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ABSTRACT

Recently, certain philosophers of mathematics (Fallis [1997]; Womack and Farach
[1997]) have argued that there are noepistemicconsiderations that should stop
mathematicians from using probabilistic methods to establish that mathematical
propositions are true. However, mathematicians clearly should not use methods that
areunreliable. Unfortunately, due to the fact that randomized algorithms are not really
random in practice, there is reason to doubt their reliability. In this paper, I analyze the
prospects for establishing that randomized algorithms are reliable. I end by arguing
that it would be inconsistent for mathematicians to suspend judgement on the truth of
mathematical propositions on the basis of worries about the reliability of randomized
algorithms.
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1 Randomized algorithms
It is very time consuming to perform certain computational tasks—such as
determining whether or not a very large number is prime—using deterministic
algorithms. As a result, computer scientists have developed a large number
of randomizedalgorithms. A randomized—or probabilistic—algorithm is
an algorithm that makes several random choices during a computation. For
example, a randomized algorithm might pick numbers at random—from a
finite set of numbers—in order to determine exactly which calculations
to perform. According to the computer scientists Rajeev Motwani and
Prabhakar Raghavan, ‘for many applications, a randomized algorithm is the
simplest algorithm available, or the fastest, or both’ ([1995], p. ix).

In order to take advantage of the speed of randomized algorithms, however,
we have to be willing to give up a little bit of certainty. Randomized algorithms
give the right answer most of the time, but they are not guaranteed to give
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the right answer all of the time.1 A case in point is the randomized algorithm—
one of the earliest—developed by the computer scientist Michael Rabin
([1980]) to determine whether or not a number isprime.

Rabin’s algorithm is based on the following result: if a numbern is
composite—that is, if n is not prime, then over three-quarters of the numbers
between 1 andn are witnessesto the compositeness ofn. That is, most of
the numbers between 1 andn have a property—which can be tested for very
quickly—that implies thatn is composite. Rabin’s algorithm consists of the
following steps: first, a whole bunch of numbers between 1 andn are picked
at random. Second, each of these numbers is tested to determine if any of them
is a witness. If any of the numbers is a witness, then the algorithm reports that
n is composite. If none of the numbers are witnesses, then the algorithm reports
thatn is prime. Ifn is composite, the overwhelming odds are that at least one
of the numbers picked at random will be a witness to the compositeness ofn.
As a result, if none of the numbers are witnesses, the overwhelming odds are
that n is prime. Even so, if none of the numbers are witnesses, it is not
absolutely certain thatn is prime.2

In the twenty years since Rabin developed his algorithm, randomized algo-
rithms have been developed to perform a whole variety of computational tasks.
Randomized algorithms have mainly been used to achieve practical ends
such as efficient resource allocation and secure communication (see Motwani
and Raghavan [1995]). However, they have also been used to achieve purely
theoretical ends.Monte Carlo simulationsare randomized algorithms that
are used to simulate complex physical processes and thereby confirm certain
scientific hypotheses. For example, A. M. Ferrenberg, D. P. Landau, and
Y. J. Wong ([1992]) used a Monte Carlo simulation to determine the critical
temperature at which certain materials become magnetized. In addition,
Monte Carlo simulations have even been used to confirm certainphilosophical
hypotheses (see Skyrms [1996], pp. 15–6, 107).

Randomized algorithms might also be used to establish that certain
mathematical propositions are true. For example, Rabin’s algorithm has
been used to show that 2400–593 is the largest prime below 2400 (see Rabin
[1980], p. 136). However, while the use of randomized algorithms is accep-
ted in scientific research, it is clearly not accepted in mathematical research.
As the computer scientist David Harel puts it, ‘as long as we use proba-
bilistic algorithms only for petty, down-to-earth matters such as wealth,
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1 Actually, there are two different types of randomized algorithm. As the computer scientist
David Harel puts it, ‘those that are always fast and probably correct are dubbedMonte Carlo,
and those that are always correct and probably fast are termedLas Vegas’ ([1989], p. 280). In
this paper, I will only be concerned with Monte Carlo algorithms.

2 Another randomized algorithm for primality testing was developed at about the same time (see
Solovay and Strassen [1977]). It differs from Rabin’s algorithm only with respect to the precise
definition of a witness.



health, and survival, we can easily make do with very-likely-to-be-correct
answers to our questions. The same, it seems, cannot be said for our quest for
absolute mathematical truth’ ([1989], p. 295).

Recently, a few mathematicians have disputed this claim. For example, the
mathematician Reuben Hersh suggests that mathematicians should use
‘machine computation, numerical evidence, probabilistic algorithms, if we
find them advantageous’ ([1997], p. 59). In a similar vein, the mathematician
Doron Zeilberger claims that mathematicians should be willing to forgo the
certainty of deductive proof ‘since ‘‘almost certainty’’ can be bought so much
cheaper’ ([1993], p. 980).

A couple of things need to be established, however, before we can safely
conclude that executing a randomized algorithm is a legitimate form of
mathematical justification. First, it needs to be established that executing
an algorithm that only provides ‘almost certainty’ is a legitimate form of
mathematical justification.3 Recently, certain philosophers (Fallis [1997];
Womack and Farach [1997]) have argued—against Harel—that it is.
Second, it needs to be established that randomized algorithms really do pro-
vide ‘almost certainty’. In other words, it needs to be established that ran-
domized algorithms are reliable. In this paper, I analyze the prospects for
establishing that randomized algorithms are reliable. I end by arguing that
it would be inconsistent for mathematicians and scientists to doubt the reli-
ability of randomized algorithms.

2 Proofs of reliability
At first glance, establishing that randomized algorithms are reliable might
not appear to be a very difficult task. For example, it should be clear from the
description given above that Rabin’s algorithm is very reliable. In fact, for
most randomized algorithms, there is aproof that the algorithm is reliable.
Unfortunately, these proofs of reliability are based on the assumption that
randomized algorithms actually pick numbersat random. However, in prac-
tice, randomized algorithms definitely do not pick numbers at random. Accord-
ing to the computer scientist Eric Bach, ‘when a randomized algorithm is
implemented, one always uses a sequence whose later values come from
earlier ones in adeterministicfashion. This invalidates the assumption of
independence and might cause one to regard results about probabilistic
algorithms with suspicion’ (Bach [1991], p. 30).
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3 Since randomized algorithms are almost invariably executed on digital computers, it also needs
to be established that executing an algorithm on a digital computer can be a legitimate form
of mathematical justification. In the wake of thecomputerproof of the four-color theorem, a
number of philosophers argued—successfully, I think—that executing algorithms (at least
deterministic ones) on a computer can be legitimate (see e.g. Detlefsen and Lukar [1980] and
Teller [1980]).



When an algorithm is supposed to pick numbers at random, computer
programmers typically use a deterministic algorithm known as arandom
number generator(RNG). An RNG produces a sequence ofpseudorandom
numbers that appear to have been chosen at random—from a given interval of
the natural numbers. In other words, a sequence of pseudorandom numbers
exhibits a high degree of disorder. For example, every number—as well as
every sequence of numbers—appears with approximately equal frequency in
a sequence of pseudorandom numbers.

The most common type of RNG is thelinear congruential generator(LCG).
An LCG produces a sequence of numbers <a1, a2, . . . , ar-1, ar> where the
value of each number in the sequence is calculated using the formula
anþ 1¼ (banþ c) mod d. a1 is known as theseedand a new value fora1 is
chosen each time the LCG is executed.b, c, andd are constants that define
the particular LCG.d is known as themodulusof the LCG and is typically
a very large prime number.

Even though a sequence of numbers produced by an RNG exhibits a high
degree of disorder, it is still not a sequence of numbers chosen at random (see
e.g. Ekeland [1993], pp. 18–27). In a sequence of numbers produced by a
random process, the value of every number in the sequence is completely
independent of the values of previous numbers in the sequence. In a sequence
of numbers produced by an RNG, however, every number is completely
determined by previous numbers in the sequence. For example, every number
is completely determined by the preceding number in a sequence produced
by an LCG.

Since,in practice, randomized algorithms do not pick numbers at random,
the aforementioned proofs of reliability—though they are valid arguments—
appeal to a false premise.4 An argument—even a valid one—that appeals to
a false premise does not establish the truth of its conclusion—in this case,
that randomized algorithms are reliablein practice. Thus, the aforementioned
proofs of reliability do not serve to establish that randomized algorithms
actually provide ‘almost certainty’.

At this point, we have essentially two options if we want to establish that
randomized algorithms are reliable. First, we can find some other evidence
for the reliability of randomized algorithms implemented with RNGs. Second,
we can find a way for randomized algorithms to pick numbers at random—i.e.
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4 It has been suggested that randomized algorithms are superior to many other probabilistic
methods (such as the probabilistic DNA proof discussed in Fallis [1997]) because it is possible
to calculatepreciselythe probability that a randomized algorithm will give an incorrect answer.
However, the probability value generated by such a calculation is only accurate if the
randomized algorithm really picks numbers at random (and if the possibility of hardware
failures is ignored). Since,in practice, randomized algorithms do not pick numbers at random,
it is not so easy to calculate precisely the probability that a randomized algorithm will give
an incorrect answer.



we can design randomized algorithms for which the problematic premise
is true. In the following sections, I will examine these two options with
regard to Rabin’s algorithm. Essentially the same issues arise, however, for
any randomized algorithm.

3 Empirical evidence of reliability
One obvious way to establish that a randomized algorithm implemented with
an RNG is reliable is to subject the algorithm to some empirical tests.
For example, we might check that the randomized algorithm gives the right
answer in those cases where we already know what the right answer is. In fact,
Rabin gathered this sort of empirical evidence for the reliability of his algo-
rithm.5 Rabin executed his algorithm on a bunch of numbers for which he
already knew the right answer—namely, the Mersenne numbers less than 2500

(see Rabin [1980], p. 136). The algorithm distinguished the primes from the
composites with 100% accuracy.

Empirical tests certainly provide some evidence for the reliability of a
randomized algorithm. Indeed, this sort of empirical evidence for reliability
might be sufficient if we are only using randomized algorithms for ‘petty,
down-to-earth matters such as wealth, health, and survival’. However, if we
are using randomized algorithms to achieve theoretical ends—e.g. to establish
that 2400– 593 is the largest prime below 2400, then we are subject to higher
standards of evidence.

In pure mathematical—and scientific—research, we want to have compel-
ling evidence for the conclusions that we draw. For instance, a mathematical
proof provides compelling evidence that a theorem is true; anyone who under-
stands the proof is compelled to believe that the conclusion follows from
the premises. Similarly, if it has been proven that a particular deterministic
algorithm for primality testing always gives the right answer, then executing
this algorithm provides compelling evidence that a number is prime.6

Unfortunately, the fact that Rabin’s algorithm has worked for a small finite
number—i.e. measure zero—of the infinitely many natural numbers is just
not very compelling evidence for the reliability of the algorithm. After all, the
mere fact that the Goldbach conjecture has been verified to hold up to 4.1011

(see Sinisalo [1993]) does not lead many mathematicians to believe that the
conjecture holds for all natural numbers.
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5 Interestingly enough, Rabin did not even mention the fact that his algorithm was implemented
with an RNG (and, thus, did not really pick numbers at random). This seems to suggest that
he had little doubt about the reliability of his algorithm implemented with an RNG. Whether
or not he had good grounds for believing that it was reliable, however, is what is at issue.

6 Compelling evidence is, of course, often available in science as well as in mathematics. For
example, the predicted return of Halley’s comet in 1758 provided fairly compelling evidence
for Newton’s law of universal gravitation.



In addition to performing empirical tests, we can take the advice of the
computer scientist Donald Knuth and ‘run each Monte Carlo program at least
twice using quite different sources of random numbers, before taking the
answers of the program seriously’ ([1981], p. 156). However, this will not
provide us with very compelling evidence of reliability either.

In the absence of compelling evidence, we ought to suspend judgement
on mathematical and scientific claims. As the Isaac Levi puts it, ‘the need to
take decisions [. . . ] in pure research [ . . . ] does not mandate or even
excuse unjustified resolution of conflict or leaping to conclusions’ ([1984],
p. 270). In particular, if there is not compelling evidence for the reliability
of Rabin’s algorithm, mathematicians should suspend judgment, for example,
on whether or not 2400– 593 really is the largest prime below 2400. As a result,
what we need is evidence for the reliability of Rabin’s algorithm that is so
compelling that it would not be legitimate for mathematicians to suspend
judgement on the truth of mathematical propositions that Rabin’s algorithm
has been used to establish.7

4 Proofs of reliability revisited
One way in which we might try to get compelling evidence is toprove that
a randomized algorithm implemented with an RNG is reliable. In particular,
we might attempt to give an argument that is similar to the aforementioned
proofs of reliability, but that does not appeal to the assumption that the
randomized algorithm actually picks numbersat random. Making such an
attempt requires us to look more carefully at exactly how Rabin’s algorithm
works.

Let us say thatm is aliar if n is composite, 1# m# n, andm is nota witness
to the compositeness ofn. Rabin’s algorithm chooses a finite sequence of
numbers <a1, a2, . . . ,ar-1, ar> such that for alli # r, 1# ai # n. Let us say that
the sequence is abad sequenceif for all i # r, ai is a liar. If a bad sequence
of numbers is chosen, then Rabin’s algorithm will incorrectly report that
a composite number is prime. However, if bad sequences are unlikely to be
chosen, then Rabin’s algorithm is likely to be correct whenever it reports
thatn is prime. In other words, if bad sequences are unlikely to be chosen, then
Rabin’s algorithm is reliable.8
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7 The problem here is not that the mathematician necessarily has specific evidence that Rabin’s
algorithm is unreliable. The problem is that she may not have very compelling evidence that
it is reliable.

8 The mathematician Carl Pomerance worries that ‘if we happen to recognize the set {b1, . . . ,
b100} for having an inordinately large number of strong pseudoprimes, then there may be a
higher chancen is composite’ ([1981], p. 100). In other words, if we have reason to believe that
a bad sequence has been chosen in a particular case, then we should lower our confidence in
the primality ofn. This is certainly true. However, as long as bad sequences are unlikely to be
chosen, the algorithm itself is reliable.



Because witnesses are very numerous, bad sequences are very rare. More
precisely, at most 1/4r of the sequences of lengthr are bad sequences. For
example, less than one percent of the sequences of length 4 are bad sequences.
Since bad sequences are rare and since a truly random process has an equal
chance of choosing any particular sequence from a set of sequences, it is
unlikely that a truly random process will choose a bad sequence. In fact, the
longer the sequence that is chosen, the more unlikely it is that a truly random
process will choose a bad sequence.

Even so, using a truly random process might not be the only way to insure
that bad sequences are unlikely to be chosen. For instance, even though RNGs
do not choose sequences at random, it might nevertheless be the case that
certain RNGs are unlikely to choose bad sequences. Thus, in order to establish
the reliability of Rabin’s algorithm implemented with an RNG, we can try to
show that the RNG in question is unlikely to produce bad sequences.

There are essentially two things that make it difficult to establish that an
RNG is unlikely to choose bad sequences. First, any given RNG is capable
of producing only a very small subset of the sequences of lengthr. There are
nr sequences of lengthr such that for alli # r, 1# ai # n, but a particular LCG
can only producen sequences of lengthr—i.e. one for each possible value
of a1. So, even though there are very few bad sequences of lengthr, bad
sequences might be very prevalent in this small subset. In fact, it would be
easy to construct a deterministic algorithm that only produces bad sequences.
Second, even if there are very few bad sequences in the small subset, it is
not necessarily unlikely that a bad sequence will be chosen. For example, the
particular sequence that is produced by an LCG is completely determined by
the value ofa1. Whether or not a bad sequence is unlikely to be chosen depends
upon how this value is chosen and it is certainly possible to choose it in such
a way that the bias is toward the few bad sequences in the small subset.

Computer scientists have made a number of recommendations for how to
address the first worry—i.e. that bad sequences might be prevalent in the
small subset of sequences that an RNG is capable of producing. First, a few
computer scientists recommend that our randomized algorithms use RNGs
that combine several different types of RNG—such as the LCG, the 1/P gene-
rator, the x2 mod N generator, etc. It turns out, however, that it is very difficult
to do better than a simple LCG and it is very easy to do worse (see Park and
Miller [1988]). As the mathematician B.D. Ripley points out, ‘we know very
little about such combination generators [. . . ] This may well be an excellent
generator, but to my knowledge none can prove so’ ([1988], p. 55). In any
case, there is no a priori reason to believe that combination generators produce
fewer bad sequences than a simple LCG.

Second, many computer scientists recommend that our randomized algo-
rithms only use ‘high quality’ RNGs—i.e. ones that pass a number of statistical
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tests of randomness. I should remark at this point that there is an ambiguity
in the use of the termrandom. On the one hand, it is typically used to refer to
a process that has an equal chance of choosing any particular sequence of
numbers from a set of sequences. This is the property of random processes
that the proofs of reliability appeal to. On the other hand, it is also used to refer
to certain sequences of numbers themselves. Basically, a ‘random’ sequence
is a sequence that exhibits a very high degree of disorder (see e.g. Knuth
[1981], pp. 127–51). A ‘high quality’ RNG is an RNG that only produces
‘random’ sequences.

Unfortunately, the mere fact that an RNG only produces ‘random’
sequences does not give us reason to believe that the RNG produces very
few bad sequences. Rabin established that there are not many liars, but this
does not give us any information about exactly how the liars are distributed
between 1 andn. As far as we know, sequences of liars—i.e. bad sequences—
might exhibit a very high degree of disorder. As a result, there is noa priori
reason to believe that a ‘random’ sequence is unlikely to be a bad sequence. In
fact, according to A. M. Ferrenberg, D. P. Landau, and Y. J. Wong, even ‘osten-
sibly high quality random number generators may lead to subtle, butdramatic,
systematic errors for some [randomized] algorithms’ ([1992], p. 3384).

Third, some computer scientists recommend that we simply prove that
bad sequences fora particular randomized algorithmare not prevalent in
the subset of sequences thata particular RNGis capable of producing. The
computer scientist Eric Bach has done essentially this for Rabin’s algorithm
and a few LCGs. More precisely, Bach ([1991], p. 50) proved that ifa1 is
picked at random—from the interval 1 ton—and a sufficiently long
sequence is produced by the LCG, then it is unlikely to be a bad sequence
for Rabin’s algorithm. As a result, Rabin’s algorithm can be reliable even if
only one number is chosen at random.

Unfortunately, there are a couple of reasons why Bach’s result does not
solve all of our problems. First, results of this sort (Bach [1991]; Karloff
and Raghavan [1993]) are only available for a few randomized algorithms.
Second, while Bach’s result shows that there are very few bad sequences in
the small subset of sequences that an LCG is capable of producing, it does
not establish that bad sequences are unlikely to be chosen—and that Rabin’s
algorithm is thus reliable—unlessa1 is chosen at random. In practice, the
value ofa1 might be chosen in such a way that the bias is toward the few bad
sequences in the small subset.

There are essentially two ways to eliminate the worry that the value ofa1

might be chosen in such a way that the bias is toward bad sequences. First, we
can try to eliminate the need to choose even one number at random. As the
computer scientist Richard Karp points out, in some cases, ‘at the cost of some
additional computation, randomness can be eliminated entirely’ ([1991],
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p. 198). That is, developing a randomized algorithm can sometimes serve as
a heuristic device for developing a deterministic algorithm for the same task.
In fact, Rabin’s algorithm can be turned into a deterministic algorithm that
is fast and that is provably reliable—on the assumption that the Extended
Riemann Hypothesis is true. Unfortunately, a deterministic algorithm that is
almost as fast—as its randomized counterpart—and that is provably reliable
is not always readily available. In fact, that is why computer scientists have
resorted to randomized algorithms in the first place.

Second, we can try to find a way to pick the value ofa1 that is unlikely to
lead to bad sequences—e.g. we can try to find a way to pick the value ofa1 at
random. The value ofa1 is typically chosen by sampling the system clock
when the randomized algorithm is executed. There is no particular reason to
believe that sampling the system clock is any more likely to lead to bad
sequences than is a truly random process. However, since it is not clear that
there is any scientific or mathematical evidence that sampling the system clock
is unlikely to lead to bad sequences, mathematicians may still have reason
to suspend judgement on the truth of mathematical propositions that Rabin’s
algorithm has been used to establish. In other words, the mere fact that we
have no evidence that a claim is false is not always good grounds for believing
that it is true.9 As a result, we may have to fall back on our second option—for
dealing with the false premise in the proofs of reliability—and try to find a way
to pick numbers at random.

5 Physical sources of randomness
The second option—for dealing with the false premise in the proofs of
reliability—is to find a way for randomized algorithms to pick numbers at
random. Fortunately, there seem to be several ways to pick numbers at random.
For example, it is often asserted, as it has been by Ivar Ekeland, that ‘in
quantum mechanics, to measure means to draw at random’ ([1993], p. 31). In
particular, we might generate random bits by measuring the Y spin of X spin up
particles (see e.g. Albert [1992], pp. 1–16). Unfortunately, there are at least
three difficulties with using quantum phenomena—or any other physical
source of randomness—to pick numbers at random. The first two difficulties
have been substantially taken care of by recent technical developments.
However, the third difficulty is somewhat less tractable.10
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9 According to Douglas Walton ([1992]), sucharguments from ignoranceare not always
fallacious in everyday argumentation. It is not clear, however, if such arguments are sufficiently
compelling to support mathematical or scientific conclusions.

10 The probabilistic method discussed in Fallis [1997] uses a physical source of randomness
instead of an RNG. However, since even physical sources of randomness are suspect, there is
almost as much reason to suspend judgement on the reliability of that method as there is to
suspend judgement on the reliability of randomized algorithms.



First, it tends to be ‘slow and costly to generate’ (Karp [1991], p. 196)
random numbers with a physical source of randomness. The fact that physical
sources tend to be slow is especially annoying since the main motivation
for using a randomized algorithm is the fast execution time. However,
recent developments may have solved this particular difficulty. For instance,
a CD-ROM is now available which contains about five billion bits derived
from a physical source of randomness (see Peterson [1998], pp. 178–80). Also,
there is now an inexpensive device which can be plugged into the parallel
port of a personal computer and which generates thousands of bits per second
from a physical source of randomness (see Quantum World Corp. [1995]).

Second, as Miklos Santha and Umesh Vazirani point out, ‘the available
physical sources of randomness—including zener diodes and geiger
counters—are imperfect. Their output bits are not only biased but also corre-
lated’ ([1986], p. 75). In other words, physical sources of randomness do not
have an equal chance of choosing any particular sequence of numbers from a
set of sequences. Again, recent developments may have solved this particular
difficulty. Computer scientists have developed algorithms which ‘convert
the output of such sources into bit-sequences that are provably good for
computational applications’ such as ‘primality testing’ (ibid., p. 75). The
only requirement on the input to these algorithms is that there is an upper
bound on the probability that the next bit is 1 rather than 0 and that there is
a lower bound on this probability. In other words, the physical source just has
to be a ‘slightly random source’ (ibid., p. 76).

Third, it is not clear that there is compelling scientific evidence for the claim
that physical sources are even ‘slightly random’. For example, one common
physical source of randomness that is not even ‘slightly random’ is a coin
flip. The outcome of a coin flip is completely determined by the initial
conditions. As a result, the probability that the outcome will be heads is
either 1 or 0.11 Of course, we do not usually know enough about the initial
conditions in order to predict the outcome of a coin flip. However, while
randomness implies unpredictability, the converse does not hold. In short, the
fact that a process is unpredictable does not imply that it has an equal chance
of choosing any particular sequence from a set of sequences.12

Interestingly enough, the outcome of a measurement of some quantum
phenomena may also be completely determined by initial conditions. Accord-
ing to most of the competing theories of quantum mechanics, the outcome of
such a measurement is a random event. However, there are descriptively

Don Fallis264

11 It might be suggested that aseriesof coin flips would produce a random sequence of heads and
tails because the initial conditions would vary randomly from flip to flip. However, since the
initial conditions for each flip are determined by the initial conditions for the series of coin flips,
the probability of any particular sequence of heads and tails being the outcome is either 1 or 0.

12 A common use of randomness is in the encoding of secret messages (see e.g. Peterson [1998],
pp. 124–6). In this case, the unpredictability of the source of randomnessis the crucial concern.



adequate theories of quantum mechanics that are deterministic. For example,
according to David Albert, ‘the account which Bohm’s theory gives of [the
motions of particles] iscompletely deterministic[ . . . ] and so thevery idea
of probability will have to enter into this theory as some kind of anepistemic
idea, just as it enters into classical statistical mechanics’ ([1992], p. 135).13

In other words, quantum phenomena might just be obeying an extremely
complex deterministic algorithm that we are not able to distinguish from a
truly random process. As a result, there is some reason to suspend judgement
on the randomness of quantum phenomena.

Fortunately, whether or not Rabin’s algorithm chooses numbers at random
is not what is crucial in order for a proof of reliability to go through. As we have
seen above, all that needs to be shown is that bad sequences are unlikely to be
chosen. Thus, in order to establish the reliability of Rabin’s algorithm imple-
mented with a physical source of randomness, we would just need to show
that the physical source of randomness in question is unlikely to produce bad
sequences.

6 ‘No experimental data are cited to support this claim’
There is certainly no reason to believe that quantum phenomena—or any
other physical source of randomness—are likely to produce bad sequences
for Rabin’s algorithm. Quantum mechanics, one of our best confirmed scien-
tific theories, provides no apparent mechanism for a correlation between
quantum phenomena and bad sequences for Rabin’s algorithm. Even so, no
one has performed an experiment to establish that quantum phenomena are
unlikely to produce bad sequences.

According to the philosopher George Berkeley, ‘it is to me a sufficient
reason not to believe the existence of anything, if I see no reason for believing
it’ ([1979], p. 53). However, this is a somewhat questionable principle to use
in order to establish that there is no correlation between quantum phenomena
and bad sequences for Rabin’s algorithm. After all, there have been many
cases where scientists have discovered an unexpected correlation between
physical phenomena and mathematical formulas. For example, the number
of petals on flowers—and the number of spirals on the face of a giant sun-
flower—is, rather unexpectedly, always a number in the Fibonacci sequence
(see e.g. Stewart [1995], pp. 135–6). Thus, in the absence of direct empirical
evidence that there is no correlation between quantum phenomena and bad
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13 I should make a couple of remarks about Bohm’s theory here. First, even though Bohm’s
theory is a hidden variable theory, it has not been ruled out by those experiments that show that
local hidden variable theories will not work (cf. Albert [1992], pp. 68–9, 158–9). Second,
unlike a coin flip, we cannot predict the outcome of a measurement of quantum phenomena
even in principle according to Bohm’s theory. However, as I noted above, unpredictability is
not the important issue for our purposes.



sequences, mathematicians might still be inclined to suspend judgement on
the reliability of Rabin’s algorithm—and on the truth of any mathematical
propositions that it has been used to establish.

Rather than try to provide compelling evidence for the claim that quantum
phenomena are unlikely to produce bad sequences, I will try to achieve a
more modest goal. Using an example developed by Peter Urbach ([1985],
pp. 264–5), I will argue that,in order to do science at all, scientists have
to accept many such claims even though ‘no experimental data are cited to
support [these] claim[s]’ (ibid., p. 264). As a result, it would be inconsistent
for scientists to suspend judgement on the reliability of Rabin’s algorithm
on the grounds that there is no direct experimental evidence that quantum
phenomena are unlikely to produce bad sequences.

Suppose that a scientist wants to establish that the consumption of alcohol
slows down reaction times. Scientists typically confirm such hypotheses by
running acontrolled experiment. The scientist assigns subjects to either an
experimental groupor to a control group. She gives alcohol to the experi-
mental group and she gives no alcohol to the control group. After testing the
reaction times of both groups, the scientist would like to be able to conclude
that any disparity between the reaction times of the two groups is due to the
consumption of alcohol. However, she cannot draw this conclusion if there
is some unintended difference between the two groups—e.g. one group is
significantly older than the other—which could possibly have an effect on
the outcome of the experiment. As a result, she has to insure that the only
difference between the two groups that could possibly have an effect on the
outcome of the experiment is the consumption of alcohol.

One way to insure that there are no unintended differences between the
two groups is tocontrol for all of those factors that could possibly have an
effect on the outcome of the experiment. For example, the scientist might
assign subjects to the experimental and control groups so that the average
age of the two groups is roughly the same. However, scientists do not control
for everything. In practice, scientists only control for those things that, accord-
ing to the prevailing scientific theories, are likely to have an effect on the
outcome of an experiment. As a result, this scientist is probably not going to
control for ‘the color of the subjects’ eyes [ . . . ] since this is ‘‘almost certainly
negligible’’ as an influence on their reaction times’ (ibid., p. 264). In doing
so, the scientist is assuming that eye color is unlikely to have an effect on
the outcome of this experiment even though ‘no experimental data are cited
to support this claim’.

Not only does the scientist actually make such assumptions, but she has
to make such assumptions. First, there is an unending list of factors—some of
which may not even have occurred to the scientist—thatcouldpossibly have
an effect on the outcome of the experiment. The scientist cannot explicitly
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control for all of them. Second, while the scientist might try to avoid mak-
ing any particular assumption—e.g. by performing an experiment to establish
that eye color has no influence on reaction time, this strategy would lead to an
infinite regress. As Peter Urbach points out, ‘even if a careful trial had been
made [to establish that eye color has no influence on reaction time], certain
conceivable influences onits outcome would have to have been set aside as
negligible’ (ibid., p. 264). This sort of regress would occur in the physical
sciences as well as the human sciences.

Nevertheless, there is a way for scientists to control for everything that
could possibly have an effect on the outcome of an experiment in one fell
swoop. Namely, scientists can assign subjects to the experimental and control
groupsat random—and, in fact, this is what scientists commonly try to do.
Randomizationdoes not guarantee that there will be no differences—other
than the consumption of alcohol—that could possibly have an effect on the
outcome of this experiment. However, if a truly random process is used to
assign subjects to the experimental and control groups, then it isunlikely
that there will be such a difference between the two groups. In other words,
just as we found with Rabin’s algorithm, a truly random process is unlikely
to produce a ‘bad sequence’.

Unfortunately, as we have seen, it is not clear that anybody has access to
a truly random process. Instead, scientists have to use ‘the throw of a standard
coin or die, the draw of a card from a well-shuffled pack, or the decay of a
radioactive element’ (ibid., p. 258) to assign subjects to the experimental and
control groups. However, just as no one has ever performed an experiment
to establish that quantum phenomena are unlikely to produce bad sequences
for Rabin’s algorithm, no one has ever performed an experiment to establish
that quantum phenomena are unlikely to produce bad sequences for reaction
time experiments. As a result, a scientist has to assume that her source of
randomness is unlikely to lead to unintended differences between the experi-
mental and control groups even though ‘no experimental data are cited to
support this claim’.

Since scientists have to assume, for example, that quantum phenomena
are unlikely to produce bad sequences for reaction time experiments, even
though ‘no experimental data are cited to support this claim,’ they should not
shrink from assuming that quantum phenomena are unlikely to produce bad
sequences for Rabin’s algorithm. In fact, they also should be willing to assume
that flipping a coin—or sampling the system clock to choose the value ofa1—
is unlikely to produce bad sequences.

These considerations suggest that it would be inconsistent forscientiststo
suspend judgement on the reliability of Rabin’s algorithm implemented with
a physical source of randomness. However, it is not clear that it would be
inconsistent formathematiciansto suspend judgement on the reliability of
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Rabin’s algorithm. After all, mathematicians do not perform controlled
experiments in order to establish that mathematical propositions are true. In
point of fact, mathematics can be—and has been—carried out quite success-
fully without any appeal to empirical facts.

There are important cases, however, where mathematicians have made
use of empirical facts in order to establish that mathematical propositions
are true. For example, part of the current justification for the truth of the four-
color theorem is the fact that the electronic components of a digital computer
behave in certain predictable ways (see e.g. Teller [1980] and Deltefsen and
Lukar [1980]). In the absence of any rationale for accepting certain forms
of scientific justification and rejecting others, it does not seem to be consistent
for mathematicians to suspend judgement on the reliability of Rabin’s algo-
rithm, but not suspend judgement on the truth of the four-color theorem.

For the sake of completeness, I should note that there is always some
reason for an individual to suspend judgement on the truth of mathematical
propositions that a randomized algorithm has been used to establish. After all,
it is possible that ‘some malicious demon of the utmost power and cunning has
employed all his energies in order to deceive me’ (Descartes [1988], p. 79).
However, if mathematicians were to suspend judgement on the reliability of
randomized algorithms on the basis ofdemon doubt, then they would have to
suspend judgement on much more than just the truth of the four-color theorem.
For example, a mathematician would then have to worry about going ‘wrong
every time I add two and three or count the sides of a square, or in some even
simpler matter, if that is imaginable’ (ibid., p. 79).

7 Concluding remarks
In the preceding section, I argued that it would be inconsistent for
mathematicians to suspend judgement on the reliability of Rabin’s algorithm
when a physical source of randomness is used to choose the sequence of
numbers. In addition, this implies—given Bach’s result—that they should
not suspend judgement when Rabin’s algorithm is implemented with an LCG
and a physical source of randomness is used to choose the value ofa1. As a
result, there are conditions where nothing should stop mathematicians from
using probabilistic methods to establish that mathematical propositions are
true. Unfortunately, it is not clear that such conditions obtain very often. In
most cases, randomized algorithms are implemented with RNGs even though
it has not beenproven—à la Bach—that there are very few bad sequences
in the small subset of sequences that the RNGs are capable of producing.

Unlike the question of whether or not there is a correlation between quantum
phenomena and bad sequences for a particular randomized algorithm, the
question of whether or not there is a correlation between a particular RNG
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and bad sequences for a particular randomized algorithm is purely mathema-
tical. Furthermore, it is not clear that correlations between two such mathe-
matical formulas are entirely unexpected. For example, prior to Bach’s result,
a correlation between an LCG and bad sequences for Rabin’s algorithm would
not have been terribly unexpected. As we saw above, an LCG uses large primes
and modular arithmetic to produce a sequence of numbers. At the same time,
the definition of a witness in Rabin’s algorithm involves modular arithmetic
and is used to identify large primes (see Rabin [1980], p. 130). Even so, this
does not necessarily imply that mathematicians should only accept that a
particular randomized algorithm implemented with a particular RNG is reli-
able when they have a proof of this fact. After all, computer scientists
have pretty good evidence for the—purely mathematical—claim thatP is
not equal toNP even though they do not have a proof (see e.g. Harel [1989],
p. 162).

Finally, I should note that there is still a small problem even when Rabin’s
algorithm is implemented with a physical source of randomness. Namely, there
is the problem of convincingother mathematicians that the sequence of
numbers used by the algorithm really was generated by a physical source
of randomness. While mathematicians can tell just by looking that a deduc-
tive proof is valid, they cannot tell just by looking that a sequence of numbers
has been generated by a physical source of randomness. This is becauseany
particular sequence of numbers might have been generated by a random
process. Even so, I would imagine that mathematicians could use the same
sorts of techniques that scientists already use to assure themselves that
another scientist has not faked her data.
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