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Cis-3,5-Dimethyl-3,5-Piperidinedicarboxylic Acid,
An Amino Diacid Variant of Kemp's Triacid
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Abstract: Cis-3,5-dimethyl-3 5-piperidinedicarboxylic Acid (3) and several of its derivatives have been
synthesized starting from 3 5-pyridinedicarboxylic acid. The 1H NMR spectra indicate that these
compounds assume a single conformation having the two carbonyl substituents in axial positions.

Kemp's triacid, 1, has proven to be a useful template for the preparation of synthetic
receptors,1b-d.23 self-replicating molecules,* and chiral auxiliaries;® it has also been used in the
study of stereoelectronic effects in cyclization reactionsé and strain effects in intramolecular
amide acylolysis reactions.? A potentially useful variation of this structure would have
an amine in place of one of the carboxylic acids. One such molecule is 3, which we envision
could be used to construct molecular clefts like 2 that might bind ligands possessing acidic
functionalities. Toward this end cis-3,5-dimethyl-3,5-piperidinedicarboxylic acid (3) and several
of its derivatives have been prepared.

Outlined below in Scheme 1 is the synthetic route used to generate 3 and its derivatives.
Fischer esterification of 3,5-pyridinedicarboxylic acid (4) using SOCI2 and CH30H yields the
diester 5 in nearly quantitative yield. Reduction of the pyridine ring in 5,8 followed by acylation
of the resulting amine with Boc2O provides an approximately 1:1 mixture of cis (6) and trans (7)
isomers. Although these two isomers can be readily separated by flash chromatography,® the
following alkylation step is conveniently run using the mixture of isomers. Accordingly,
addition of LDA to a THF solution of CH3l and 6 and 7 provides two isomeric products, the
desired cis isomer 9 and the unwanted trans isomer 8, in an overall yield around 70%.19 The
two isomers were identified based on the appearance of their C4 methylene in the 1H NMR
spectrum. In 8, the methylene hydrogens are equivalent and appear as a singlet, while in 7, the
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same methylene hydrogens are non-equivalent and each appears as a doublet with J=14 Hz.
Although 8 is the major isomer obtained from the reaction (8:9 = 4:1), workable 0.1-0.5 g
amounts of the desired isomer 9 can readily be obtained following flash chromatography of the
product mixture.1l Resonances in the 1H NMR spectra of 9 were assigned from the 1H-COSY
spectrum.
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Preparation of 3 and its derivatives 10, 11 and 12 is readily achieved starting from 9. Simply
refluxing 9 overnight in a dilute, aqueous HCI solution followed by evaporation yields 3 as a
crystalline solid. The diester-amine 10 can be obtained as its trifluoroacetate salt by treating 7
with trifluoroacetic acid in CH2Clp, then evaporating the solvent. Saponification of 9 with
LiOH provides diacid 11 as a crystalline solid. Simply refluxing 11 in a toluene solution
containing a catalytic amount of p-toluenesulfonic acid generates anhydride 12.12

The two conformations available to 3, 9, 10 and 11 are shown below as A (two axial carbonyls,
two equatorial methyls) and B (two axial methyls, two equatorial carbonyls). Analysis of the TH
NMR spectra of 3, 9, 10, 11 and 12 indicates that the preferred conformation for these
compounds is A. First, the 1TH NMR spectra of monocyclic 3, 9, 10, and 11 are very similar to
that of the bicyclic anhydride, 12, which is covalently constrained to conformation A. Second, as
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shown in Table I, the piperidine methylene protons all exhibit large differences in chemical
shift (A5) between the axial and equatorial positions. For the C4 methylenes, the differences in
chemical shift between axdal and equatorial range from 0.60 to 1.54 ppm, while for the C2, C6
methylenes the differences range from 0.81 to 2.28 ppm. Typical A values between axial and

Table I. TH Chemical Shift Values for 3 and its Derivatives.

C2, C6 methylenes C4 methylene
Compound axial uatorial axial equatorial Ad
3 3.64 273 0.91 253 1.58 0.95
9 431 2.64 1.67 2.67 1.27 1.40
10 3.69 2.88 0.81 2.75 1.48 .27
11 4,59 2.31 2.28 2.77 1.23 1.54
12 4.36 2.66 1.70 2.18 1.58 0.60

equatorial protons in conformationally mobile cyclohexanes lie between 0.6-0.8 ppm.13 That all
of the Ad values seen with 3, 9, 10, and 11 are well above this range indicates that these
molecules are not in equilibrium between conformations A and B. Rather, the AS values
support the conclusion that 3, 9, 10 and 11 assume only one of the two possible conformations,
and given the demonstrated preference for carbonyls rather than methyls in the axial positions
in Kemp's triacid and its derivatives,12 the preferred conformation is A.

Presently work is proceeding on the reaction of 12 with 1,4-phenylenediamine to produce
molecular cleft 2. Details regarding this work will be presented in due course.
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