¹H and ¹³C NMR Assignments for Lanostan-3β-ol Derivatives: Revised Assignments for Lanosterol

Gary T. Emmons, William K. Wilson and George J. Schroepfer, Jr* Departments of Biochemistry and Chemistry, Rice University, Houston, Texas 77251-1892, U.S.A.

¹H and ¹³C NMR assignments are presented for 30 oxygenated lanostane derivatives, including lanosterol, dihydrolanosterol, 7-ketolanosterol, agnosterol, 24,25-epoxylanosterol, 8α , 9α -epoxylanostan-3 β -ol, three 15-oxygenated derivatives of lanost-7-en-3 β -ol, lanostane-3 β , 7α -diol, lanostane-3 β , 9α -diol and their acetates. These assignments, which were largely determined by a combination of DEPT, one-bond and long-range ¹³C-¹H chemical shift correlation and lanthanide-induced shift experiments, are not dependent on previously reported assignments, several of which were found to be incorrect. ¹H and ¹³C acetylation shifts for lanostan-3 β -ols were sufficiently invariant among the sterols studied that they were useful for assigning carbons in rings A and B. The acetylation shifts reported for lanostan-3 β -ols were extended and partially revised.

KEY WORDS: ¹H and ¹³C NMR Oxygenated lanostane derivatives Spectral assignment Lanthanide-induced shifts Long-range HETCOR Acetylation shifts

INTRODUCTION

4,4,14 α -Trimethylsterols (C₃₀ sterols) are widely distributed in nature and play an important role in numerous biological processes. Lanosterol (1a) and 24,25-dihydrolanosterol (2a) are key intermediates in the biosynthesis of cholesterol. 7-Keto dihydrolanosterol (4a), the 24,25-epoxylanosterol epimers (5a and 6a) and many C₃₀ sterols oxygenated at C-9, C-15 and C-30 are inhibitors of cholesterol biosynthesis.¹ Several oxygenated 4,4,14 α -trimethyl- $\Delta^{7,9(11)}$ -sterols isolated from the Chinese medicinal fungus *Ganoderma lucidum* have been shown to exhibit a variety of biological activities.²

We recently prepared the 24R and 24S epimers of 24,25-epoxylanosterol (5a and 6a).³ In the course of assigning the ¹³C NMR spectra of these epimers, we noticed that several assignments for lanosterol and dihydrolanosterol were reversed in the seminal papers by Knight⁴ and others⁵ working in the early 1970s, when few assignment techniques were available. Our further investigation of C₃₀ sterols also revealed errors in the assignments for dihydroagnosterol. Several misassignments for these and related C_{30} sterols have gone largely uncorrected^{6,7} and have appeared in review papers.⁸ Despite the revision⁹ of some of these errors and the recognition by others¹⁰ that 2D NMR techniques are generally required to establish sound assignments of triterpenes, many assignments for C₃₀ sterols are still based ultimately on the seminal papers. Several incorrect ¹H NMR assignments for C_{30} sterols have also appeared.^{1a,b,2,7,11} This situation promotes the proliferation of incorrect assignments in the triterpene literature.

In order to establish reliable ¹H and ¹³C assignments

for C_{30} sterols, we obtained pure samples of a variety of lanostan-3 β -ol derivatives and carried out a series of one- and two-dimensional NMR experiments, from which the spectra could be assigned without recourse to comparisons with previously reported assignments of C_{30} sterols. We present here ¹H and ¹³C NMR assignments for these lanostan-3 β -ol derivatives.

RESULTS AND DISCUSSION

The ¹³C and ¹H NMR assignments for the 30 oxygenated lanostane derivatives shown in Scheme 1 are presented in Tables 1 and 2 and Tables 3 and 4, respectively. ¹H, ¹³C, DEPT and, in most cases, COSY and ¹³C-¹H chemical shift correlation (HETCOR) spectra were collected for each of the 30 oxygenated lanostane derivatives. Even with this abundance of data at hand, we could not unambiguously assign many carbons in the $\delta_{\rm C}$ 15–45 region. The method of chemical shift comparisons,¹² often used to establish assignments of sterols and other natural products, was unsuitable here because of the abundant errors in reported ¹³C assignments of C₃₀ sterols. Although reliable assignments exist for numerous C_{27} sterols,¹³ chemical shift comparisons with C_{30} sterols were of limited utility because the additional 4α -, 4β - and 14α -methyl groups substantially influence the chemical shifts of carbons up to four bonds away, often in as yet unpredictable ways. The ¹³C NMR chemical shift differences between 5α cholest-8-en-3 β -ol¹⁴ and dihydrolanosterol (Fig. 1) showed a diversity of γ and δ effects resulting from the addition of the three methyl groups. The magnitude of the γ -gauche effects observed for the introduction of C-30 appeared to be generally correlated with the distance from C-30 to the nearest hydrogen atom on the

> Received 2 February 1989 Accepted 1 August 1989

^{*} Author to whom correspondence should be addressed.

Scheme 1. Structures of C_{30} sterols assigned in this work. Carbons 26–30 are numbered here according to *Chemical Abstracts*. Other numbering systems have been used in some previous work.

Table 1.	¹³ C NM	R chemie	cal shifts	for lanos	tan-3β-ol	derivativ	esª							
	۵	.24	2	78	7-Ν Δ ^ε	leto 	7-1 2	(eto V ⁸	24 <i>R</i> ,25 ۵	-Epoxy 8	245,25 L	-Epoxy 1 ⁸	8a,9a	Εροχγ Δ ^ο
Atom	1a	1Ь	2a	2b	3a	3b	4 a	4b	5a	5ь	6a	6b	7a	7b
C-1	35.55	35.22	35.56	35.22	34.77	34.45	34.77	34.46	35.54	35.23	35.54	35.24	32.82	32.47
C-2	27.81	24.13	27.82	24.13	27.40	23.81	27.41	23.82	27.80	24.14	27.80	24.14	27.09	23.51
C-3	78.96	80.89	78.96	80.88	77.92	79.6 0	77.94	79.60	78.94	80.89	78.94	80.90	78.44	80.43
C-4	38.85	37.76	38.86	37.74	38.89	37.73	38.90	37.73	38.86	37.78	38.86	37.78	38.47	37.36
C-5	50.35	50.44	50.37	50.44	49.79	49.81	49.79	49.82	50.34	50.45	50.34	50.46	41.70	41.84
C-6	18.22	18.08	18.24	18.09	36.63	36.41	36.63	36.42	18.21	18.09	18.21	18.09	16.44	16.31
C-7	26.46	26.34	26.48	26.34	199.12	198.76	199.12	198.77	26.46	26.35	26.46	26.35	23.43	23.28
C-8	134.35	134.44	134.39	134.45	138.97	139.05	138.99	139.07	134.28	134.39	134.28	134.39	68.19	67.93
C-9	134.35	134.18	134.35	134.16	164.86	164.71	164.86	164.73	134.38	134.24	134.38	134.24	70.70	70.42
C-10	36.97	36.84	36.99	36.84	39.74	39.58	39.74	39.59	36.97	36.86	36.97	36.87	37.83	37.71
C-11	20.97	20.96	20.98	20.96	23.66	23.68	23.67	23.69	20.95	20. 9 6	20.95	20.96	21.44	21.43
C-12	30.94	30.92	30.96	30.92	30.08	30.05	30.09	30.06	30.91	30.91	30.94	30.93	26.81	26.78
C-13	44.43	44.43	44.42	44.39	44.88	44.87	44.86	44.85	44.45	44.46	44.45	44.46	43.55	43.54
C-14	49.76	49.76	49.78	49.74	47.73	47.74	47.72	47.75	49.77	49.78	49.77	49.78	48.78	48.75
C-15	30.82	30.78	30.83	30.77	31.98	31.97	31.99	31.98	30.79	30.77	30.79	30.77	31.85	31.81
C-16	28.18	28.17	28.20	28.18	28.73	28.73	28.75	28.75	28.22	28.22	28.17	28.17	28.44	28.44
C-17	50.35	50.33	50.47	50.44	48.94	48.91	49.04	49.01	50.22	50.24	50.31	50.34	48.25	48.24
C-18	15.71	15.71	15.72	15.71	15.75	15.76	15.75	15.75	15.73	15.73	15.73	15.75	16.22	16.21
C-19	19.11	19.15	19.12	19.14	18.33	18.41	18.33	18.42	19.12	19.16	19.12	19.17	16.99	17.02
C-20	36.24	36.23	36.46	36.46	36.12	36.12	36.38	36.37	36.19	36.20	36.31	36.34	36.23	36.23
C-21	18.61	18.59	18.70	18.68	18.69	18.68	18.78	18.77	18.64	18.65	18.55	18.55	18.94	18.93
C-22	36.33	36.31	36.45	36.42	36.26	36.25	36.38	36.37	32.57	32.57	32.76	32.78	36.30	36.29
C-23	24.89	24.88	24.09	24.09	24.85	24.85	24.06	24.06	25.58	25.60	25.87	25.90	24.02	24.02
C-24	125.22	125.21	39.50	39.48	125.10	125.09	39.46	39.45	64.79	64.77	64.93	64.93	39.43	39.42
C-25	130.91	130.86	27.99	27. 9 7	131.00	130.99	27.99	27.98	58.44	58.41	58.15	58.14	27.94	27.94
C-26	25.72	25.71	22.54	22.52	25.71	25.71	22.52	22.52	24.92	24.92	24.94	24.95	22.50	22.50
C-27	17.62	17.61	22.83	22.81	17.62	17.62	22.82	22.82	18.73	18.73	18.62	18.63	22.79	22 .79
C-28	27.93	27.87	27.94	27.87	27.40	27.34	27.41	27.34	27.93	27.89	27.93	27.89	28.23	28.23
C-29	15.40	16.50	15.41	16.51	15.27	16.34	15.27	16.35	15.40	16.52	15.40	16.52	15.03	16.15
C-30	24.23	24.20	24.25	24.22	24.96	24.99	24.98	25.01	24.22	24.21	24.22	24.21	19.90	19.88
Ac-CO		170.98		170.96		170.84		170.84		171.01		171.03		170.75
$Ac-CH_3$		21.30		21.31		21.23		21.24		21.33		21.34		21.26
* Spectra	obtained	at 75.5 N	1Hz in 0.0	10.1 м (CDCI ₃ sol	utions.								

Table 2. ¹⁰	³ C NMR d	hemical shift	ts for lanos	tan-3β-ol d	erivatives ^a											
					15a-(нс	15,8-(но	15-K	sto		7∝-OH		-α-	но	9α-OH
	Δ ^{7.9(1}	1).24	Δ ^{7.9(}	11	Δ7		۵ ⁷		Δ7			۵°		Q	0,	3-keto-Δ ⁰
Atom	8a	8b	9a	96	10a	10b	11a	11b	12a	12b	13a	13b	13c	14a	14b	15
c-1	35.69	35.37	35.70	35.37	38.13	37.67	37.64	37.23	38.10	37.73	37.42	37.08	37.10	29.50	29.23	30.66
C-2	27.78	24.23	27.79	24.23	27.36	23.92	27.42	23.91	27.31	23.89	27.53	23.92	23.95	27.34	23.74	34.54
C-3	78.95	80.82	78.94	80.81	79.23	81.03	79.09	80.88	79.14	80.98	78.92	80.92	80.66	78.60	80.64	217.36
C-4	38.68	37.58	38.68	37.58	38.55	37.42	38.61	37.44	38.50	37.36	38.35	37.26	37.22	38.78	37.65	47.54
C-5	49.08	49.21	49.10	49.21	49.93	50.00	50.10	50.20	49.65	49.82	46.37	46.55	47.43	45.14	45.17	46.34
C-6	22.98	22.79	22.98	22.79	22.90	22.76	23.01	22.81	22.78	22.62	31.47	31.35	27.74	21.40	21.31	22.77
C-7	120.13	119.81	120.10	119.77	117.57	117.51	118.09	117.84	120.55	120.36	69.41	69.30	72.02	23.72	23.61	23.42
C-8	142.69	142.78	142.73	142.80	142.73	141.92	142.39	142.41	136.89	137.00	42.48	42.51	41.64	40.51	40.53	40.72
C-9	145.86	145.56	145.87	145.54	47.05	46.77	47.30	47.18	46.98	46.91	41.75	41.64	42.74	77.16	76.94	76.97
C-10	37.34	37.20	37.34	37.19	35.55	35.43	35.60	35.43	35.63	35.50	37.71	37.62	37.38	42.61	42.52	42.41
C-11	116.31	116.58	116.34	116.60	19.76	19.65	19.74	19.72	19.64	19.65	19.45	19.46	19.55	27.95 ^b	28.06	27.97 ^b
C-12	37.80	37.80	37.82	37.80	32.58	31.97	33.32	33.27	30.57	30.54	31.68	31.65	31.53	29.10	29.10	29.02
C-13	43.73	43.71	43.71	43.67	44.91	44.52	43.21	43.18	43.69	43.69	45.88	45.89	46.03	45.64	45.63	45.67
C-14	50.29	50.30	50.30	50.30	53.70	52.92	56.27	56.23	56.89	56.87	47.98	47.98	47.54	47.42	47.41	47.41
C-15	31.49	31.47	31.50	31.46	74.24	77.06	76.98	76.94	217.43	217.34	33.72	33.75	33.88	33.80	33.81	33.83
C-16	27.88	27.86	27.89	27.88	39.08	36.33	39.54	39.58	41.55	41.55	27.85	27.86	27.74	27.93 ^b	27.95 ^b	27.94 ^b
C-17	50.91	50.89	51.02	51.00	48.48	48.56	51.15	51.10	45.03	45.02	50.41	50.40	50.38	50.45	50.45	50.47
C-18	15.62	15.63	15.63	15.63	16.27	16.28	18.80	18.77	15.94	15.95	14.28	14.30	14.28	14.57	14.57	14.59
C-19	22.74	22.77	22.73	22.77	14.29	14.19	13.67	13.68	14.18	14.21	12.93	12.98	13.13	16.71	16.74	16.75
C-20	36.04	36.03	36.25	36.24	36.04	36.08	36.04	36.02	35.61	35.63	36.26	36.28	36.27	36.01	36.02	36.00
C-21	18.41	18.40	18.50	18.48	18.78	18.68	18.94	18.91	19.09	19.10	18.57	18.58	18.58	18.66	18.66	18.66
C-22	36.27	36.26	36.39	36.37	36.44	36.39	36.37	36.33	36.31	36.31	36.57	36.58	36.55	36.48	36.48	36.47
C-23	24.92	24.92	24.10	24.10	23.96	24.09	23.99	23.98	23.86	23.89	24.05	24.08	24.09	24.03	24.04	24.04
C-24	125.17	125.17	39.50	39.48	39.40	39.37	39.42	39.39	39.27	39.28	39.47	39.47	39.46	39.47	39.47	39.46
C-25	130.98	130.97	27.99	27.98	27.96	27.96	27.96	27.93	27.90	27.91	27.95	27.97	27.97	27.96	27.96 ^b	27.96
C-26	25.73	25.72	22.53	22.53	22.52	22.49	22.52	22.50	22.47	22.48	22.51	22.52	22.52	22.51	22.52	22.52
C-27	17.64	17.63	22.82	22.82	22.79	22.81	22.79	22.78	22.75	22.75	22.80	22.82	22.81	22.81	22.81	22.81
C-28	28.12	28.07	28.13	28.06	28.24	28.18	27.94	27.86	28.16	28.10	28.08	28.07	27.94	28.26	28.23	26.29
C-29	15.78	16.92	15.78	16.91	15.52	16.65	15.13	16.26	15.44	16.59	15.80	16.95	16.67	15.40	16.52	21.55
C-30	25.55	25.51	25.57	25.52	16.94	17.89	25.39	25.35	21.26	21.26	19.33	19.37	18.90	18.26	18.27	18.34
Ac-CO		170.98		170.96		171.04		170.94		171.00		170.93	171.02		170.90	
						171.34							170.31			
Ac-CH ₃		21.33		21.31		21.33		21.29		21.31		21.32	21.30		21.31	
						21.43							C8.12			
^a Spectra ot	otained at 75	5.5 MHz in 0	.01-0.1 M (CDCI ₃ soluti	ions.											
Assignmet	nts within a	column may	be reversed	d (see text).												

		۵	3,24	L	78	7-I Δ	Keto 3,24	7-1 2	Keto V ⁸	24 <i>S</i> ,25	-Epoxy ^d ∆ ⁸	8α,9α Δ	-Epoxy Δ ^ο
Atom	Multiplicity ^c	1a	1b	2a	2b	За	3b	4 a	4b	6a	6b	7a	7Ь
H-3	dd	3.24	4.50	3.24	4.52	3.28	4.52	3.28	4.52	3.24	4.50	3.21	4.46
H-5	m	1.05	1.15	1.05	1.15	1.64	1.74	e	1.71	1.05	1.15	1.64	1.74
H-17	m	1.48	1.48	1.46	1.46	1.44	1.44	e	1.41	1.48	1.49	1.33	1.33
H-18	S	0.687	0.687	0.688	0.686	0.652	0.651	0.652	0.650	0.696	0.694	0.766	0.765
H-19	s	0.980	1.003	0.981	1.003	1.167	1.186	1.167	1.185	0.982	1.003	1.118	1.139
H-20	m	1.39	1.39	1.37	1.36	1.38	1.39	е	1.35	1.46	1.45	1.36	1.36
H-21	d	0.911	0.911	0.889	0.888	0.924	0.923	0.903	0.902	0.916	0.916	0.875	0.876
H-24	t	5.10	5.10			5.10	5.10			2.69	2.69		
H-25	m			1.52	1.53			е	1.52			1.52	1.52
H-26	dors	1.683	1.685	0.864	0.863	1.684	1.681	0.863	0.863	1.310	1.310	0.859	0.859
H-27	d or s	1.604	1.605	0.869	0.869	1.603	1.602	0.868	0.869	1.268	1.267	0.864	0.864
H-28	S	1.000	0.879	1.000	0.880	0.999	0.885	0.999	0.885	1.001	0.882	0.939	0.821
H-29	s	0.810	0.883	0.810	0.882	0.882	0.954	0.882	0.954	0.811	0.882	0.780	0.852
H-30	s	0.874	0.870	0.875	0.874	0.912	0.911	0.915	0.912	0.877	0.877	0.890	0.890
$Ac-CH_3$	s		2.05		2.05		2.06		2.06		2.05		2.03

Table 3. ¹H NMR chemical shifts for methyl and methine protons of lanostan-3 β -ol derivatives^{a,b}

^а Spectra obtained at 300 MHz in 0.01–0.1 м CDCl₃ solutions.

^b¹H NMR chemical shifts for methylene protons have been omitted because their HETCOR signals were often weak or poorly defined with our present combination of hardware and software.

^c Coupling constants for methyl and methine protons listed in Tables 3 and 4: H-3, dd, $J = 4.8 \pm 0.6$ Hz, 10.7 ± 0.7 Hz; H-11, br d, 6.4 ± 0.1 Hz; H-15 β , dd, 6 Hz, 9 Hz; H-15 α , dd, 2 Hz, 7 Hz; H-21, d, $J = 6.3 \pm 0.3$ Hz; H-24, br t, $J = 6.6 \pm 0.6$ Hz; H-26 and H-27 (for compounds with the C₈H₁₇ side-chain), d, $J = 6.7 \pm 0.2$ Hz.

^d The 24*R* isomer 5a was identical with 6a to within 0.01 ppm in ¹H NMR chemical shifts except for H-17 ($\delta_{\rm H}$ 1.49) and H-20 ($\delta_{\rm H}$ 1.44). ^e Not measured.

 γ -carbon, but this correlation was of limited utility in differentiating closely spaced carbons in the crowded $\delta_{\rm C}$ 15–45 region. Other predictive techniques could usually not be applied because of the presence of the five-membered D ring^{9a} or double bonds and other functional groups.¹⁵

The ¹H chemical shifts obtained from the HETCOR spectra were initially of limited value because methods for comparing and predicting ¹H chemical shifts of sterols¹⁶ are still in their infancy and because the 300 MHz COSY spectrum was generally uninformative. As our data base of ¹H chemical shifts of C_{30} sterols grew, the HETCOR experiments became more useful, especially for differentiating very closely spaced carbons. With the aid of zero-filling and resolution enhancement, ¹³C signals separated by only 0.02 ppm could be distinguished by their ¹H correlations. The value of such fine distinctions was diminished by the limits of repro-

Figure 1. ¹³C chemical shift changes resulting from the addition of 4α -, 4β - and 14α -methyl groups to 5α -cholest-8-en- 3β -ol: $\delta_{\rm c}$ (dihydrolanosterol) – $\delta_{\rm c}(5\alpha$ -cholest-8-en- 3β -ol). Data from Ref. 14 for 5α -cholest-8-en- 3β -ol have been adjusted to a CDCl₃ reference of $\delta_{\rm c}$ 77.0. Distances from C-30 to H-16 α , H-7 α , H-17 α and H-12 α were calculated by molecular mechanics to be 3.18, 2.96, 2.78 and 2.61 Å, respectively.

ducibility of ¹³C chemical shifts. When different samples of the same substance were measured months apart on the same spectrometer, a reproducibility of 0.01 ppm was often obtained for carbons remote from functional groups and in positions insensitive to small conformational changes, such as the C_8H_{17} side chain. In different molecules, the chemical shifts of such carbons frequently matched to within ≤ 0.02 ppm. For other carbons, which appeared to be more affected by small variations in temperature, concentration and trace aromatic or polar impurities, the reproducibility averaged ca. 0.02 ppm. Still greater deviations in chemical shift from the values reported here may arise from sample impurities or from spectral measurement in a warm electromagnet and might occasionally lead to interchange of signal assignments.

Also useful for establishing ¹³C assignments was the long-range HETCOR experiment, which gave most of the expected correlations between methyl protons and carbons up to three bonds away and generally much weaker correlations of carbons to methylene or methine protons. This method is especially suitable for C_{30} sterols, which have only six carbons located more than three bonds away from a methyl group. Although resolution in the ¹H dimension was severely limited by the few (16–20) increments collected, the set of methyl protons at $\delta_{\rm H}$ 0.85–0.90 could be generally be differentiated from H-18 and H-19. These crude distinctions usually proved adequate to identify the correlated carbon atoms.

Dihydrolanosterol, lanosterol and their acetates

We first rigorously established the ¹³C NMR assignments of dihydrolanosterol (2a). Lanthanide-induced

Table 4.	H NMR che	mical shift	ts for met	hyl and me	ethine prot	tons of lan	ostan-3β-0	ol derivati [,]	ves ^{a,b}								
						15α-	HO,	15,8-	Н,	15-1	(eto		7α-OH		- α 6	H	9α-0H
Atom	Multiplicity ^c	599 889	8	5. 868	9 6	10a Δ	10b	11a A	116	12a Δ	12b	13a	00 13b	13c	14a 🗠	14b	3-Keto-Δ ⁻ 15
Н-З	þþ	3.25	4.52	3.25	4.51	3.25	4.51	3.24	4.51	3.23	4.51	3.26	4.53	4.53	3.20	4.47	
Н-5	٤	1.09	1.19	1.09	1.19	1.12	1.22	1.20	1.30	1.12	1.21	1.42	1.51	1.42	1.54	1.70	2.10
н-7	br s	5.47	5.46	5.46	5.46	5.46	5.14	5.57	5.57	6.50	6.50	4.06	4.06	5.12			
H-8	٤											1.58	1.58	1.69	1.86	1.86	1.94
6-Н	E					1.99	2.01	2.05	2.07	1.97	1.98	1.54	1.56	1.62			
H-11	br d	5.31	5.32	5.32	5.32												
H-15	ppp					4.24	5.03	4.04	4.04								
Н-17	٤	1.58	1.58	1.55	1.56	1.56	1.57	1.44	1.45	1.72	1.72	1.57	1.57	1.54	1.51	1.52	1.52
H-18	s	0.563	0.561	0.563	0.562	0.704	0.740	0.966	0.966	0.746	0.744	0.735	0.733	0.736	0.784	0.781	0.807
H-19	s	0.982	1.004	0.983	1.006	0.868	0.879	0.912	0.933	0.879	0.899	0.924	0.949	0.962	1.033	1.052	1.194
H-20	E	1.40	1.40	1.38	1.38	1.31	1.32	1.52	1.52	1.45	1.44	1.35	1.35	1.35	1.39	1.40	1.41
H-21	q	0.906	0.905	0.883	0.884	0.857	0.859	0.897	0.898	0.962	0.962	0.852	0.852	0.850	0.889	0.887	0.894
H-24	t	5.11	5.11														
H-25	E			1.52	1.52	1.52	1.51	1.52	1.52	1.52	1.52	1.52	1.52	1.51	1.51	1.52	1.52
H-26	d or s	1.685	1.685	0.866	0.867	0.862	0.852	0.863	0.863	0.864	0.864	0.861	0.861	0.858	0.862	0.862	0.864
Н-27	d or s	1.605	1.606	0.872	0.872	0.867	0.859	0.868	0.868	0.868	0.868	0.867	0.867	0.864	0.867	0.867	0.870
H-28	s	1.008	0.888	1.007	0.889	0.988	0.877	0.990	0.871	0.993	0.875	0.961	0.841	0.754	0.995	0.871	1.086
H-29	s	0.883	0.954	0.883	0.954	0.894	0.957	0.891	0.963	0.890	0.961	0.806	0.878	0.853	0.806	0.876	1.056
Н-30	s	0.877	0.872	0.877	0.873	1.030	1.095	0.978	0.978	1.183	1.183	1.077	1.077	0.882	0.923	0.925	0.936
Ac-CH ₃	S		2.06		2.06		2.059		2.06		2.05		2.05	2.05		2.04	
							2.058							2.02			

^{a-c} See footnotes in Table 3.

shifts (LIS) were measured for 2a using Yb(fod), in CDCl₃. The observed LIS were compared with LIS calculated from the McConnell-Robertson equation ¹⁷ using atomic coordinates obtained from molecular mechanics calculations. The correspondence between the observed and calculated LIS (Table 5) was sufficiently close that, in conjunction with the multiplicity information, nearly all carbons could be unambiguously assigned. The side-chain carbons C-22-C-27 were assigned based on the similarity of their chemical shifts with those in the side chain of cholesterol. Only the assignments of C-12 and C-15 to signals at $\delta_{\rm C}$ 30.83 and 30.96 could not be established by LIS, multiplicity or chemical shift comparisons. Although the ¹H NMR chemical shifts determined from the one-bond HETCOR spectrum were of little diagnostic value at this point, a long-range HETCOR experiment optimized for 10 Hz couplings (Table 6) established the assignments of the analogous signals of acetate 2b by their correlations with the H-18 and H-30 resonances. Because the acetylation shifts for C-12 and C-15 are negligible, these assignments also apply to the free sterol 2a. The assignments presented here for dihydrolanosterol agree with those given by Beierbeck et al.^{9a} except for the interchange of C-6 and C-19. In addition to this interchange, our assignments differ from those given by Knight⁴ for C-7, C-12, C-15 and C-16. Our assignments agree fully with those in a report^{9c} appearing after submission of this work.

The ¹³C assignments for **2b** are most easily derived from the average acetylation shifts given in Table 7. These shifts, which result from acetylation of the 3β hydroxy group, have been tabulated.^{4b,8a} Our reassignments of C-6 and C-19 led to an interchange of the previously reported acetylation shifts for these carbons.

 Table 5. Observed and calculated relative lanthanide-induced shifts for dihydrolanosterol (2a)^{a,b}

Atom	Observed LIS	Calculated	Atom	Observed LIS	Calculated LtS
C 1	100	104	C 20	10	
6-1	189	184	C-20	13	14
C-2	467	471	C-21	11	12
C-3	1000	1000	C-22	9	10
C-4	438	449	C-23	8	8
C-5	208	206	C-24	6	6
C-6	119	113	C-25	5	5
C-7	71	68	C-26	4	5
C-8	62	62	C-27	4	5
C-9	80	77	C-28	300	296
C-10	156	155	C-29	330	328
C-11	49	49	C-30	26	25
C-12	28	26	H-18	32	32
C-13	28	28	H-19	113	115
C-14	36	35	H-21	11	13
C-15	27	28	H-26	4	6
C-16	18	18	H-27	4	5
C-17	18	18	H-28	238	241
C-18	32	31	H-29	286	282
C-19	125	125	H-30	22	23

^a The LIS values are normalized to the LIS of C-3.

^bAgreement factor (*R*), 1.24%; Yb—O distance, 2.65 Å; Yb— O—C-3 angle, 129°; Yb—O—C-3—C-4 angle, -141°; magnetic axis deviation from Yb—O bond, 3.3°.

Carbon atom	Correlated ¹ H chemical shift(s) ^e	Assignment
C-1	1 00 (s) 1 76	H-19 H-1
C-2	1.69	H-2
C-3	0.88	H-28 and H-29
C-4	0.88	H-28 and H-29
C-5	0.88	H-28 and H-29
C-6	1.15	H-5
C-7	1.63	H-6
C-8	0.88 (w)	H-30
C-9	1.00	H-19
C-10	0.99, 1.15	H-19, H-5
C-11	1.99 (w)	H-11
C-12	0.69	H-18
C-13	0.69, 0.88	H-18, H-30
C-14	0.69, 0.86	H-18, H-30
C-15	0.88	H-30
C-16		
C-17	0.68, 1.67	H-18, H-12
C-18	0.69	
C-19	1.00 (s), 1.16 (w), 1.31	H-19, H-5, H-1
C-20	0.90	H-21
C-21	0.89	H-21
C-22	0.90	H-21
C-23		
C-24	0.87	H-26 and H-27
C-25	0.88 (s)	H-26 and H-27
C-26	0.86	H-26 and H-27
C-27	0.86	H-26 and H-27
C-28	0.88	H-28 and H-29
C-29	0.88 (s)	H-28 and H-29
C-30	0.87 (s)	H-30

Table 6. Long-range HETCOR signals for dihydro-

lanosterol acetate (2b)

^as, strong intensity; w, weak intensity.

Aside from discrepancies in the sign of the acetylation shifts for C-4 and C-10, our other acetylation shifts are comparable with those of Knight.^{4b,8a} Acetylation shifts for the *cis* methyl group (4β -CH₃) were similar to the effect of acetylation of the 15 α -hydroxy group on 14 α -CH₃ signals and very different from the 3 β acetylation shifts for the *trans* methyl group (4α -CH₃). The methyl carbons (C-29, C-30) *cis* to the 3 β - and 15 α hydroxy groups both showed *ca*. 1 ppm downfield acetylation shifts, and the corresponding ¹H signals were shifted 0.07 ppm downfield. In contrast, the shift for the *trans* methyl carbon (C-28) was negligible, and a large (0.12 ppm) upfield 3 β -acetylation shift was observed for the *trans* methyl protons (H-28).

Although comparison of 3β -acetylation shifts between C_{27} and C_{30} sterols indicates a substantial influence from the C-4 methyl groups, the acetylation shifts of the compounds studied here proved to be remarkably constant, partly because no additional functional groups were introduced to ring A. Based on the constancy of the acetylation shifts, the chemical shifts of an acetate could be accurately estimated by adding the average acetylation shifts in Table 7 to the chemical shifts of the corresponding free sterol. Deviations were usually <0.05 ppm for sp³ carbons and <0.3 ppm for sp² carbons. Consequently, assignment of the acetate from the free sterol or vice versa was trivial except for carbons of identical multiplicity differing in chemical

Table 7.	¹ H and ¹	³ C NMR ac	cetylation sh	uifts for lano	stan-3β-ol deri	vatives ^a								
	$\Delta^{8,24}$	Δ ⁸	7-Keto ∆ ^{8.24}	7-Keto Δ ⁸	24 <i>S</i> ,25-Εροxy Δ ⁸	8α,9α-Ερο χ γ Δ ^ο	Δ ^{7.9(11),24}	Δ ^{7,9(11)}	15α-OH Δ ⁷	15,β-OH ∆7	15-Keto Δ ⁷	7α-0H Δ⁰	9∝-0H ∆°	
Atom	1b - 1a	2b 2a	3b - 3a	4b - 4a	6b - 6a	7b – 7a	8b - 8a	9b - 9a	10b - 10a	11b - 11a	12b 12a	13b - 13a	14b - 14a	Mean (±range)
 	-0.33	-0.34	-0.32	-0.31	-0.31	-0.34	-0.32	-0.34	-0.46	-0.41	-0.37	-0.34	-0.27	-0.34 (0.12)
C-2	-3.68	-3.69	-3.59	-3.59	-3.66	-3.58	-3.55	-3.57	-3.45	-3.51	-3.42	-3.61	-3.60	-3.58 (0.16)
C-3	1.93	1.92	1.67	1.67	1.95	2.00	1.87	1.87	1.80	1.80	1.84	2.00	2.04	1.87 (0.20)
C-4	-1.09	-1.12	-1.17	-1.17	-1.08	-1.12	-1.10	-1.11	-1.13	-1.17	-1.13	-1.10	-1.13	-1.12 (0.05)
C-5	0.10	0.07	0.02	0.03	0.11	0.14	0.13	0.11	0.07	0.09	0.17	0.17	0.02	0.10 (0.08)
0-0 C-6	-0,14	-0.15	-0.21	-0.21	-0.12	-0.13	-0.19	-0.19	-0.15	-0.21	-0.16	-0.13	-0.09	-0.16 (0.07)
C-7	-0.12	-0.14	-0.36	-0.35	-0.11	-0.15	-0.33	-0.33	-0.06°	-0.25	-0.20	-0.11	-0.11	-0.20 (0.15)
အ ပ	0.09	0.06	0.08	0.08	0.11	-0.25	0.09	0.07	q	0.03	0.12	0.04	0.02	0.04 (0.30)
6-0	-0.17	-0.19	-0.15	-0.13	-0.14	-0.28	-0.29	-0.33	0.28℃	-0.13	-0.08	-0.11	-0.21	-0.19 (0.14)
C-10	-0.13	-0.15	-0.15	-0.15	-0.11	-0.12	-0.14	-0.15	-0.13	-0.16	-0.13	-0.09	-0.09	-0.13 (0.04)
C-19	0.03	0.02	0.09	0.09	0.04	0.02	0.04	0.04	-0.10°	0.01	0.03	0.05	0.05	0.03 (0.13)
C-28	-0.06	-0.07	-0.06	-0.06	-0.04	0.00	-0.06	-0.07	-0.06	-0.08	-0.07	-0.01	-0.01	-0.05 (0.05)
C-29	1.10	1.10	1.07	1.08	1.12	1.11	1.14	1.14	1.13	1.13	1.15	1.14	1.14	1.12 (0.04)
Н-3	1.26	1.28	1.24	1.24	1.26	1.25	1.27	1.26	1.26	1.27	1.28	1.27	1.27	1.26 (0.02)
H-5	0.10	0.10	0.10	Ρ	0.10	0.10	0.10	0.10	0.10	0.10	0.09	0.09	0.16	0.10 (0.06)
H-19	0.023	0.022	0.019	0.018	0.021	0.021	0.022	0.023	0.011	0.021	0.020	0.025	0.019	0.020 (0.009)
H-28	-0.119	-0.120	-0.114	-0.114	-0.119	-0.118	-0.120	-0.118	-0.111	-0.119	-0.118	-0.120	-0.124	-0.118 (0.007)
H-29	0.071	0.070	0.072	0.072	0.071	0.072	0.071	0.071	0.063	0.072	0.071	0.072	0.070	0.071 (0.008)
^a δ(aceta ^b Omittec ^c 3-Acet) ^d Not me.	ate) – δ(frei d because t ylation shifi asured.	e sterol). he acetylatio t influenced t	in shift of 0.8 by acetylatio	31 for C-8 is in at C-15.	primarily attribu	utable to acety	lation at C-1	5.						

shift by <0.2 ppm (sp³ carbons) or <0.5 ppm (sp² carbons). Although formally circular reasoning lurks in the practice of using average acetylation shifts to make assignments that are in turn used to calculate those same average acetylation shifts, we point out that the 3β -acetylation shifts have been previously wellestablished and that we have confirmed most assignments by other techniques. Based on acetylation shifts, the assignments for dihydrolanosterol acetate follow directly from those of the free sterol 2a except for two closely spaced pairs of peaks. C-8 and C-9 were assigned by their correlation to H-30 and H-19 in the longrange HETCOR spectrum, and C-2 and C-23 were distinguished by the correlation of C-23 to signals at $\delta_{\rm H}$ 1.35 and 1.15. These chemical shifts are characteristic for the 23-protons of a C_8H_{17} sterol side chain.

Lanosterol and its acetae 1b were assigned by comparison with the ¹³C assignments for the side-chain carbons of desmosterol¹⁸ and the ring carbons of dihydrolanosterol. Except for C-17 and side-chain carbons, the carbon signals of 1a and 1b fell within 0.04 ppm of the corresponding values for 2a and 2b. The C-5 and C-17 resonances, which could not be resolved in 1a, were assigned in 1b based on their correlated ¹H NMR chemical shifts ($\delta_{\rm H}$ 1.15 for H-5 and $\delta_{\rm H}$ 1.48 for H-17) compared with typical values for H-5 and H-17 in Tables 3 and 4. This technique of assigning ¹³C signals by comparing their correlated ¹H chemical shifts extracted from HETCOR spectra becomes increasingly useful as predictive methods and data bases are developed for ¹H chemical shifts of sterols. Our assignments for lanosterol revise those given by Knight⁴ for C-6, C-7, C-12, C-15, C-16, C-19, C-26 and C-27.

Other C₃₀ sterols

The ¹³C NMR spectra of the epimeric 24,25-epoxy sterols **5a** and **6a** and their acetates **5b** and **6b** were assigned based on their epoxide-induced shifts¹⁹ referenced to the parent olefins **1a** and **1b**. Closely neighboring peaks were distinguished by HETCOR (C-21 and C-27) or long-range HETCOR spectra (C-8 and C-9). C-5 and C-17 were assigned from the spectrum of the 1:1 mixture of 24R and 24S epimers, showing a pair of peaks 0.10 ppm apart (C-17) adjacent to a single peak of double intensity (C-5). ¹³C NMR spectra of mixtures of epimers **5b** and **6b** showed that epimeric pairs of peaks differed by ≥ 0.02 ppm only for side-chain carbons and for C-12, C-16 and C-17.³

The ¹³C NMR spectrum of dihydroagnosterol (9a) was assigned largely by comparison of observed and calculated LIS, as described for dihydrolanosterol. The vinyl carbon assignments were confirmed by HETCOR and COSY (C-7 and C-11) or long-range HETCOR spectra of the acetate derivative (C-8 and C-9). Application of the average acetylation shifts from Table 7 gave the assignments for 9b. The assignments for agnosterol (8a) and its acetate 8b followed directly from the assignments for dihydroagnosterol differ from those given by Knight^{4b} in the interchange of C-2 and C-28, C-15 and C-16, C-20 and C-22, and C-26 and C-27.

Assignment of the remaining C₃₀ sterols proved con-

siderably more formidable because changes in functional group or double bond position often led to chemical shift changes of >1 ppm for carbons up to five bonds away. In the case of the 8α , 9α -epoxide 7a, reasonable (albeit weak) LIS values were measured for its tertbutyldimethylsilyl ether derivative, but no acceptable agreement could be obtained between observed and calculated values. LIS analysis of other sterols with two functional groups was often precluded because of limited amounts of material. The following alternative strategy was used for these C_{30} sterols: (i) multiplicities were determined; (ii) carbons bearing functional groups (C=O, C-OH, C=C) were assigned; (iii) the sidechain carbons were assigned by comparison with lanosterol or dihydrolanosterol; (iv) a rough estimate (often ± 3 ppm) of chemical shifts of the remaining carbons was obtained by the methods of chemical shift comparisons and substituent effects;¹³ (v) for each set of multiplicities, the remaining unassigned carbons were differentiated based on ¹³C acetylation shifts (C-1, C-2, C-3, C-4, C-6, C-7, C-8, C-9, C-10, C-28, C-29), ¹H acetylation shifts (C-3, C-5, C-19, C-28, C-29), longrange HETCOR experiments (C-1, C-3, C-4, C-5, C-8, C-9, C-10, C-12, C-13, C-14, C-15), HETCOR/COSY experiments (carbons adjacent to a functional group), ¹H multiplicity (C-21), ¹H chemical shift comparisons and by process of elimination.

For example, after application of steps i-iii above, half of the carbons of 7-ketodihydrolanosterol acetate (4b) could be assigned from very rough chemical shift estimates $(\pm 3 \text{ ppm for carbons more than two bonds})$ distant from C-7) obtained by applying the Blunt and Stothers substituent effects¹³ for the 7-oxo group to the chemical shifts of dihydrolanosterol acetate. Several pairs of the remaining closely spaced carbon signals (C-4, C-10; C-5, C-17; C-19, C-21) were differentiated by both acetylation shifts and long-range HETCOR spectra. C-6 and C-22 were distinguished by their correlated ¹H NMR chemical shifts ($\delta_{\rm H}$ 2.4 and 1.2, 1.0, respectively). Correlation of C-12 to H-18 in the longrange HETCOR spectrum distinguished it from C-15 and C-16. C-15 was identified by the significant downfield shift of at least one of its protons ($\delta_{\rm H}$ 2.1, 1.7) relative to dihydrolanosterol acetate (δ_{H-15} 1.2, 1.6). Similar downfield shifts have been observed in C₂₇ sterols for H-7 β of $\Delta^{8(14)}$ -15-keto sterols and of H-15 α of $\Delta^{8(14)}$ -7keto sterols.²⁰ Of the three methylene peaks in the $\delta_{\rm C}$ 23.7-24.1 region, C-23 was identified by its characteristic ¹H chemical shifts, C-2 by the correlation of its protons with H-3 α in the COSY spectrum and C-11 by process of elimination. Only C-13 and C-14 could not be distinguished except by the method of chemical shift comparisons. Assignments for the free sterol 4a followed readily from the acetylation shifts in Table 5. The assignments for the Δ^{24} analogs **3a** and **3b** were also trivial because the ¹³C chemical shifts differed from those of 4a and 4b by ≤ 0.03 ppm except for C-17 and in the side chain, where they were identical within 0.13 ppm with those of 1a and 1b.

The assignments of **7b**, **10a**, **11a**, **12a**, **13a**, **14b** and **15** were carried out in similar fashion by performing steps i–v. The model compounds used in step iv and the assignment criteria used in step v are given in Table 8. Once these assignments were complete, the ${}^{13}C$ spectra

Table 8. Criteria for establishing ¹³C assignments for 7b, 11a, 10a, 12a, 13a, 14b and 15^{a-d}

8α,9α-Epoxylanostan-3β-ol, acetate (7b) Model for rings A and D: dihydrolanosterol acetate (3b) C-13; C-14: epoxidation-induced shifts¹⁹ C-18, C-19: LR HETCOR (H-18 ⇔ C-12, C-13, C-14; H-19 ⇔ C-1, C-9, C-10) C-8; C-9: LR HETCOR (H-30; H-19) C-5; C-17: C-5 and H-5 acetylation shifts C-1; C-12; C-15; C-16: LR HETCOR (H-19; H-18; H-30; ---) C-2; C-7: HETCOR (δ_H 1.8, 1.5; 2.0, 1.8) and COSY (H-2 ⇔ H-3) C-7; C-11: acetylation shift for C-7

Lanost-7-ene-36,156-diol (11a)

Model for rings A and B: dihydroagnosterol (9a) C-18; C-19: LR HETCOR (H-18 \Leftrightarrow C-12, C-13, C-14; H-19 \Leftrightarrow C-1, C-9 C-10) C-5; C-9; C-17: HETCOR ($\delta_{\rm H}$ 1.20; 2.05; 1.44) C-16; C-24: HETCOR ($\delta_{\rm H}$ 2.5, 1.4; 1.1) C-2; C-6; C-23: HETCOR ($\delta_{\rm H}$ 1.7; 2.0; 1.1)

Lanost-7-ene-3β,15α-diol (10a) Model for rings A, B and C: lanost-7-ene-3β,15β-diol (11a) C-18; C-30: HETCOR ($\delta_{\rm H}$ 0.704; 1.030) C-5; C-9; C-17: HETCOR ($\delta_{\rm H}$ 1.12; 1.99; 1.56)

3β-Hydroxylanost-7-en-15-one (12a)

Model for rings A and B: lanost-7-ene-3 β ,15 α -diol (10a) C-18; C-19; C-29: ¹H and ¹³C acetylation shifts C-5; C-9; C-17: HETCOR (δ_{H} 1.12; 1.97; 1.72)

Lanostane-3β-7α-diol (13a)

Model for rings A and D: 3β -hydroxylanost-8-en-7-one (**4a**) C-18; C-19: H-19 acetylation shift C-13; C-14: ¹³C acetylation shifts for 7α -acetoxy group of **13c** C-5; C-8; C-9; C-17: LR HETCOR (H-28; H-30; H-19; H-21) and acetylation shifts C-6; C-12; C-15: LR HETCOR (—; H-18; H-30) C-2; C-16: HETCOR ($\delta_{\rm H}$ 1.6. 1.5; 1.9, 1.3) and COSY (H-2 \Leftrightarrow H-3)

Lanostane-3β,9α-diol, 3-acetate (14b)

Model for rings A and D: dihydrolanosterol acetate (2b) C-18; C-19; C-29: ¹H and ¹³C acetylation shifts C-13; C-14: chemical shift comparisons with 2b C-5; C-8; C-17: LR HETCOR (H-19; H-30; H-21) C-1; C-12; C-15: LR HETCOR (H-19; H-18; H-30) C-11; C-16; large methanol-induced shift for C-11 C-2; C-7: HETCOR ($\delta_{\rm H}$ 1.7, 1.6; 1.5, 1.3) and COSY (H-2 \Leftrightarrow H-3) C-6; C-7: chemical shift comparisons with 15

9a-Hydroxylanostan-3-one (15)

Model for rings B, C and D: lanostane- 3β , 9α -diol (**14a**) C-28; C-29: 3-Ketonization shifts calculated from Ref. 28 C-4; C-10; C-14: LR HETCOR (—; H-19; H-18; H-30) C-5; C-8: LR HETCOR (H-28; H-29; H-30) C-6; C-7: LR HETCOR (C-9 \Leftrightarrow H-7 α , H-7 β), HETCOR (1.6, 1.5; 1.5, 1.4) and COSY (H-5 \Leftrightarrow H-6)

^a The notations C-8; C-9: LR HETCOR (H-30; H-19) signifies that C-8 and C-9 were distinguished by their correlations to H-30 and H-19, respectively, in the long-range HETCOR spectrum. The notation C-16; C-24: HETCOR (δ_{H} 2.5, 1.4; 1.1) means that H-16 signals were observed at δ_{H} 2.5 and 1.4 and that one signal was observed for H-24 at δ_{H} 1.1 (in this case, because the protons were nearly isochronous). The symbol \Leftrightarrow indicates a correlation in the COSY or long-range HETCOR spectrum.

^b In each case, C-21 was identified by its correlation to a ¹H doublet. C-4 and C-10 were differentiated by their acetylation shifts (except for 15).

^c Most assignments were also based on additional information, such as acetylation shifts and ¹H NMR chemical shift comparisons.

^d Model refers to the sterol used for chemical shift comparisons.

of the corresponding acetates were easily assigned from those of the free sterol or vice versa, except for a few very closely spaced pairs of carbons that were differentiated by HETCOR experiments. Diacetates 10b and 13c were assigned similarly; signals for 13c were differentiated by long-range HETCOR (C-4, C-10 and C-8, C-9) and HETCOR/COSY (C-8, C-9). Assigning C-11, C-16 and C-25 of the 9-hydroxy derivatives 14a, 14b and 15 presented a special problem. These signals lie in a 0.03 ppm interval in 14a and 15, and the C-11 and C-16 protons are nearly isochronous ($\delta_{\rm H}$ 1.3, 1.9). Also, the original resolution of the ¹³C signals was difficult to reproduce consistently in later experiments. When a later DEPT spectrum of 14b

Figure 2. ¹H NMR spectrum of dihydrolanosterol: (a) no resolution enhancement; (b) moderate resolution enhancement (Gaussian multiplication, LB -1.7, GB 0.37); (c) strong resolution enhancement (Gaussian multiplication, LB -2.3, GB 0.65). Digital resolution 0.0005 ppm.

showed that the peaks for C-16 and C-25 (0.01 ppm apart) had reversed positions relative to an earlier spectrum, attempts were abandoned to differentiate such closely spaced signals as C-11, C-16 and C-25 of **14a** and **15**. In **14b**, C-11 and C-16 (0.11 ppm apart) were distinguished by methanol-induced shifts (MIS), which were measured analogously to lanthanide-induced shifts in CDCl₃ solutions containing 1-3% CD₃OD. MIS experiments on **13a** and **14b** indicated that carbons remote from any oxygen atom have negligible MIS. Consequently, C-11 of **14b** was assigned to the signal with the large MIS and C-16 to the signal with the small MIS.

¹H NMR assignments

¹H NMR assignments (Tables 3 and 4) were usually made directly from the HETCOR spectrum. This process was complicated by the congestion in the $\delta_{\rm H}$ 0.85–0.90 region, which in many cases contained signals for three methyl singlets (H-28, H-29 and H-30) and three methyl doublets (H-21, H-26 and H-27). As shown in Fig. 2, the signals in this crowded region could be resolved at 300 MHz only with strong resolution enhancement. Nevertheless, when HETCOR spectra were acquired using a small spectral window in the ¹H dimension ($\delta_{\rm H}$ 0.80–0.97) with ample increments and digital resolution, ¹H signals separated by only 0.002 ppm could be differentiated (Fig. 3). No attempt was made to distinguish peaks less than 0.002 ppm apart, as they might be interchanged by small variations in concentration, temperature or trace impurities.

CONCLUSION

A variety of one- and two-dimensional NMR techniques have been used in this work to obtain reliable ¹H and ¹³C assignments for a representative selection of lanostan-3 β -ol derivatives. Numerous ¹³C assignments from the early 1970s for lanosterol, dihydrolanosterol and agnosterol were shown to be incorrect. More important, several assignment techniques have been refined for C₃₀ sterols. The utility of ¹H and ¹³C acetylation shifts has been extended by new estimates of the magnitude and precision of these shifts. An improved implementation of the LIS technique, giving good agreement between observed and calculated LIS, has proved particularly effective in establishing ¹³C assignments. The long-range HETCOR experiment has been carried out under conditions permitting a 20-mg sample

Figure 3. HETCOR spectrum of dihydrolanosterol acquired using a small spectral window in the ¹H dimension in order to resolve methyl protons. Parameters: $\delta_{\rm H}$ 0.80–0.97 spectral window in f_1 , 100 increments, zero-filled in t_1 to 256 points, 0.25 Hz exponential line-broadening in t_1 , absolute value mode. Cross-peaks marked with an asterisk are folded in the f_1 dimension

of a C_{30} sterol to give useful data in 2 h. Finally, a modest database of reliable ¹H and ¹³C chemical shifts has been established for C_{30} sterols. This database should be useful for developing and testing predictive methods and for assigning spectra of new triterpenes by chemical shift comparisons.

EXPERIMENTAL

Lanosterol (1a), dihydrolanosterol (2a) and agnosterol (8a) were isolated from a commercial sample of lanosterol (Mann Research Laboratories, New York, USA) by recrystallization from methanol followed by preparative reversed-phase HPLC on a Dynamax 60A column, 8 μ m, 250 × 21.4 mm i.d. (Rainin Instrument, Woburn, MA, USA) with methanol as eluent. Treatment of the free sterols with acetic anhydride-pyridine (1:1) at room temperature for 12 h gave acetates 1b (m.p. 128–129.5 °C; lit.²¹ m.p. 127–128 °C), 2b (m.p. 118.5–120 °C; lit.²² m.p. 119–120 °C) and 8b (m.p. 172.5–174.5 °C; lit.²² m.p. 174–175 °C). The epimeric 24,25-epoxylanosterols 5a and 6a were prepared²³ from lanosterol and separated by HPLC of their acetate derivatives.³ The 7-keto derivatives (3a and 4a) were isolated by saponifying lanolin (USP) (E. J. Fougera, Melville, NY, USA) and subjecting the crude material to a combination of normal-phase HPLC on a Spherisorb silica column with ethyl acetate-hexane (5:95) as eluent and reversed-phase HPLC on a Spherisorb ODS-II column, with water-methanol (6:94) as eluent. Both ketosterols showed a UV λ_{max} at 253 nm, had the expected molecular ions at m/z 440 (3a) and 442 (4a) in their mass spectra and were assayed for purity by capillary gas chromatography on an 11-m DB5 fused-silica column (3a, single peak, >99% pure and 4a, >97%pure). Acetylation gave 3b and 4b (m.p. 147-148.5 °C; lit.²⁴ m.p. 149–151 °C). The structure of acetate 4b derived from lanolin was confirmed by chemical synthesis of 4b (m.p. 150.5-152 °C) by treatment of dihydrolanosterol acetate with acetic acid containing sulfuric acid and hydrogen peroxide²⁴ followed by purification of the major product by reversed-phase HPLC on a Dynamax column (8 μ m, 250 \times 10 mm i.d.). Treatment of dihydrolanosterol acetate with *m*-chloroperbenzoic acid followed by purification by reversed-phase HPLC on a Dynamax column (8 μ m, 250 \times 10 mm i.d.) gave the acetate of 8α , 9α -epoxylanostan- 3β -ol²⁵ (7b, m.p. 140.5-141.5 °C; lit.²⁵ m.p. 140-142 °C). Dihydroagnosterol acetate (9b, m.p. 166.5-168 °C; lit.²⁵ m.p. 166.5-167 °C) was prepared from 7b as described previously.²⁵ Saponification of 5b, 6b, 7b and 9b gave the corresponding free sterols. Compounds 10-15 were prepared either as described previously or by acetylation of the known free sterol.^{1c,d,11} Tris(6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedionato)ytterbium [Yb(fod)₃] was obtained from Aldrich Chemical (Milwaukee, WI, USA) and used as received.

NMR spectra of C_{30} sterols were acquired in CDCl₃ solution (6–50 mg ml⁻¹) at ambient temperature (22 °C) on an IBM AF300 spectrometer equipped with an ASPECT 3000 computer and a 5-mm ¹H-¹³C dual probe. ¹H NMR spectra (300.1 MHZ) were referenced to tetramethylsilane and ¹³C NMR spectra (75.5 MHz) were referenced to CDCl₃ at $\delta_{\rm C}$ 77.0. ¹³C NMR spectra were measured with WALTZ decoupling using a 20000-Hz spectral window, 0.82-s acquisition time, 0.9-s recycle time and 0.008-ppm digital resolution. ¹H NMR spectra were obtained using a 5000-Hz spectral window, 3.3-s acquisition time, 3.4-s recycle time and 0.001-ppm digital resolution. Resolution enhancement was done by Gaussian multiplication as exemplified in Fig. 2. Standard Bruker microprograms were used for DEPT and 2D experiments. ¹³C multiplicities were determined from DEPT experiments. COSY spectra were acquired using a 45° read pulse (ca. 200 increments of 8-16 scans each), transformed with squared sine bell multiplication in both dimensions and viewed in the absolute value mode. HETCOR spectra optimized for 125 Hz couplings were acquired using a DEPT pulse sequence²⁶ (XHDEPTD; typical f_2 parameters: $\delta_{\rm C}$ 5–77 spectral window, 2-4K data points, sine bell multiplication). An observed ¹H chemical shift accuracy of *ca*. 0.02 ppm over a range of $\delta_{\rm H}$ of 0.6–2.6 in the f_1 dimension was achieved by collecting ca. 50 increments of 16-64 scans with a 1.5-s recycle time, zero-filling to 256 points and applying a 3-5-Hz exponential line broadening in t_1 . A smaller ¹H range and/or additional increments were occasionally used for better resolution. For long-range

HETCOR spectra, an INEPT pulse sequence²⁷ (XHCORRD) was used with decoupling in the f_1 dimension and optimization for 10 Hz couplings ($\Delta_1 = 50 \text{ ms}$, $\Delta_2 = 30 \text{ ms}$). With 20-mg samples, more than half of the possible correlations between methyl protons and carbons up to three bonds away were visible after 2 h (16 increments, *ca.* 300 scans, 1.5-s recycle time, zero-filling to 64 points in t_1 , 8-Hz line broadening in t_1). An observed chemical shift accuracy of *ca.* ± 0.05 ppm ($\delta_{\rm H} 0.6-2.6$ range) in f_1 permitted several of the ¹H methyl signals to be differentiated.

LIS were determined by adding $1-32 \mu l$ of a ca. 0.12 тм solution of Yb(fod)₃ in CDCl₃ to a solution of 25-28 mg of sterol in 0.4 ml of CDCl₃. ¹H and ¹³C NMR spectra were collected at 22 °C for five molar ratios (0.005-0.2) of Yb(fod), to sterol. Induced shifts were measured to 0.001 ppm precision. The relative LIS values were obtained by linear regression calculations (fixing the intercept at the origin) on the plot of induced shifts vs. apparent lanthanide shift reagent (LSR) concentration, followed by normalization to the LIS of C-3. Extrapolated to a 1:1 molar ratio of LSR to substrate, the LIS for C-3 of 2a was 117 ppm. The apparent LSR concentrations, calculated for each LSR concentration from weighted ratios of all non-zero ¹H and ¹³C induced shifts relative to those of a 0.016 molar ratio data set, were similar to the LSR concentrations measured volumetrically. No corrections were made for contact shifts. Atomic coordinates for LIS computations were obtained from molecular mechanics calculations using PC Model (Serena Software, Bloomington, IN, USA) on an IBM-compatible computer (Tandy 4000).

The sterol side chain was considered to exist only in its extended conformation. Average positions were calculated for each group of methyl hydrogen atoms. For each set of coordinates and each set of observed LIS values, the position of the coordinating Yb atom was adjusted to give a minimum value of the agreement factor R using the simplified McConnell–Robertson equation.¹⁷ The position of Yb was optimized to a location *ca.* 2.6 Å from O-3. A further set of minimizations, which alternately optimized the position of Yb and the location of the principal magnetic axis, reduced R for dihydrolanosterol from 2.6 to 1.2%. A single site model was used. The minimizations were performed with a Microsoft QuickBASIC program on a Macintosh II computer.

Sets of ¹H and ¹³C NMR assignments were manipulated on a microcomputer spreadsheet (Microsoft Excel, Macintosh version). Macros were used to print the chemical shifts and chemical shift differences in the form of a C_{30} sterol and to rapidly sort the chemical shifts by multiplicity and highlight closely spaced pairs of chemical shifts.

Acknowledgements

This research was supported in part by grants HL-15376 and HL-22532 from the National Institutes of Health and by grant C-583 from the Robert A. Welch Foundation. The support of the Ralph and Dorothy Looney Endowment Fund is also gratefully acknowledged. The Arco Foundation provided funds for the purchase of the NMR instrument.

REFERENCES

- (a) Y. Sonodo and Y. Sato, *Chem. Pharm. Bull.* **31**, 1698 (1983); (b) Y. Sonodo, Y. Sekigawa and Y. Sato, *Chem. Pharm. Bull.* **36**, 966 (1988); (c) G. J. Schroepfer, Jr, E. J. Parish, M. Tsuda and A. A. Kandutsch, *Chem. Phys. Lipids* **47**, 187 (1988); (d) G. J. Schroepfer, Jr, E. J., Parish and A. A. Kandutsch, *Biochem. Int.* **2**, 257 (1981); (e) G. F. Gibbons, C. R. Pullinger, H. W. Chen, W. K. Cavenee and A. A. Kandutsch, *J. Biol. Chem.* **255**, 395 (1980).
- L.-J. Lin, M.-S. Shiao and S.-F. Yeh, J. Nat. Prod. 51, 918 (1988).
- 3. G. T. Emmons, W. K. Wilson and G. J. Schroepfer, Jr, *J. Lipid Res.* **30**, 133 (1989).
- (a) S. A. Knight, *Tetrahedron Lett.* 83 (1973); (b) S. A. Knight, *Org. Magn. Reson.* 6, 603 (1974).
- G. Lukacs, F. Khuong-Huu, C. R. Bennett, B. L. Buckwalter and E. Wenkert, *Tetrahedron Lett*. 3515 (1972).
- (a) T. Itoh, Y. Kikuchi, N. Shimizu, T. Tamura and T. Matsumoto, *Phytochemistry* 20, 1929 (1981); (b) M. de Bernardi, G. Mellerio, G. Vidari, P. Vita-Finzi, G. Fronza, M. Kocor and J. St. Pyrek, J. Nat. Prod. 44, 351 (1981); (c) I. Muhammad and C. M. Hasan, *Indian J. Chem., Sect. B* 26, 722 (1987); (d) P. Majumder, A. Pal and S. Lahiri, *Indian J. Chem. Sect. B* 26, 297 (1987).
- (a) A. B. Harref and J.-P. Lavergne, *Bull. Soc. Chim. Fr.* 965 (1985); (b) J. de Pascual Theresa, J. G. Urones, I. S. Marcos, P. Basabe, M. J. Sexmero Cuadrado and R. Fernandez Moro, *Phytochemistry* 26, 1767 (1987); (c) J.-F. Cheng, J. Kobayashi, H. Nakamura, Y. Ohizumi, Y. Hirata and T. Sasaki, *J. Chem. Soc., Perkin Trans.* 1 2403 (1988).

- (a) F. W. Wehrli and T. Nishida, *Fortschr. Chem. Org. Naturst.* 36, (1979); (b) T. Akihisa and T. Matsumoto, *Yukagaku* 36, 301 (1987).
- (a) H. Beierbeck, J. K. Saunders and J. W. ApSimon, *Can. J. Chem.* 55, 2813 (1977); (b) Y. Takaishi, Y. Murakomi, T. Ohashi, K. Nakano, K. Murakami and T. Tomimatsu, *Phytochemistry* 26, 2341 (1987); (c) J. Martynow and Z. Paryzek, *Magn. Reson. Chem.* 27, 258 (1989).
- (a) T. Kikuchi, S. Kanomi, Y. Murai, S. Kadota, K. Tsubono and Z. Ogita, *Chem. Pharm. Bull.* 34, 4018 (1986); (b) W. Kamisako, C. Honda, K. Suwa and K. Isoi, *Magn. Reson. Chem.* 25, 683 (1987); (c) S. Seo, A. Uomori, Y. Yoshimura, K. Takeda, H. Seto, Y. Ebizuka, H. Noguchi and U. Sankawa, *J. Chem. Soc., Perkin Trans.* 1 2407 (1988); (d) M. Arisawa, A. Fujita, T. Hayashi, M. Shimizu, N. Morita, T. Kikuchi, S. Kadota and Y. Tezuka, *J. Nat. Prod.* 51, 54 (1988); (e) M. Tori, R. Matsuda, M. Sono and Y. Asakawa, *Magn. Reson. Chem.* 26, 581 (1988).
- 11. E. J. Parish and G. J. Schroepfer, Jr, J. Lipid Res. 22, 859 (1981).
- (a) F. W. Wehrli, A. P. Marchand and S. Wehrli, *Interpretation of Carbon-13 NMR Spectra*, 2nd ed. Wiley, New York (1988); (b) J. K. Whitesell and M. A. Minton, *Stereochernical Analysis of Alicyclic Compounds by C-13 NMR Spectroscopy*. Chapman and Hall, New York (1987).
- J. W. Blunt and J. B. Stothers, Org. Magn. Reson. 9, 439 (1977).
- 14. M. Tsuda and G. J. Schroepfer, Jr, J. Org. Chem. 44, 1290 (1979).

- (a) J. Bastard, J. M. Bernassau, M. Bertranne and E. R. Maia, *Magn. Reson. Chem.* 26, 992 (1988); (b) D. H. Smith and P. C. Jurs, *J. Am. Chem. Soc.* 100, 3316 (1978).
- (a) H.-J. Schneider, U. Buchheit, N. Becker, G. Schmidt and U. Siehl, J. Am. Chem. Soc. 107, 7027 (1985); (b) W. R. Croasmun and R. M. K. Carlson, in Two Dimensional NMR Spectroscopy. VCH, New York (1987).
- 17. T. Wenzel, NMR Shift Reagents. CRC Press, Boca Raton, FL (1987).
- P. Joseph-Nathan, G. Mejia and D. Abramo-Bruno, J. Am. Chem. Soc. 101, 1289 (1979).
- H.-J. Schneider and P. K. Agrawal, Magn. Reson. Chem. 24, 718 (1986).
- H.-S. Kim, W. K. Wilson, D. H. Needleman, F. D. Pinkerton, D. K. Wilson, F. A. Quiocho and G. J. Schroepfer, Jr, J. Lipid Res. 30, 247 (1989).

- 21. J. D. Johnston, F. Gautschi and K. Bloch, J. Biol. Chem. 224, 185 (1957).
- 22. L. Ruzicka, R. Denss and O. Jeger, *Helv. Chim. Acta* 29, 204 (1946).
- S. R. Panini, R. C. Sexton, A. K. Gupta, E. J. Parish, S. Chitrakorn and H. Rudney, *J. Lipid Res.* 27, 1190 (1986).
- 24. J. T. Pinhey, B. J. Ralph, J. J. H. Simes and M. Wootton, *Aust. J. Chem.* 23, 2141 (1970).
- 25. I. G. Guest and B. A. Marples, J. Chem. Soc. C 1468 (1971).
- 26. T. T. Nakashima, B. K. John and R. E. D. McClung, J. Magn.
- Reson. 59, 124 (1984). 27. J. A. Wilde and P. H. Bolton, J. Magn. Reson. 59, 343 (1984).
- B. L. Buckwalter, I. R. Burfitt, A. A. Nagel, E. Wenkert and F. Näf, Helv. Chim. Acta 58, 1567 (1975).