is too small to be reliably determined. If one uses the constants

$$\Lambda_{xx}=C_{xx}/B_xg_1,$$

where B_x is the appropriate rotational constant and g_I is the nuclear g factor, then a very consistent result is obtained for Λ_{bb} and Λ_{cc} for all four species. These values are shown in Table XI and may be compared with a value of 3.4×10^{-6} for BrF (28). The values of Λ_{aa} show considerable scatter with respect to their small magnitudes, but the results are consistent among all the isotopic species in setting an upper limit of approximately 100 times smaller than the other two diagonal components. This should provide useful information on the symmetry and location of the excited electronic states and will provide a useful check on calculations of excited state wave functions.

CONCLUSION

The ground state rotational parameters of HOBr and DOBr have been determined with high precision. These, as well as the structural parameters determined from them, show great similarities to those of HOCl. Several transitions of the $v_3 = 1$ state have been fitted to a set of rotational and quadrupole coupling constants for the two normal species. Finally, the nuclear quadrupole and spin rotation couplings have been well determined.

ACKNOWLEDGMENTS

Part of the research described in this paper was performed by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

GAM acknowledges support of a NASA-NRC Resident Research Associateship. EAC thanks Prof. E. Hirota for his kind hospitality and M. Fujitake for his valuable assistance in the laboratory at IMS.

RECEIVED: August 7, 1989

REFERENCES

- I. J. A. GOLEB, H. H. CLAASSEN, M. H. STUDIER, AND E. H. APPELMAN, Spectrochim. Acta Part A 28, 65-67 (1972).
- 2. I. SCHWAGER AND A. ARKELL, J. Amer. Chem. Soc. 89, 6006-6008 (1967).
- 3. N. WALKER, D. E. TEVAULT, AND R. R. SMARDZEWSKI, J. Chem. Phys. 69, 564-568 (1978).
- 4. K. HEDBURG AND R. M. BADGER, J. Chem. Phys. 19, 508-509 (1951).
- 5. R. A. ASHBY, J. Mol. Spectrosc. 23, 439-447 (1967).
- 6. D. C. LINDSEY, D. G. LISTER, AND D. J. MILLEN, Chem. Commun. 950-951 (1969).
- 7. D. G. LISTER AND D. J. MILLEN, Trans. Faraday Soc. 67, 601-604 (1971).
- 8. M. SUZUKI AND A. GUARNIERI, Z. Naturforsch. A 30, 497-505 (1975).
- 9. A. M. MIRRI, F. SCAPPINI, AND G. CAZZOLI, J. Mol. Spectrosc. 38, 218-227 (1971).
- 10. R. A. ASHBY, J. Mol. Spectrosc. 40, 639-640 (1971).
- 11. J. S. WELLS, R. L. SAMS, AND W. J. LAFFERTY, J. Mol. Spectrosc. 77, 349-364 (1979).
- 12. R. L. SAMS AND W. B. OLSON, J. Mol. Spectrosc. 84, 113-123 (1980).
- 13. W. J. LAFFERTY AND W. B. OLSON, J. Mol. Spectrosc. 120, 359-373 (1986).
- 14. H. E. GILLIS SINGBEIL, W. D. ANDERSON, R. W. DAVIS, M. C. L. GERRY, E. A. COHEN, H. M. PICKETT, F. J. LOVAS, AND R. D. SUENRAM, J. Mol. Spectrosc. 103, 466-485 (1984).
- 15. C. M. DEELY AND I. M. MILLS, J. Mol. Spectrosc. 114, 368-376 (1985).
- 16. W. D. ANDERSON, M. C. L. GERRY, AND R. W. DAVIS, J. Mol. Spectrosc. 115, 117-130 (1986).
- 17. C. M. DEELY, J. Mol. Spectrosc. 122, 481-489 (1987).
- 18. H. KIM, E. F. PEARSON, AND E. H. APPLEMAN, J. Chem. Phys. 56, 1-3 (1972).
- 19. E. F. PEARSON AND H. KIM, J. Chem. Phys. 57, 4230-4233 (1972).

480

- 20. S. L. ROCK, E. F. PEARSON, E. H. APPLEMAN, C. L. NORRIS, and W. H. FLYGARE, J. Chem. Phys. 59, 3940-3945 (1972).
- 21. H. BURGER, G. PAWELKE, A. RAHNER, E. H. APPLEMAN, AND I. M. MILLS, J. Mol. Spectrosc. 128, 278–287 (1988).
- 22. E. A. COHEN AND H. M. PICKETT, J. Mol. Spectrosc. 93, 83-100 (1982).
- 23. J. FARHOOMAND, G. A. BLAKE, M. A. FRERKING, and H. M. PICKETT, J. Appl. Phys. 57, 1763–1766 (1985).
- 24. H. M. PICKETT AND R. L. POYNTER, Appl. Opt. 24, 2235-2240 (1985).
- 25. Y. ENDO AND E. HIROTA, J. Chem. Phys. 86, 4319-4326 (1987).
- 26. M. NAKATA, M. SUGIE, H. TAKEO, C. MATSUMURA, T. FUKUYAMA, AND K. KUCHITSU, J. Mol. Spectrosc. 86, 241–249 (1981).
- 27. J. K. G. WATSON, J. Mol. Spectrosc. 65, 123-133 (1977).
- 28. K. P. R. NAIR, J. HOEFT, AND E. TIEMANN, J. Mol. Spectrosc. 78, 506-513 (1979).
- 29. R. E. DAVIS AND J. S. MUENTER, J. Chem. Phys. 57, 2836–2838 (1972).
- 30. T. AMANO, A. YOSHINAGA, AND E. HIROTA, J. Mol. Spectrosc. 44, 594-598 (1972).
- 31. T. AMANO, S. SAITO, E. HIROTA, Y. MORINO, D. R. JOHNSON, AND F. X. POWELL, J. Mol. Spectrosc. 27, 275–289 (1972).
- W. GORDY AND R. L. COOK, in "Techniques of Chemistry" (A. Weissberger, Ed.), Vol. 18, p. 737, New York, 1984.
- 33. E. A. COHEN, H. M. PICKETT, AND M. GELLER, J. Mol. Spectrosc. 106, 430-435 (1984).
- 34. E. A. COHEN, H. M. PICKETT, AND M. GELLER, J. Mol. Spectrosc. 87, 459-470 (1981).
- 35. O. B. DABBOUSI, W. L. MEERTS, F. H. DE LEEUW, AND A. DYMANUS, Chem. Phys. 2, 473-477 (1973).
- 36. F. A. VANDIJK AND A. DYMANUS, Chem. Phys. 6, 474–478 (1974).