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The first example of an olefin ring-closing metathesis reaction on cationic heteroaromatic systems is described. Dihydroquinolizinium cations

and a variety of related cationic systems are synthesized in an efficient approach from

N-alkenyl a-vinyl azinium salts using Grubbs' catalysts.

Quinolizinium-type cationd,a class of heteroaromatic com-

quinolizium system based on palladium-catalyzee@bond

pounds in which the cationic nature of the system is produced formation?! In this communication, we report preliminary
by the presence of a bridgehead quaternary nitrogen, are oneesults from an efficient olefin ring-closing metathesis
of the three classes of charged heterocycles, the other two(RCM)'? approach to differently substituted 3,4-dihydro-
being azinium and azolium salts. These compounds havequinolizinium cations and related systems. This strategy
attracted attention in fields as diverse as natural products, represents the first example of a RCM process involving

fluorescent dye3antitumoral compoundsPNA intercala-
tors? and topoisomera8eand telomerageinhibitors and,
more recently, as NL®and ionic liquids’

While azinium and azolium cations are easily obtained
by alkylation of the corresponding heterocycles, the synthesis
and functionalization of quinolizinium cations has remained

relatively unexplored® Recently, we reported a general
method for the introduction of C-substituents into the
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heteroaromatic catiofsand cationic interconversion (azin- ||| ||| A

ium to quinolizinium).
In our strategy for the synthesis of the quinolizinium systems by Ring-Closing Metathesis

systemb, we envisaged that the dihydroquinolizium inter-
mediate 6 could be easily obtained by a ring-closing
metathesis (RCM) process from the key intermediate
which would be accessible from the 2-haloaz&cheme

1).
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Initial model studies with 2-(2propenyl)pyridine 9a
showed that N-alkylation with either allyl iodide or allyl
bromide produced not the expected pyridium Zalbut the
more stable isometOa, as result of double-bond migration.
Double-bond isomerization also occurred when N-alkylation
was attempted with allyl- and homoallyltriflates. Aryl and
heteroaryl vinyl substrates have been used in RCM pro-
cessed? Thus, when the diolefinic compountiOa was
subjected to RCM conditions with Grubbs’ catalyt (10
mol %), the dihydroquinolizium systeBawas successfully

formed in 55% yield (Scheme 2).
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Table 1. Dihydroquinolizium Cations and Related Cationic
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a8 Reactions were carried out using 5 mol % catalyast room temperature
in CH,Cly. P Isolated yield.c Performed with 2 mol % catalyst at room
temperatured High dilution (0.005 M).

Having obtained this initial result, 2-vinylpyridin¥sl11

pyridinium substrates, which would in turn react selectively
under RCM conditions to give the expected dihydroquino-
lizium cations3. This idea was tested by preparing 1-(3
butenyl)-2-vinylpyridium salt4a by N-alkylation of the

clearly seemed to be the more promising starting azines forcorresponding substituted 2-vinylpyridine with 3-butenyl-

transformation into the appropriaté-(3-butenyl) 2-vinyl-

4126

triflate. It was found tha#la underwent the RCM process
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on using either catalyst (5 mol %) or2” (5 mol %) for 1 carried out at 0.1 M concentration. Under these conditions,
h at room temperature in dichloromethane and that the self-metathesis salts were formed in the reaction, and these
reactions gave good yields (Table 1, entry 1). made the isolation of RCM products extremely difficult. A
Differently substituted dihydroquinolizinium salgb—e simple modification of the reaction conditions working at
were obtained in a straightforward route starting from higher dilution (0.005 M) allowed compoun@$ and3i to
substituted 2-bromopyridines (Table 1, entries5?, with be obtained in excellent yield (88 and 94%, entries 8 and 9)
isolated yields of up to 80% in the RCM step. In a similar and 3j in acceptable yield (54%, entry 10). As shown by
way, substrategif and 4g were obtained from 3-bromo  the results in Table 1, the one notable limitation of the RCM
isoquinoline (Table 1, entry 6) and 8-bromoquinoline (Table was found in the formation of the indolizinium syste3k.
1, entry 7). These intermediates then gave 3,4-dihydro- Attempts to produce the RCM ofk using catalystd and
pyridoisoquinolinium3f and 3H-pyridoquinolinium3gin 75 2 and HoveydaGrubbs catalys? in dichloromethane at
and 79% yields, respectively. These results show that theropom-temperature failed. Neither the sak nor the most
RCM reaction works very efficiently on charged systems stable neutral compound indolizine could be isolated from
and provides a general protocol for the preparation of the the complex reaction mixtures obtained. Variations in the
dihydroquinolizinium system. Furthermore, the quinolizium reaction conditions, including a change of the solvent (DMF)

system can also be obtained since oxidatioB8 afforded5
in good yields'®

The scope of this method was further expanded to seven-
(Table 1, entries 8 and 9) and eight-membered rings (entry

10). Unlike the formation of the six-membered system, RCM
is only successful with cataly& (5 mol %), but yields of

between 6 and 46% were obtained when the reaction was
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and/or temperature (50C), were also unsuccessful.

In conclusion, the above results show that RCM is a viable
reaction onN-alkenyl-a-vinylazinium salts. The reactions
afford a variety of heteroaromatic cations, including dihy-
droquinolizium and pyridoisoquinolinium, -quinolinium,
-azepinylium, and -azocinylium, in good overall yield from
readily available starting materials. This approach should

4 allow access to biologically relevant cations based on the

quinolizium system.
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