ChemComm

This article is part of the

Glycochemistry & glycobiology web themed issue

Guest Editors are Professor Peter H. Seeberger and Dr Daniel B. Werz

Please visit the website to access the other articles in this issue:http://www.rsc.org/chemcomm/glycochemistry

Cite this: Chem. Commun., 2011, 47, 9206–9208

Cavitand supported tetraphosphine: cyclodextrin offers a useful platform for Suzuki-Miyaura cross-coupling $\ddagger \$$

Elena Zaborova, Julia Deschamp, Samuel Guieu, Yves Blériot, Giovanni Poli, Mickaël Ménand, David Madec,* Guillaume Prestat* and Matthieu Sollogoub*

Received 18th April 2011, Accepted 20th May 2011 DOI: 10.1039/c1cc12241j

The cyclodextrin-tetraphosphine hybrid coined α -Cytep allows turnover numbers up to 340 000 000 000 and turnover frequencies up to 1 000 000 000 h^{-1} to be reached in Suzuki–Miyaura reactions. These exceptional figures are clearly linked to the outstanding longevity of the reactive species induced by the ligand α -Cytep and illustrates the rising potential of cyclodextrins in catalytic applications.

Since the original discovery and development of Pd-catalyzed coupling reactions that led to the recent chemistry Nobel Prize awarded to Heck, Suzuki and Negishi, a great deal of attention has been focused on the development of catalytic systems that would improve efficiency of the cross-coupling reactions. The practicality of the Suzuki-Miyaura reaction made it particularly popular in the pharmaceutical and chemical industries for which cost is a fundamental parameter.¹ The use of Herrmann-Beller palladacycles² or NHC-based ligands allows very high turn-over numbers (TONs) to be reached in Suzuki-Miyaura couplings,3,4 and the search for catalytic systems allowing ultra-low loadings is still an ongoing field.⁵ However, Buchwald's bulky monodentate dialkyl-biaryl phosphines are indubitably the current reference in terms of reactivity and efficiency,⁶ the main reason for this increased reactivity of the monodentate bulky phosphine being the access to underligated reactive Pd species.⁷ Disclosure of the tetradentate ligand **Tedicyp** by Doucet and Santelli⁸ displaying exceptionally high TONs, was therefore a somewhat paradoxical breakthrough in this area. This discovery prompted the examination of various carbocyclic (cyclohexane,9 cyclopentane,⁸ cyclopropane¹⁰) or ferrocenyl-based¹¹ multiphosphines in low catalyst loading Suzuki-Miyaura couplings. Recently, Matt and Sémeril showed that cavity-shaped ligands could

bring an added value in the efficiency of the Suzuki-Miyaura coupling.¹² Furthermore, although cavity-shaped tetraphosphines derived from calixarenes,¹³ resorcinarenes¹⁴ or cyclodextrins¹⁵ (CDs) have been synthesized, none of them has been probed in a low-loading catalytic system to the best of our knowledge. In addition, we have shown that perbenzylated CDs regioselectively functionalized with two phosphines could serve as pseudo-enantiomeric platforms in enantioselective catalysis.¹⁶ Furthermore, a benzylated CD platform would provide high steric hindrance that might prevent the agglomeration of Pd⁰ into inactive species.¹⁷ It was hence tempting and logical to study the potential of a CD-tetraphosphine hybrid in ultra-low loading catalysis. CD-appended multiphosphines are easy to synthesize, as first demonstrated by Matt and Armspach, who developed a tetraphosphine-CD called α -TEPHOS that was used to obtain tetra-metalated CDs.¹⁵ However, we reasoned that hemilabile alkoxy groups remaining on the CD primary rim could be detrimental to efficiency due to parasital oxygen coordination. Accordingly, we designed the dideoxytetraphosphine α -cyclodextrine α -Cytep (Fig. 1).

α-Cytep was easily synthesized in 28% overall yield from native α-CD. An in-house perbenzylation/bis-debenzylation sequence afforded diol 1,¹⁸ which was dehydroxylated through LAH reduction of the corresponding dimesylate to afford compound 2.¹⁹ Regioselective acetolysis of the primary benzyloxy groups²⁰ to yield tetracetate 3 followed by deacetylation gave tetrol 4 in 76% yield. Subsequent mesylation afforded tetramesylate 5 which upon treatment with an excess of *in situ* formed lithium diphenylphosphide furnished α-Cytep in 61% yield. The tetraphosphine α-Cytep was protected and stored as its tetra borane complex 6 by simple treatment with BH₃·THF. The free ligand was regenerated using diethylamine right before its use in catalytic reactions. (Scheme 1)

Fig. 1 Structure of α-Cytep.

UPMC Univ Paris 06, Sorbonne Universités, Institut Universitaire de France, Institut Parisien de Chimie Moléculaire (UMR CNRS 7201), FR 2769, C. 181, 4 place Jussieu, 75005 Paris, France.

E-mail: matthieu.sollogoub@upmc.fr; Tel: 33 1 44 27 61 63

[†] In memory of David Gin, a great Glycoscientist.

[‡] This article is part of the *ChemComm* 'Glycochemistry and glycobiology' web themed issue.

[§] Electronic supplementary information (ESI) available: Experimental details of the synthesis of α -Cytep, spectroscopic analysis of the products, experimental details of the catalytic reaction. See DOI: 10.1039/c1cc12241j

We then studied the α -Cytep catalyst's scope and limitations in Suzuki-Miyaura coupling at low loadings. We applied the same conditions as those reported for the **Tedicyp** tetraphosphine, using [PdCl(η^3 -C₃H₅)]₂ as a palladium(0) precursor together with α -Cytep, in a 1:2 ratio but at a slightly lower (3 × 10⁻⁷⁰/) loading than the lowest used with **Tedicyp** (10⁻⁶⁰/),⁸ and K₂CO₃ in refluxing xylenes for 7 days. Variation of the substitution pattern of the arylboronic acids did not induce any significant changes of reactivity, TONs remaining above 10⁸, with TOF around 10⁶ h⁻¹ (Table 1). A survey of aryl halides showed more drastic reactivity changes (Table 2). As expected, electron-deficient aryl bromides gave better TONs (>10⁸) than the electron-rich ones including the 4-MeO and 4-Me substituted aryl bromides, which were nevertheless still coupled with 6 × 10⁷ and 10⁸ TONs respectively.

Those results compare well with the best reported TONs (9.7×10^7) for Suzuki-Miyaura cross-coupling reactions obtained with **Tedicyp**⁸ and Buchwald's phosphines.⁶ However, this catalytic system is not as efficient as Buchwald's ligand for aryl chlorides. These observations suggest that these high TONs and TOFs are not due to a facilitated oxidative addition step, but as mentioned before, longevity of the catalyst can be the key to reaching high TONs.²¹ We therefore monitored the progress of the reaction between phenylboronic acid and 4-bromoacetophenone over a 7-day period at 3×10^{-9}

Table 1 Pd-catalysed cross-coupling variation of the boronic acids

$X \longrightarrow B(OH)_2 + Br \longrightarrow 0 \longrightarrow X \longrightarrow 0$								
Entry ^a	Х	Yield, $\%^b$	TOF, h^{-1}	TON				
1	Н	73%	1 400 000	240 000 000				
2	4-F	58%	1 100 000	190 000 000				
3	4-Cl	98%	2000000	330 000 000				
4	4-BuO	47%	930 000	160 000 000				
5	4-tBu	41%	810 000	140 000 000				
6	4-Me	46%	890 000	150 000 000				
7	3-Me	79%	1 500 000	260 000 000				
8	2-Me	38%	750 000	130 000 000				

^{*a*} The reactions were carried out in xylenes (0.25 M) at 120 °C under argon in presence of 4-AcC₆H₄Br (1 mmol), the appropriate ArylB(OH)₂ (2 mmol), K₂CO₃ (2 mmol) and [PdCl(η^3 -C₃H₅)]₂/ α -Cytep: 1/2 (catalyst/substrate: 3 × 10⁻⁹) for 7 days. ^{*b*} Determined by ¹H NMR analysis by using butadiene sulfone as external standard.

Table 2 Pd-catalysed cross-coupling variation of the aryl halides

Entry ^a	Y	R	Yield, % ^b	TOF, h^{-1}	TON			
1	MeCO	Н	73 $(70)^c$	1 400 000	240 000 000			
2	MeO	Н	19	380 000	60 000 000			
3	Me	Н	38	670 000	110 000 000			
4	F ₃ C	Н	40^{c}	790 000	130 000 000			
5 ^{<i>d</i>}		Н	10	950	160 000			

^{*a*} The reactions were carried out in xylenes (0.25 M) at 120 °C under argon in presence of the appropriate aryl-halide (1 mmol), phenylboronic acid (2 mmol), K₂CO₃ (2 mmol) and [PdCl(η^3 -C₃H₅)]₂/ α -Cytep: 1/2 (catalyst/substrate: 3 × 10⁻⁹) for 7 days. ^{*b*} Determined by ¹H NMR analysis by using butadiene sulfone as external standard. ^{*c*} Isolated yield. ^{*d*} Catalyst/Substrate = 10⁻⁶.

catalyst/substrate ratio (entries 3-5, Table 3) and observed a steady increase of the yield with a constant 10^6 h⁻¹ TOF indicative of a remarkable lasting of the catalyst. Those very encouraging results prompted us to further investigate this ability of our catalyst by lowering its loading to a 10^{-12} catalyst/ substrate ratio, which led to vertiginous 340 000 000 000 TON and $1\,000\,000\,000$ h⁻¹ TOF (entries 1–8, Table 3). As ligand-free Suzuki-Miyaura couplings have been also reported,²² blank experiments were carried out. Predictably, no coupling product was observed in the absence of both palladium and α -Cytep (entry 9). When only α -Cytep was omitted, reaction occurred even at extremely low loadings (entries 10-12, Table 3). However, the presence of α -Cytep in the coupling process dramatically increases the observed TON when decreasing the loading (entry 12 vs. 5). Replacement of K_2CO_3 and $[PdCl(\eta^3-C_3H_5)]_2$ by AcOK and $Pd(OAc)_2$ respectively did not improve the transformation (entries 14 and 15). As for Tedicyp, the ³¹P NMR spectrum of the $[Pd(\eta^3-C_3H_5)(\alpha-Cytep)]^+$ BF₄⁻ complex synthesized using a known protocol²³ was recorded. It led to a similar observation: the presence of broad peaks exclusively around 25 ppm, indicative of phosphorous bound to the metal, in the 220-350 K temperature range, which also suggests a fast coordination-dissociation process of the four phosphines of the ligand.

In conclusion, we have synthesized and assessed a new CD-tetraphosphine hybrid coined α -Cytep which displayed exceptionally high TONs and TOFs in the Suzuki-Miyaura coupling. This property is clearly associated with its ability to super-stabilize the catalytic species over an exceptionally long period of time *via* multiple dynamic binding of the metal. We have hence shown that CDs can serve as interesting platforms for catalysis.²⁴ Indeed, a distinct feature of those platforms is their steric bulk and their relative flexibility allowing access to a wide variety of conformations, both of which contrast with the smaller rings studied so far in this area. It seems that our sugar-based platform is hence well suited to stabilize the catalytic species over time. In view of our results, other cavitand-based tetraphosphines should now be tested in low-loading catalysis.

Entry	Ligand	c/s	Conversion ^d (yield), ^e %	t, d	TOF, h^{-1}	TON
1 ^{<i>a</i>}	α-Cytep	10^{-3}	100	1	6	1000
2^a	α-Cytep	10^{-6}	64	2	3800	640 000
3 ^{<i>a</i>}	α-Cytep	3×10^{-9}	22 (22)	2.5	1 200 000	73 000 000
4^a	α-Cytep	3×10^{-9}	35 (34)	4	1 200 000	110 000 000
5^a	α-Cytep	3×10^{-9}	$84(73)^{f}$	7	1 400 000	240 000 000
6^a	α-Cytep	3×10^{-10}	61 (59)	7	12 000 000	2 000 000 000
7^a	α-Cytep	10^{-10}	78 (59)	10	25 000 000	5 900 000 000
8 ^{<i>a</i>}	α-Cytep	10^{-12}	34 (34)	14	1 000 000 000	340 000 000 000
9	No Pd	_	Ô	14		_
10	_	10^{-3}	100	1	6	1000
11	_	10^{-6}	53	2	3000	530 000
12	_	3×10^{-9}	27 (21)	7	420 000	70 000 000
13	—	3×10^{-10}	Traces	7	—	
14^{b}	α-Cytep	3×10^{-9}	19 (17)	7	370 000	60 000 000
15 ^c	α-Cytep	3×10^{-9}	65 (63)	7	1 250 000	210 000 000

 $- HOH_2 + Br - - HOH_2 + - HOH_2 + Br - - HOH_2 + - H$

^{*a*} The reactions were carried out, at least twice, in xylenes (0.25 M) at 120 °C under argon in the presence of 4-AcC₆H₄Br (1 mmol), PhB(OH)₂ (2 mmol), K₂CO₃ (2 mmol) and the appropriate amount of $[PdCl(\eta^3-C_3H_5)]_2/\alpha$ -Cytep: 1/2. See supporting information for details.§ ^{*b*} The reaction was performed with AcOK as base. ^{*c*} The reaction was performed with [Pd(OAc)₂] as pre-catalyst. ^{*d*} Determined by ¹H NMR analysis of reaction mixture samples, based on bromoacetophenone. ^{*e*} Determined by ¹H NMR analysis by using butadiene sulfone as external standard. ^{*f*} Isolated yield: 70%.

Notes and references

- For reviews on this subject see: V. Farina, Adv. Synth. Catal., 2004, 346, 1553; J.-C. Hierso, M. Beaupérin and P. Meunier, Eur. J. Inorg. Chem., 2007, 3767.
- W. A. Herrmann, C. Brossmer, K. Öfele, C.-P. Reisinger, T. Priermeier, M. Beller and H. Fischer, *Angew. Chem., Int. Ed. Engl.*, 1995, 34, 1844; M. Beller, H. Fischer, W. A. Herrmann, K. Öfele and C. Brossmer, *Angew. Chem., Int. Ed. Engl.*, 1995, 34, 1848.
- 3 D. A. Albisson, R. B. Bedford, S. E. Lawrence and P. N. Scully, *Chem. Commun.*, 1998, 2095.
- 4 D. S. McGuinness and K. J. Cavell, *Organometallics*, 2000, 19, 741;
 H. Palencia, F. Garcia-Jimenez and J. M. Takacs, *Tetrahedron Lett.*, 2004, 45, 3849.
- 5 For very recent examples see: A. Fihri, D. Luart, C. Len, A. Solhy, C. Chevrin and V. Polshettiwar, *Dalton Trans.*, 2011, 40, 3116; D. Schaarschmidt and H. Lang, *ACS Catal.*, 2011, 1, 411.
- 6 J. P. Wolfe and S. L. Buchwald, Angew. Chem., Int. Ed., 1999, 38, 2413; J. P. Wolfe, R. A. Singer, B. H. Yang and S. L. Buchwald, J. Am. Chem. Soc., 1999, 121, 9550; J. Yin, M. P. Rainka, X.-X. Zhang and S. L. Buchwald, J. Am. Chem. Soc., 2002, 124, 1162; S. D. Walker, T. E. Barder, J. R. Martinelli and S. L. Buchwald, Angew. Chem., Int. Ed., 2004, 43, 1871; T. E. Barder, S. D. Walker, J. R. Martinelli and S. L. Buchwald, J. Am. Chem. Soc., 2005, 127, 4685; R. Martin and S. L. Buchwald, Acc. Chem. Res., 2008, 41, 1461.
- 7 T. E. Barder, M. R. Biscoe and S. L. Buchwald, *Organometallics*, 2007, 26, 2183.
- ⁸ D. Laurenti, M. Feuerstein, G. Pèpe, H. Doucet and M. Santelli, J. Org. Chem., 2001, 66, 1633; M. Fuerstein, D. Laurenti, H. Doucet and M. Santelli, Synthesis, 2001, 2320; M. Fuerstein, D. Laurenti, C. Bougeant, H. Doucet and M. Santelli, Chem. Commun., 2001, 325; M. Feuerstein, H. Doucet and M. Santelli, Synlett, 2001, 1458; M. Feuerstein, F. Berthiol, H. Doucet and M. Santelli, Synlett, 2002, 1807; I. Kondolff, H. Doucet and M. Santelli, Synlett, 2005, 2057; H. Doucet and M. Santelli, Synlett, 2006, 2001.
- 9 P. Stössel, W. Heins, H. A. Mayer, R. Fawzi and M. Steinmann, Organometallics, 1996, 15, 3393.
- 10 H. Schill, A. de Meijere and D. S. Yufit, Org. Lett., 2007, 9, 2617.

- 11 J.-C. Hierso, A. Fihri, R. Amardeil, P. Meunier, H. Doucet, M. Santelli and B. Donnadieu, *Organometallics*, 2003, **22**, 4490; J.-C. Hierso, R. Smaliy, R. Amardeil and P. Meunier, *Chem. Soc. Rev.*, 2007, **36**, 1754; D. Roy, S. Mom, M. Beaupérin, H. Doucet and J.-C. Hierso, *Angew. Chem., Int. Ed.*, 2010, **49**, 6650.
- 12 L. Monnereau, D. Sémeril, D. Matt and L. Toupet, *Chem.-Eur. J.*, 2010, **16**, 9237.
- C. B. Dieleman, C. Marsol, D. Matt, N. Kyritsakas, A. Harriman and J.-P. Kintzinger, J. Chem. Soc., Dalton Trans., 1999, 4139;
 M. Lejeune, C. Jeunesse, D. Matt, N. Kyritsakas, R. Welter and J.-P. Kintzinger, J. Chem. Soc., Dalton Trans., 2002, 1642.
- 14 H. El Moll, D. Sémeril, D. Matt, M.-T. Youinou and L. Toupet, Org. Biomol. Chem., 2009, 7, 495.
- 15 L. Poorters, D. Armspach, D. Matt and L. Toupet, *Eur. J. Org. Chem.*, 2003, 1377; L. Poorters, D. Armspach, D. Matt and L. Toupet, *Dalton Trans.*, 2007, 3195.
- 16 S. Guieu, E. Zaborova, Y. Blériot, G. Poli, A. Jutand, D. Madec, G. Prestat and M. Sollogoub, *Angew. Chem. Int. Ed.*, 2010, 49, 2314.
- 17 M. De Bruyn and R. Neumann, Adv. Synth. Catal., 2007, 349, 1624.
- 18 T. Lecourt, A. Hérault, A. J. Pearce, M. Sollogoub and P. Sinaÿ, *Chem.-Eur. J.*, 2004, **10**, 2960; E. Zaborova, Y. Blériot and M. Sollogoub, *Tetrahedron Lett.*, 2010, **51**, 1254.
- 19 O. Bistri, P. Sinaÿ and M. Sollogoub, *Tetrahedron Lett.*, 2005, 46, 7757; O. Bistri, P. Sinaÿ, J. Jimenez Barbero and M. Sollogoub, *Chem.-Eur. J.*, 2007, 13, 9757.
- 20 P. Angibeaud and J.-P. Utille, Synthesis, 1991, 9, 737.
- 21 R. B. Bedford, S. L. Hazelwood (née Welch) and M. E. Limmert, *Chem. Commun.*, 2002, 2610.
- 22 See for example: A. Alimardanov, L. Schmieder-van de Vondervoort, A. H. M. deVries and J. G. deVries, *Adv. Synth. Catal.*, 2004, 346, 1812.
- 23 C. Amatore, A. A. Bahsoun, A. Jutand, L. Mensah, G. Meyer and L. Ricard, *Organometallics*, 2005, 24, 1569.
- 24 For other uses of CDs in catalysis, see for example: F. Hapiot, A. Ponchel, S. Tilloy and E. Monflier, C. R. Chim., 2011, 14, 149; J. D. Senra, L. F. B. Malta, M. E. H. M. da Costa, R. C. Michel, L. C. S. Aguiar, A. B. C. Simas and O. A. C. Antunes, Adv. Synth. Catal., 2009, 351, 2411.