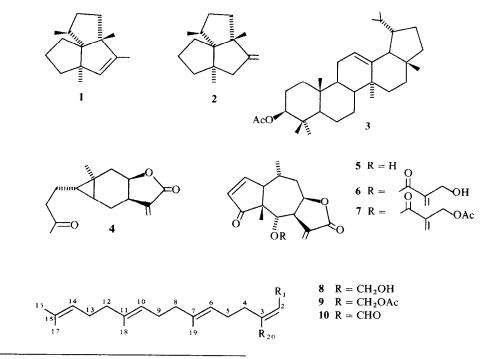
A PSEUDOGUAIANOLIDE AND A HYDROXYGERANYLNEROL FROM KINGIANTHUS PARADOXUS*

FERDINAND BOHLMANN[†], JÜRGEN ZIESCHE[†], HAROLD ROBINSON[‡] and ROBERT M. KING[‡]

† Institute for Organic Chemistry, Technical University of Berlin, D-1000 Berlin 12, West Germany;‡ Smithsonian Institute, Washington, DC 20560, U.S.A.


(Received 18 August 1980)

Key Word Index—Kingianthus paradoxus; Compositae; Heliantheae; sesquiterpene lactones; pseudoguaianolide; kingiolide; 20-hydroxygeranylnerol.

Abstract—Examination of Kingianthus paradoxus yielded kingiolide, a new pseudoguaianolide, and 20-hydroxygeranylnerol.

So far nothing is known about the chemistry of the new genus *Kingianthus* [1, 2] which is placed in the tribe Heliantheae (Compositae). To see whether the chemistry gives any indication of relationships to other parts of this large tribe, we have investigated *K. paradoxus* H. Robins. The aerial parts, collected in Ecuador, afforded α -pinene, germacrene D, germacrene B, α -humulene, phytol, isocomene (1), β -isocomene (2), lupenone, lupeol, lupeyl acetate and its isomer 3, carabrone (4) [3] as the main constituent, helenalin (5) [4] and two further compounds, namely 6, the hydroxymethacrylate of 5 and the diterpene diol 8. The structure of 6 was deduced from the ¹H NMR

data and those of the corresponding acetate 7, obtained by heating with acetic anhydride (Table 1). The presence of a pseudoguaianolide structure, closely related to helenalin (5), was clear from the similarity of the ¹H NMR signals, except for the expected downfield shift of H-6. The similarity of the couplings of H-6 through H-9 further indicated the presence of an 8,12-lactone. In the ¹H NMR spectrum of 7 first-order interpretations of all signals were possible. We have named compound 6 kingiolide. The structure of the diterpene 8 also followed from the ¹H NMR data and those of the corresponding diacetate 9, obtained by mild acetylation, as well as from those of the

* Part 327 in series "Naturally Occurring Terpene Derivatives". For Part 326 see Bohlmann, F., Dhar, A. K., King, R. M. and Robinson, H. (1981) *Phytochemistry* **20**, 1144.

 Table 1. ¹H NMR spectral data of compounds 6 and 7 (270 MHz, TMS as internal standard, CDCl₃)

	6	7	
H-1	3.04 ddd	3.02 ddd	
H-2	6.08 dd	6.08 dd	
H-3	7.69 dd	7.68 dd	
H-6	5.46 br. d	5.46 br. d	
H- 7	3.59 dddd	3.59 dddd	
H-8	4.90 ddd	4.90 ddd	
H-9	2.41 ddd	2.42 ddd	
H-9′	1.75 ddd	1.74 ddd	
H-10	2.19 m	2.19 dddq	
H-13	6.42 d	6.48 d	
H-13'	6.16 d	6.18 d	
H-14	1.29 d	1.28 d	
H-15	1.04 s	1.05 s	
OCOR	6.05 dt	6.25 dt	
	5.84 q	5.85 q	
	4.27 br. d	4.70 br. s	
OAc		2.08 s	

 $J (Hz): 1, 2 = 2.7; 1, 3 = 1.8; 1, 10 = 11.5; 2, 3 = 6; 6, 7 = 1; 7, 8 = 7.5; 7, 13 = 3; 7, 13' = 2.7; 8, 9 = 7.5; 8, 9' = 2.5; 9, 9' = 15; 9, 10 = 3.5; 9', 10 = 8; 10, 14 = 7; 3', 3' = 3', 4' \sim 1; 4', OH = 5.$

dialdehyde 10, obtained by manganese dioxide oxidation (Table 2). The stereochemistry of the 2,3-double bond was deduced from the shift differences of the signals for H-2 and H-4 in the spectra of 8 and 10 and the chemical shifts of H-1 and H-20 in the spectrum of 10. Compound 8 has also been isolated from a *Disynaphia* species [5].

Carabrone (4) has been isolated from a Monactis species (F. Bohlmann et al., unpublished results)

EXPERIMENTAL

Relationships to Zaluzania, where Kingianthus was

placed earlier [1], are not apparent.

The air-dried plant material (voucher RMK 7813) was extracted with Et_2O -petrol (1:2) and the resulting extract was first separated by CC (Si gel) and further by repeated TLC (Si gel). Known compounds were identified by comparing the IR and ¹H NMR spectra with those of authentic material.

The hydrocarbons were identified by GC/MS. Compounds obtained were 1 mg α -pinene, 20 mg germacrene D, 30 mg germacrene B, 10 mg α -humulene, 50 mg lupenone, 2 mg lupeol, 50 mg lupeyl acetate, 20 mg phytol, 1 mg 1, 1 mg 2, 50 mg 3, 250 mg 4, 1 mg 5, 65 mg 6 and 190 mg 8.

Kingiolide (6). Colourless gum, IR $v_{\text{max}}^{\text{CHCI}_3}$ cm⁻¹: 3600 (OH), 1760 (γ -lactone), 1715 (C=CCO₂R); MS m/z (rel. int.): 346.142 (M⁺, 1), 328 (M - H₂O, 0.5), 262 (M - C₃H₄O₂, 32), 244 (M - RCO₂H, 38), 85 (RCO⁺, 100).

$$[\alpha]_{24^{\circ}}^{\lambda} = \frac{589 \quad 578 \quad 546 \,\mathrm{nm}}{-70.1 \quad -78.8 \quad -87.4} (c = 6.5).$$

Compound 6 (10 mg) in 0.1 ml Ac₂O was heated for 1 hr at 70°. TLC (Et₂O-petrol, 1:1) afforded 8 mg 7, colourless gum; IR $v_{max}^{CCl_3}$ cm⁻¹: 1785 (γ -lactone), 1750, 1235 (OAc), 1720 (C=CCO₂R); MS m/z (rel. int.): 388 (M⁺, 3), 346 (M – ketene, 1), 329 (M – OAc, 1), 244 (M – RCO₂H, 24), 125 (C₆H₅O₃, 100).

20-Hydroxygeranylnerol (8). Colourless gum, IR v_{max}^{CII4} cm⁻¹: 3580 (OH), 1630 (C=C); MS m/z (rel. int.): 306 (M⁺, 0.5), 238.193 (M - isoprene, 6) (C₁₅H₂₆O₂), 220 (238 - H₂O, 15), 69 (C₅H₆⁺, 100). Compound 8 (5 mg) in 0.1 ml Ac₂O was heated for

Table 2. ¹H NMR spectral data of compounds 8-10 (270 MHz, TMS as internal standard, CDCl₃)

	8	9	$9(C_6D_6)$	10
H-1	4.22 br. d	4.64 br. d	4.67 br. d	10.22 d
H-2	5.70 br. t	5.63 br. t	5.67 br. t	6.51 d
H-4, 5	2.07 m	2.15 m	2.22 m	$\begin{cases} 2.73 \ br. \ t \\ 2.22 \ dt \end{cases}$
H-6	5.12 br. t	5.11 br. t	5.32 tq	5.10 br. t
H-8, 9	2.07 m	2.00 m	2.11 m	2.02 m
H-10	5.10 br. t	5.11 br. t	5.29 tq	5.10 br. t
H-12, 13	2.07 m	2.00 m	2.11 m	2.02 m
H-14	5.10 br. t	5.11 br. t	5.20 tq	5.10 br. t
H-16*	1.68 br. s	1.69 br. s	1.73 br. s	, 1.69 br. s
H-17 to H-19*	1.60 br. s	1.61 br. s	$\begin{cases} 1.67 \ br. \ s \\ 1.63 \ br. \ s \end{cases}$	1.61 br. s 1.61 br. s
11-17 (0 11-19	1.00 01. 5	1.01 01. 5	$1.61 \ br. \ s$	1.54 br. s
H-20	4.10 br. s	4.55 br. s	4.56 br. s	9.67 s
OAc		2.10 s	1.72 s	
	_	2.08 s	1.70 s	—

* In C₆D₆: 1.73 br. s, 1.65 br. s, 1.61 br. s, 1.59 br s.

J (Hz): 1, 2 = 7; (9: 7.5); 5, 6 = 9, 10 = 13, 14 ~ 6.5.

1 hr at 70°. TLC (Et₂O-petrol, 3:1) afforded 5 mg **9**, colourless gum; IR $v_{max}^{CCl_4}$ cm⁻¹: 1740 and 1240 (OAc); MS (CI, isobutane) m/z (rel. int.): 391 (M + 1, 1), 331 (391 – HOAc, 15), 271 (331 – HOAc, 100). Compound **8** (5 mg) in 2 ml Et₂O was stirred for 2 hr with 50 mg MnO₂. TLC (Et₂O-petrol, 3:1) afforded 2 mg **10**, colourless gum; IR $v_{max}^{CCl_4}$ cm⁻¹: 1695 and 1685 (C=CCHO); MS m/z (rel. int.): 302 (M⁺, 4), 136 (C₁₀H₁₆⁺, 17), 81 (C₆H₉⁺, 40), 69 (C₅H₉⁺, 100).

Acknowledgement—We thank the Deutsche Forschungsgemeinschaft for financial support.

REFERENCES

- 1. Robinson, H. (1979) Phytologia 38, 415.
- 2. Robinson, H. (1979) Phytologia 44, 70.
- 3. Minato, H., Nosaka, S. and Horibe, I. (1964) J. Chem. Soc. (London) 5503.
- 4. Adams, R. and Herz, W. (1949) J. Am. Chem. Soc. 71, 2546.
- 5. Bohlmann, F., Dhar, A. K., Jakupovic, J., King, R. M. and Robinson, H. (1981) *Phytochemistry* 20, 1077.
- 6. Fischer, N. H., Olivier, E. J. and Fischer, H. D. (1979) in *Progress in the Chemistry of Organic Natural Products*, Vol. 38, p. 47. Springer, New York.