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Using a combined organocatalytic/metal-catalyzed strategy,
the enantiopure title hydroazulenes were prepared in only
four steps from (S)- and (R)-citronellal, respectively. A cata-
lyst-controlled diastereoselective Michael addition of these
aldehydes to methyl vinyl ketone followed by chemoselec-

tive dibromoolefination and one-pot Wittig olefination/alk-
yne formation afforded the key dienynes that underwent re-
gioselective domino metathesis to yield the target natural
products.

Introduction

The trisnorsesquiterpenes (—)-clavukerin A (1a)l!! and
(—)-isoclavukerin A (1b)[! were isolated from the soft coral
Clavularia koellikeri next to the cytotoxic cycloheptenones
(+)-clavularin A (2a)P4 and (-)-clavularin B (2b)!*3 during
a search for biologically active substances from marine
sources (Figure 1). Because 1a has already been converted
into 2a,[% which can be epimerized to give 2b,1*! a synthesis
of (-)-clavukerin A (1a) would also constitute a formal syn-
thesis of clavularins 2a and 2b. Hydroazulenes 1a and 1b
have often been used as testing ground for novel synthetic
methods and strategies.[® 1 In this context, several enantio-
selective syntheses have already been reported for (-)-clavu-
kerin A (1a).l”l The most efficient one commenced with lim-
onene oxide to furnish 1a in nine steps with a good overall
yield of 34%.0<1 So far, only two enantioselective syntheses
have been published for (-)-isoclavukerin A (1b).[&8 How-
ever, these synthetic routes required at least ten steps and
afforded natural product 1b only in low!’8l to moderate!®!
overall yield.

Results and Discussion

We thought that a combined organocatalytic/metal-cata-
lyzed strategy might provide rapid access to both hy-
droazulenes la and 1b in enantiopure form (Scheme 1).
Domino metathesis!'%! of acyclic dienynes 3a or 3b was
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Figure 1. Natural products from the soft coral Clavularia koellikeri.

envisioned to lead directly to the target bicyclic 1,3-dienes
la or 1b, respectively. In order to achieve selectivity with
respect to the handedness of cyclization — from left to right
or from right to left — we only added a CH, group on the
left in a retrosynthetic fashion, while we provided a higher
degree of substitution for the olefin on the right by adding
an isopropylidene unit. The first intermolecular cycload-
dition with a metal carbene complex was then expected to
take place preferentially on the less highly substituted olefin
to give the desired hydroazulene eventually.['!] The ter-
minal alkene and the alkyne of 3a and 3b were supposed to
originate from elaboration of 1,5-dicarbonyl compounds 4a
or 4b, which in turn can be derived from (S)-citronellal (5a)
or (R)-citronellal (5b), respectively, as commercially avail-
able starting materials by asymmetric organocatalytic
Michael addition to methyl vinyl ketone (MVK).['2:13]

We started our investigations with (S)-citronellal (5a)
that was added to MVK (7) in the presence of proline-
derived organocatalyst 8 and catechol 9 as a co-catalyst
(Scheme 2).'3:14 Using 20 mol-% of catalyst 8 at low tem-
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Scheme 1. Retrosynthetic analysis of 1a and 1b.

perature, a 90% yield of desired keto aldehyde 4a was ob-
tained with a catalyst-controlled diastereoselectivity of 18:1.
The catalyst loading could be reduced to 1 mol-% of 8 with-
out a significant change in stereoselectivity. However, the
yield of 4a then dropped to 72% even after 4 d at room
temperature. A chemoselective dibromoolefination of 4a as
a prelude to alkyne formation'” left the ketone carbonyl
untouched. Much to our surprise, treatment of resultant
ketone 6a with an excess amount of methylene(triphenyl)-
phosphorane in benzene at reflux not only caused methyl-
enation of the ketone, but it also converted intermediate
dibromoolefin 10al'® into halogen-free acetylene 3a. Al-
though the mechanism of this reaction is not entirely
clear,'-181 this one-pot process directly provided us with the
requisite substrate for the crucial domino metathesis.
Whereas neither the Grubbs I nor the Grubbs II catalyst
effected dienyne metathesis, application of phosphane-free
Hoveyda—Blechert catalyst 11011 in refluxing toluene
brought about the desired transformation of 3a under an
ethylene atmosphere.?%! (-)-Clavukerin A (1a), identical to
the natural product in all respects, was isolated in 53% yield
after straightforward chromatographic separation from
minor byproduct 12al>!1 on silica gel impregnated with sil-
ver nitrate.*?!

Because our combined organocatalytic/metal-catalyzed
strategy provided (—)-clavukerin A (1a) in only four steps
with a good overall yield of 35%, we decided also to make
(-)-isoclavukerin A (1b) along these lines (Scheme 3). Now
we commenced with (R)-citronellal (5b) that was added to
MVK (7) under the conditions already applied for the cor-
responding reaction of 5a to give keto aldehyde 4b in 87%
yield with 14:1dr.['314 As before, catalyst loading could be
reduced to 1 mol-% of 8 without altering the stereoselecti-
vity, but then the yield decreased to 48% even after 10 d at
room temperature. Chemoselective dibromoolefination of
4b to give 6b followed by one-pot Wittig olefination/alkyne
formation and domino metathesis of resultant dienyne 3b
with Hoveyda—Blechert catalyst 11 under an ethylene atmo-
sphere afforded (-)-isoclavukerin A (1b), identical to the
natural product in all respects, in 55% yield after facile
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Scheme 2. Synthesis of (—)-clavukerin A (1a). Reagents and condi-
tions: (a)7, 8 (20 mol-%), 9 (20 mol-%), 3°C, 90% (18:1dr);
(b) CBry, Ph;P, CH,Cl,, 0 °C to r.t., 94%; (c) Ph3P=CH, (4 equiv.),
benzene, reflux, 78% 3a, 18% 10a; (d) 11 (4 mol-%), CH,=CH,
(1 atm), toluene, reflux, 53% la.

chromatographic separation®?! from minor byproduct
12b.2!'1 Thus, again only four steps were needed with our
route to secure a much better overall yield of natural prod-
uct 1b compared to the published multistep sequences.[’®8]

10b

Scheme 3. Synthesis of (—)-isoclavukerin A (1b). Reagents and con-
ditions: (a) 7, 8 (20 mol-%), 9 (20 mol-%), 3 °C, 87% (14:1dr);
(b) CBry, Ph;P, CH,Cl,, 0 °C to r.t., 92%; (c) Ph3P=CH, (4 equiv.),
benzene, reflux, 78% 3b, 12% 10b; (d) 11 (4 mol-%), CH,=CH,
(1 atm), toluene, reflux, 55% 1b.
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Conclusions

In conclusion, we have developed short catalytic routes
to the marine sesquiterpenoids (-)-clavukerin A (l1a) and
(—)-isoclavukerin A (1b). Application of this technology to-
ward the synthesis of structurally more complex hydroazul-
enes is currently under investigation.

Experimental Section

Domino Metathesis of Dienynes 3a and 3b: Hoveyda—Blechert cata-
lyst 1119231 (39 mg, 0.062 mmol) and dry toluene (40 mL) were
placed under an ethylene atmosphere in a two-necked, 250-mL re-
actor equipped with a rubber septum, a magnetic stirring bar, a
reflux condenser, and a rubber tube on top of the condenser. The
green solution was stirred at room temperature for 15 min, and
then a solution of dienyne 3a (340 mg, 1.56 mmol) in dry toluene
(10 mL) was added by syringe. The resulting mixture was heated at
reflux for 3 h at 125 °C bath temperature. After cooling to room
temperature, the reactor was opened, the reaction mixture was
transferred into a 250-mL flask, and the volatiles were removed in
vacuo. The residue was transferred with a small amount of pentane
to a silica gel column (d 2 cm, h 40 cm). Elution with pentane gave
a mixture (Ry = 0.51) of isomeric cyclic products as a colorless oil
in 91% yield. This mixture was transferred to a column with silica
gel impregnated with silver nitrate?? (d 3 cm, h 17 cm). Elution
with pentane/Et,O, 7:1 (control using TLC plates modified with
silver nitrate)®? afforded two fractions: isomerized hexalin 12a (R
=0.70, 68 mg, 27%) and (-)-clavukerin A (1a) (R; = 0.35, 134 mg,
53%) as the major product. Data for 1a: [a]% = —60.0 (¢ = 0.55,
CHCI3). IR (ATR): ¥ = 3009, 2908, 2870, 2832, 1644, 1607, 1457,
1437, 1381, 1149, 779, 750, 713 cm™!. 'TH NMR (500 MHz, CDCl;):
0=0.75(d, J=6.9Hz 3 H), 1.51-1.60 (m, 1 H), 1.62-1.69 (m, 1
H), 1.72-1.79 (m, 4 H), 1.85-1.94 (m, 2 H), 2.24-2.32 (m, 4 H),
2.85-2.92 (m, 1 H), 5.51-5.56 (m, 1 H), 6.20 (d, J = 12.2 Hz, 1 H)
ppm. 3C NMR (125 MHz, CDCls): 6 = 11.4 (CH;), 14.5 (CHj3),
26.7 (CHy), 27.2 (CH,), 34.2 (CH), 34.4 (CH,), 37.8 (CH,), 54.5
(CH), 123.8 (CH), 128.8 (CH), 134.9 (C), 138.8 (C) ppm. GC-MS
(ED): mlz (%) = 162 (68) [M]*, 147 (70) [M — CH;]*, 133 (27), 119
(40), 105 (100), 91 (72), 79 (39).

Using the same experimental procedure, treatment of dienyne 3b
(246 mg, 1.13 mmol) with Hoveyda-Blechert catalyst 11 (28 mg,
0.045 mmol) furnished isomerized hexalin 12b (R; = 0.70, 60 mg,
33%) and (-)-isoclavukerin A (1b) (R = 0.35, 101 mg, 55%) as the
major product. Data for 1b: [a]%' = —100.0 (¢ = 0.58, CHCls). IR
(ATR): v = 3012, 2951, 2909, 2858, 2828, 1644, 1606, 1456, 1436,
1375, 1133, 779, 738, 713 cm™!. '"H NMR (600 MHz, CDCl;): 6 =
0.95 (d, J = 6.4 Hz, 3 H), 1.24-1.37 (m, 3 H), 1.68-1.73 (m, 4 H),
1.99-2.11 (m, 2 H), 2.20-2.37 (m, 4 H), 5.63-5.66 (m, 1 H), 6.23
(d, J = 11.8 Hz, 1 H) ppm. '3C NMR (150 MHz, CDCly): J =
14.7 (CH3), 22.0 (CH3), 29.3 (CH,), 30.3 (CH,), 36.69 (CH,), 36.73
(CH,), 39.9 (CH), 55.7 (CH), 124.2 (CH), 129.2 (CH), 136.6 (C),
138.6 (C) ppm. GC-MS (EI): m/z (%) = 162 (61) [M]*, 147 (67)
[M — CH;]", 133 (24), 119 (40), 105 (100), 91 (78), 79 (38).

Both hydroazulenes 1a and 1b are rather labile compounds and
should be stored at —20 °C with exclusion of oxygen.

Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures and 'H and '*C NMR spectra for
compounds 4a, 6a, 3a, 10a, 1a, 4b, 6b, 3b, 10b, 1b; 'H NMR spectra
of the mixtures 1a/12a and 1b/12b.
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