

Phytochemistry 50 (1999) 1229–1236

PHYTOCHEMISTRY

Triterpenoids from Mangifera indica¹

V. Anjaneyulu*, P. Satyanarayana, K.N. Viswanadham, V.G. Jyothi, K. Nageswara Rao, P. Radhika

Organic Chemistry Laboratories, School of Chemistry, Andhra University, Visakhapatnam 530 003, India

Received 14 September 1998

Abstract

Two new triterpenoids, 25(R)-3-oxo-24-methylene cycloartan-26-ol and ψ -taraxastanonol have been isolated from the neutral fraction of the stem-bark of *Mangifera indica* (var/cv sarikhas). The acidic fraction of the same extract yielded three new tetracyclic triterpenoids, 3-oxo-23(R or S)-hydroxy cycloart-24-en-26-oic acid and both C-23 epimers of 3β ,23-dihydroxy cycloart-24-en-26-oic acid. The structures were elucidated by spectroscopic and chemical methods. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: Mangifera indica; Anacardiaceae; Stem-bark; Triterpenoids and steroids

1. Introduction

Chemical examination of various varieties namely Banganpalli (Anjaneyulu, Harischandra Prasad, Ravi, & Connolly, 1985) Neelum, (Anjaneyulu, Ravi, Harischandra Prasad, & Connolly, 1989), Himayaddin (Anjaneyulu, Suresh Babu, Murali Krishna, & Connolly, 1993) and Himasagar (Anjaneyulu, Suresh Babu, & Connolly, 1994) of *Mangifera indica* in these laboratories have yielded new triterpenoids of cycloartane, dammarane, taraxastane and hopane skeletons. The variation of triterpenoid and steroid constituents of several varieties collected from different regions of India prompted the examination of yet another variety from West Bengal State. In this communication, we report the isolation and structure elucidation of five new triterpenoids along with many other known compounds.

2. Results and discussion

The neutral fraction of the *n*-hexane extract of *Mangifera indica* yielded two new triterpenoids (compound A and B) besides several known triterpenoids namely cycloartenone (Anjaneyulu, Suresh Babu, & Murali Krishna, 1992), 24-methylene cycloartanone (Ohta, 1960), friedelin (Anjaneyulu, Prasad, & Rao, 1982), tar-

axerone (Anjaneyulu et al., 1982), friedelan- 3β -ol (Anjaneyulu et al., 1982), α-amyrin (Anjaneyulu et al., 1985), β -amyrin (Anjaneyulu et al., 1985), cycloartenol (Anjaneyulu et al., 1985), 24-methylene cycloartanol (Corsano & Mincione, 1967), sitosterol (Anjaneyulu et al., 1985), 11a,12a-oxido-taraxerol (Anjaneyulu, Suresh Babu, & Jyothi, 1994), 6β-hydroxy-stigmast-4-en-3-one (Anjaneyulu et al., 1992), 24-methylene cycloartane- 3β ,26-diol(Anjaneyulu et al., 1985) and C-24 epimeric mixture of cycloartane- 3β ,24,25-triol (Anjaneyulu et al., 1985). The acidic fraction of the same extract on column chromatography gave three new triterpenoids (compound C, D and E) besides mangiferonic acid (Anjaneyulu et al., 1989), ambonic acid (Corsano & Mincione, 1966, 1967), isomangiferolic acid (Anjaneyulu et al., 1989), mangiferolic acid (Anjaneyulu et al., 1989), ambolic acid (Corsano & Mincione, 1966, 1967) and 3a-22(*R* or *S*)-dihydroxy cycloart-24-en-26-oic acid (Anjaneyulu et al., 1989).

Compound A, m.p. 145–146°C, analysed for $C_{31}H_{50}O_2$ (M⁺ at m/z 454). Its IR spectrum showed a carbonyl band at 1700 cm⁻¹, hydroxyl at 3600 cm⁻¹ and a terminal methylene at 890 cm⁻¹. The ¹H NMR spectrum displayed a characteristic cyclopropane methylene protons at δ 0.57, 0.75 (ABq, J=4 Hz), two secondary methyls (δ 0.97 and 1.06) and four tertiary methyls (δ 0.82, 0.92 and 1.10). It also displayed a vinyl methylene at δ 4.82 and 4.88 each integrating for one proton and two broad singlets at δ 3.51 and 3.59 assignable to hydroxymethylene protons. The ¹³C NMR spectrum showed three sp² carbon resonances at δ 152.2 (s), 109.5 (t) and 216.4 (s) confirming the presence of vinyl methylene and

¹Part III in the series "Triterpenoids from *Mangifera indica*". For part II see Anjaneyulu et al., 1989.

^{*} Corresponding author.

carbonyl groups, respectively, in compound A. It also displayed a sp³ carbon resonance at δ 66.0 (t) which can be assignable to hydroxy methylene group. The mass spectral fragmentation of compound A showed the characteristic fragments at m/z 316 and 175 for 9,19cyclolanostane derivatives (Alpin & Hornby, 1966; Audier, Bengelmans, & Das, 1966). The fragment ions at m/z 313 and 316 showed the presence of carbonyl group in the nucleus and a nine carbon side chain with hydroxy methylene group. The characteristic McLafferty type cleavage fragments (Wyllie & Djerassi, 1968; Bortolotto, Brackmann, Daloze, & Tursch, 1976) due to C₂₂-C₂₃ bond fission at m/z 354 (M⁺-C₆H₁₂O) and 216 (316-C₆H₁₂O) indicated the presence of 24-methylene side chain. These two fragment ions locate the position of hydroxyl group at C-26. Based on the above spectral data, the structure, 3-oxo-24-methylenecycloartan-26-ol (1) is assigned to compound A.

The carbon resonances (Table 1) of compound A were in close agreement with those of 24-methylenecycloartanone (2) except C-24 to C-27 of the side chain. The C-26 hydroxyl group exhibits the following effects: α (C-26, +44.1); β (C-25, +2.4) and γ (C-27, -5.5 and C-24, -4.2) which are in close agreement with

Structure 1.

Table 1 ¹³C NMR spectral data of compounds 1, 2, 3, 6 and 9 (22.4 MHz, CDCl₃, TMS as internal standard)

С	1 ^a	2	3 ^a	6	9 ª
1	33.4	33.4	32.0	39.6	37.1
2	37.4	37.4	30.4	33.8	34.2
3	216.4	216.2	78.9	218.0	206.1
4	50.2	50.2	40.5	47.4	126.1
5	48.5	48.4	47.2	54.8	169.0
6	21.5	21.5	21.2	19.8	73.1
7	28.2	28.1	28.2	34.1	38.6
8	47.9	47.9	48.0	41.4	29.8
9	21.2	21.1	20.1	49.1	53.7
10	25.9	25.9	26.2	36.7	38.0
11	26.1	26.0	26.1	22.2	21.0
12	32.9	32.9	33.0	26.7	39.6
13	45.4	45.4	45.4	38.2	42.5
14	48.8	48.8	48.9	39.2	55.9
15	35.6	36.6	35.6	26.8	24.2
16	26.8	26.6	26.5	38.9	28.2
17	52.3	52.3	52.3	35.6	56.0
18	19.3	19.3	19.4	47.3	12.0
19	29.5	29.5	29.9	43.3	19.5
20	36.0	36.1	36.2	73.5	36.1
21	18.1	18.1	18.1	37.8	18.8
22	35.0	34.1	35.0	35.2	34.0
23	31.4	31.3	31.4	26.8	26.2
24	152.2	156.4	152.2	21.1	45.9
25	36.2	33.8	36.2	16.2	29.2
26	66.0	21.9	66.0	16.1	19.1
27	16.4	21.9	16.4	14.8	19.8
28	18.4	18.3	18.4	29.5	23.1
29	25.9	25.9	25.5	17.8	12.0
30	20.8	20.7	14.0	30.3	
31	109.5	105.9	109.5		

^a Multiplicities assigned from DEPT spectrum.

those recorded for such effects in literature (Anjaneyulu et al., 1985). The down-field shift of C-31 resonance in compound A might be due to the proximity of the hydroxy methylene group. The structure of compound A is confirmed by converting it into compounds of known structure. LAH reduction gave a diol, m.p. 150-152°C, identified as 24-methylene cycloartane 3β , 26-diol (3) from its ¹H NMR data and also by direct comparison with an authentic sample. Chromium trioxide oxidation of compound A gave a keto carboxylic acid, m.p. 150-152°C characterised as ambonic acid (4) from its spectral data and also by direct comparison with an authentic sample. The absolute configuration of ambonic acid (4) at C-25 has already been established as 'R' by Corsano and Mincione (1968). Therefore, the absolute configuration at C-25 in compound A is also deduced as 'R'. Thus the structure of compound A is deduced as 25(R)-3-oxo-24-methylenecycloartan-26-ol (1) and it is a new addition to triterpenoid literature.

Compound B, m.p. $275-278^{\circ}C$ and analysed for $C_{30}H_{50}O_2$. Its IR spectrum showed hydroxyl absorption

at 3600 cm⁻¹ and carbonyl absorption at 1695 cm⁻¹. The ¹H NMR spectrum showed the absence of olefinic protons, hydroxy methine protons and exhibited one secondary methyl (δ 0.89, J=7 Hz) and seven tertiary methyls (δ 0.97, 1.03, 1.07, 1.17). It resisted acetylation under normal conditions indicating the presence of a tertiary hydroxyl group. The low-field methyl signal at δ 1.17 may be assigned to the methyl on the carbon bearing the tertiary hydroxyl group. The ¹³C NMR spectrum of compound B showed only one sp² carbon resonance at δ 218 (s) assignable to carbonyl group and one sp³ carbon resonance at δ 73.5 (s) assignable to carbon bearing ter-

tiary hydroxyl group. Therefore, compound B is a ketohydroxy derivative of a saturated pentacyclic triterpenoid, probably of ursane or taraxastane skeleton. The methyl pattern in ¹H NMR of compound B indicated that it might be a taraxastane derivative. The mass spectrum of compound B showed no molecular ion but the heaviest fragment is at m/z 424 (M⁺-18) which corresponds to the loss of a molecule of water from the molecular ion. The prominent mass fragment ions of saturated pentacyclic triterpenes (Budzikiewicz, Wilson, & Djerassi, 1963) at m/z 205 due to the cleavage of ring C indicates the carbonyl group in ring A/B and 189 containing the ring D/E with the loss of a molecule of water. The base mass fragment ion at m/z 371 [M⁺-C₄ H₇O] (5) and its formation can be explained by onium cleavage (Anjaneyulu et al., 1985). This fragment locates the tertiary hydroxyl in ring E at C-19 or C-20. However, the presence of Retro-Diel's-Alder fragment ion at m/z 82 in its mass spectrum fixes the hydroxyl at C-20 of ring E of the taraxastane skeleton. Based on the above spectral data, the structure 3-oxo-taraxastane-20(R or S)-ol (6) is assigned to compound B.

Dehydration of compound B with thionyl chloride gave colourless needles, m.p. 175–176°C identified as ψ taraxastenone (7) by direct comparison with an authentic sample (Anjaneyulu & Row, 1965). On reduction with LAH it afforded a diol, m.p. 270-274°C, characterised as ψ -taraxastane-3 β , 20-diol (8) by direct comparison with an authentic sample (Anjaneyulu et al., 1985) and also from ¹H NMR spectrum. Bhattacharya et al. (Hinge, Paknikar, Das, Bose, & Bhattacharya, 1966) reported the isolation of epi- ψ -taraxastanonol, m.p. 257–259°C, $[\alpha]_D$ +25.3° from Indian black dammar resin. Careful comparison of physical constants and spectral data of compound B and the reported ketol (11) revealed that these two were identical, the only difference being that the tertiary hydroxyl groups at C-20 were epimeric. Hence compound B is a new compound and named as ψ -taraxastanonol (6). The carbon resonances of compound B were assigned in Table 1 by comparing the carbon resonances with those of taraxasterol (Amarendra, Mukhopadhyay, & Mitra, 1981) and taraxarone (Sakurai, Yaguchi, & Inoue, 1987) and also taking C-20 hydroxy substitution effects into consideration.

The isolation of 6β -hydroxy stigmast-4-en-3-one (9) and 24-methylenecycloartane- 3β ,26-diol (3) are reported for the first time from the stem-bark of *M. indica* and its ¹³C NMR data presented for the first time in Table 1.

Compound C has been isolated as semisolid and resisted crystallisation from several solvent systems. Attempts to separate the mixture into its constituents by column chromatography were unsuccessful. Therefore, it was acetylated with acetic anhydride–pyridine at room temperature for 24 h. Compound C acetate showed a ketonic carbonyl (1705 cm⁻¹), α , β -unsaturated acid carbonyl (1690 cm⁻¹) and a conjugated double bond (1640)

cm⁻¹) besides a broad band at 1745 cm⁻¹ for ester carbonyl in its IR spectrum. A close examination of its ¹H NMR spectrum revealed that it might be a mixture of at least two compounds. The presence of cyclopropane methylene protons at δ 0.35, 0.55 and 0.77 as three doublets indicated that it might be a mixture of 3-oxo (δ 0.55 and 0.77) and 3-acetoxy (δ 0.35 and 0.55) derivatives of cycloartane skeleton. It is further confirmed by the observation of two vinyl methyls (δ 1.82 and 1.85), two olefinic protons (δ 6.65 (t) and 6.70 (d)) and three acetoxy methyls (δ 2.05, 2.10 and 2.11). Further the ¹³C NMR spectrum of compound C acetate displayed 3-acetoxy carbonyl signals (δ 171.1, 170.9 and 170.2), two carboxyl carbon resonances at δ 172.5 and 170.5 and one carbonyl carbon resonance (δ 216.6). Hence it was concluded that compound C acetate is a mixture of ketol monoacetate and diol diacetate of cycloart-24-en-26-oic acid.

The ¹³C NMR data of compound C acetate was compared with those of mangiferonic acid (10) and $3\alpha.22(R)$ or S)-dihydroxy cycloart-24-en-26-oic acid (11) (Anjaneyulu et al., 1989) in Table 2. One set of carbon resonances are in close agreement with those of known 11. The other set of carbon resonances of the nucleus were identical with those of 10 and those of the side chain differ from both those of **10** and **11**. Hence the second component of compound C may be a new keto hydroxy carboxylic acid. The position of the acetoxyl group in the side chain of the second component of compound C acetate is deduced as being at C-23 by the multiplicity of one of the olefinic protons as doublet at δ 6.70 in its ¹H NMR spectrum. The side chain carbon resonances of the second constituent of compound C acetate are assigned by placing the acetoxyl group at C-23 and taking substitution effects into consideration. Hence it is concluded that compound C is a mixture of a known 11 and a new 3-0x0-23(R or S)hydroxycycloart-24-en-26-oic acid (12).

Compound D, m.p. 279-281°C analysed for C₃₀H₄₈O₄. Its IR spectrum showed absorption bands for hydroxyl $(3600 \text{ cm}^{-1}), \alpha, \beta$ -unsaturated carboxyl (3300–2500, 1695 cm^{-1}) and conjugated double bond (1640 cm^{-1}). Its absorption at 217 nm in the UV region confirmed that it is an α,β -unsaturated carboxylic acid. The ¹H NMR spectrum of compound D exhibited characteristic ABq (δ 0.35 and 0.55) for cyclopropane methylene protons. A vinyl methyl at δ 1.86 as singlet, five methyls at δ 0.80, 0.85 and 0.95 and an olefinic proton as doublet at δ 6.60. It also showed an axial hydroxy methine proton at δ 3.20 as a multiplet and another hydroxy methine proton buried under the DMSO peak. The ¹³C NMR spectrum showed two sp³ resonances at δ 78.0 (d) and δ 66.5 (d) which confirmed the presence of two secondary hydroxyls in the molecule. Based on the above data, it was deduced that compound D is a dihydroxy derivative of cycloart-24-en-26-oic acid.

The mass spectrum of compound D showed no molecular ion, but the fragment ion at m/z 454 (M⁺-H₂O)

С	10	11	11 a	12 a	13 ^{a,b}	14 ^b	15 ^a	4
1	33.4	27.3	33.4	26.0	31.9	31.9	32.0	33.4
2	37.4	28.3	37.4	31.6	30.3	30.3	30.3	37.4
3	216.3	76.8	216.6	77.3	78.0	78.1	78.9	216.7
4	50.2	39.4	50.2	39.4	40.4	40.4	40.5	50.2
5	48.4	40.9	48.4	40.3	47.1	47.1	47.1	48.5
6	21.5	20.9	21.5	20.0	21.0	21.0	21.1	21.5
7	28.1	29.6	28.2	29.7	28.3	28.3	28.1	28.1
8	47.9	47.9	47.7	47.8	47.7	47.8	48.0	47.9
9	21.0	19.6	21.0	19.9	19.8	19.8	20.1	21.1
10	25.9	26.3	26.0	26.3	26.3	26.4	26.1	25.9
11	25.6	25.6	25.6	25.8	25.9	25.9	26.1	26.0
12	32.8	32.7	32.8	32.7	32.8	32.8	33.0	32.9
13	45.3	45.5	45.3	45.4	45.2	45.2	45.4	45.4
14	48.7	48.3	48.8	48.4	48.8	48.8	48.9	48.8
15	35.5	35.5	35.4	35.5	35.4	35.4	35.6	35.6
16	26.7	26.6	26.7	26.2	26.1	26.1	26.5	26.8
17	52.2	49.1	52.7	52.6	52.8	52.9	52.3	52.3
18	18.1	19.2	18.0	19.2	19.4	19.2	19.4	19.4
19	29.5	29.9	29.5	29.7	29.7	29.7	29.9	29.5
20	35.9	42.2	35.4	42.1	33.4	33.4	36.0	36.0
21	18.1	12.3	18.3	12.9	19.2	19.2	18.1	18.1
22	34.9	72.8	38.7	74.0	44.0	44.0, 43.1	34.6	34.6
23	22.2	27.1	69.0	25.4	66.5	66.6, 65.6	31.7	31.7
24	145.5	141.0	142.1	140.9	144.3	144.2, 145.6	148.7	148.6
25	126.7	129.0	128.2	130.1	128.2	128.2, 128.2	45.7	45.8
26	173.2	170.5	172.5	170.5	172.5	172.5, 170.5	179.7	180.3
27	12.0	11.9	12.5	12.5	12.9	12.9. 12.5	16.3	16.4
28	18.1	17.7	18.1	18.0	17.9	17.9	18.3	18.3
29	25.5	21.1	25.8	21.3	25.6	25.5	25.5	25.9
30	20.7	25.6	20.8	26.0	14.1	14.1	14.0	20.8
31							111.1	111.1
CH ₂ COO			22.8					
,			21.3					
			21.1					
O 								
—0—С —СН	3		17.2					
	-		170.9					
			170.1					

¹³C NMR spectral data of compounds 10, 11, 11a, 12a, 13, 14, 15 and 4 (22.4 MHz, CDCl₃, TMS as internal standard)

^a Multiplicities as from DEPT spectrum.

Table 2

^b Spectra recorded in $CDCl_3$ + one drop of DMSO-d₆.

indicated the loss of a water molecule from it. Its mass spectral fragmentation exhibited characteristic of 9,19cyclo triterpenoid skeleton (Alpin & Hornby, 1966; Audier et al., 1966). The characteristic fragment ions at m/z332, 175 (332-side chain) are formed by the cleavage of ring B and loss of ring A and 315 (M⁺-side chain) indicated the location of one hydroxyl group in the side chain and another hydroxyl in ring A/B. The multiplicity of the olefinic proton as a doublet at δ 6.60 in its ¹H NMR spectrum of compound D locates the hydroxyl at C-23 in the side chain. Thus the structure 3β ,23(R or S)dihydroxycycloart-24-en-26-oic acid (13) is assigned to compound D.

Previously 13 has been detected by ¹³C NMR spectral data in a mixture along with 3β ,22(*R* or *S*)-dihydroxy-

cycloart-24-en-26-oic acid from the Neelum variety (Anjaneyulu et al., 1989) of M. *indica*. This is the first record of its isolation in the pure state. The carbon resonances of compound D (13) are assigned in Table 2.

Compound E, m.p. 240–242°C and found to be isomeric with compound D (13) from its elemental analysis. Its IR and UV data indicated it to be an α,β -unsaturated carboxylic acid. The ¹H NMR spectrum of compound E is almost identical with that of 13 except for the presence of an extra methyl at δ 1.92 and an olefinic proton at δ 6.75 (d) in the former. The doubling of the side chain carbon resonances C-22 to C-27 in the ¹H NMR spectrum of 13 and the multiplicities of two olefinic protons as doublets in the ¹H NMR spectrum indicated that it is a mixture of 23-epimers. Hence compound E is a 23-epimeric mixture of 3β ,23-dihydroxycycloart-24-en-26-oic acid (14). The carbon chemical shifts of compound E were assigned by comparing with those of 3β ,23(*R* or *S*)dihydroxycycloart-24-en-26-oic acid (13) in Table 2. One set of side chain carbon resonances are in close agreement with those of 13 and another set differ slightly and were assigned to its 23-epimer. The 23-epimer of 13 is a new addition to the literature of triterpenoids.

Ambonic acid (4) and ambolic acid (15) are isolated for the first time from the stem-bark of M. *indica* and their ¹³C NMR data were recorded for the first time in Table 2.

It is very interesting to note the co-occurrence of 3β ,23(*R* or *S*)-dihydroxycycloart-24-en-26-oic acid (13), the C-23 epimers of 3β ,23-dihydroxycycloart-24-en-26oic acid (14) and 3-oxo-23(R or S)-hydroxycycloart-24en-26-oic acid (12) in the Sarikhas variety of M. indica. The present investigation on stem-bark of this variety secured from West Bengal vielded eight triterpenoids containing 3-oxo group and six triterpenoids of 24-methylenecycloartane skeleton. Previous investigations on different varieties of *M. indica* in these laboratories afforded only one 24-methylenecycloartane derivative, 24-methylenecycloartane- 3β ,26-diol (3). The isolation of several 24-methylenecycloartane triterpenoids and cooccurrence of many pairs of 3-oxo triterpenoids and their corresponding reduced hydroxy derivatives from Sarikhas variety is of some chemotaxonomic significance.

3. Experimental

M.p.s: uncorr. The plant material was secured from M/s United Chemical and Allied Products, Calcutta. The compounds were dried for analysis at room temp. or 100°C, 0.2 mm⁻¹ Hg for 6 h. ¹H NMR, ¹³C NMR: 90 and 22.4 MHz (JEOL), respectively, with TMS as an int. standard; IR: Shimadzu model 408 spectrophotometer; UV: Milton Roy Spectronic 1201; CC: silica gel (100–200 mesh, Acme).

3.1. Extraction and isolation

The dried and powdered stem-bark (8 kg) was extracted with *n*-hexane (b.p. $60-80^{\circ}$ C) and MeOH in a big aspiratory bottle. The dark brown coloured *n*-hexane extract was evapd under red. pres. and the resultant gummy residue (194 g) was separated into acidic, phenolic and neutral fractions (Anjaneyulu et al., 1985). The neutral fraction (110 g) was chromatographed over a column of silica gel (900 g) and successively eluted with *n*-hexane, *n*-hexane–C₆H₆, C₆H₆ and C₆H₆–EtoAc mixtures. The results of the chromatography are shown in Tables 3 and 4.

Fraction A showed a broad single spot on TLC and was further rechromatographed over silica gel column.

Elution with *n*-hexane–Me₂CO (9.9:0.1) afforded compound **1**. Further elution with *n*-hexane–Me₂CO (9.8:0.2) yielded compound **2** and 11α , 12α -oxido taraxerol. Identification of the known compounds was based on their physical and spectroscopic characteristics and by direct comparison (TLC, ¹H NMR, mmp) with authentic samples wherever possible.

3.2. Compound A: 25(**R**)-3-oxo-24-methylenecycloartan-26-ol(1)

Recrystallised from CHCl₃–MeOH as colourless needles, m.p. 145–146°C, $[\alpha]_{D}^{30}$ +175° (CHCl₃; *c* 0.6) (found: C, 81.82; H, 11.10; requires: C, 81.94; H, 11.01%). IR $\nu_{max}^{CHCl_3}$ cm⁻¹: 3600, 1640, 890. ¹H NMR (90 MHz, CDCl₃): δ 0.57, 0.75 (2H, ABq, J=4 Hz, H₂-19), 0.82 (3H, s), 0.92 (3H, s), 0.97 (3H, d, J=6 Hz), 1.06 (3H, d, J=7 Hz), 1.10 (6H, s), 3.51, 3.59 (each 1H, two br s, H₂-26), 4.82, 4.88 (each 1H, two br s, H₂-31). MS *m*/*z* (rel. int): M⁺ 454 (3), 354 (3), 316 (3), 313 (11), 216 (3), 175 (15), 140 (23), 121 (38), 100 (46), 95 (75.8), 69 (65), 55 (100).

3.3. LAH reduction of compound A

To a cooled soln of LAH (50 mg) in dry THF (10 ml), a soln of compound A (20 mg) in THF (10 ml) was added drop by drop. The reaction mixture was stirred under cooling for 1 h and then refluxed for 6 h. Unreacted LAH was removed by adding moist Et₂O and then by H₂O. Removal of the solvent and crystallisation from benzene gave 24-methylenecycloartane- 3β ,26-diol (**3**) as colourless long needles (30 mg), m.p. 151–152°C; $[\alpha]_D^{30} + 52^\circ$ (CHCl₃; *c* 1). IR ν_{max}^{KBr} cm⁻¹: 3500, 895. ¹H NMR (90 MHz, CDCl₃): δ 0.30, 0.54 (2H, ABq, J=4 Hz, H₂-19] 0.77, 0.89, 0.94, 0.98, 1.06 (18H, 6 × Me), 1.61 (1H, s, -OH), 3.22 (1H, m, H-3 α), 3.48 (2H, d, J=7 Hz, H₂-26), 4.80 (2H, d, J=5 Hz, H₂-31).

3.4. Chromium trioxide oxidation of compound A

Compound A (30 mg) in benzene was stirred with chromium trioxide (30 mg) in A.R acetic acid (5 ml) and H₂O (1 ml) for 3 h at room temp. The usual workup followed by crystallisation from CHCl₃–MeOH to give ambonic acid (4) as shining plates (20 mg), m.p. 150–152°C; $[\alpha]_{D}^{30}$ +9.6° (CHCl₃; *c* 1.5). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 1735, 1701, 1650, 900. ¹H NMR (90 MHz, CDCl₃): δ 0.55, 0.75 (2H, ABq, J=4 Hz, 19-H₂), 0.90, 1.0, 1.05, 1.10 (15H, $5 \times$ CH₃), 1.27 (3H, d, J=7 Hz, H₃-26), 3.12 (1H, q, J=4 Hz, H-25), 4.85, 4.92 (each 1H, two br s, H₂-31).

3.5. Compound B: 3-oxo taraxastan-20(R or S)-ol(6)

Recrystallised from CHCl₃–MeOH as shining needles, m.p. 275–278°C; $[\alpha]_D^{30}$ –9.0°; (found: C, 81.3; H, 11.1. calc. for C₃₀H₅₀O₂; C, 81.45; H, 11.31%). IR $\nu_{max}^{CHCl_3}$ cm⁻¹:

Eluent	Fractions	Compound	Yield (g)
<i>n</i> -Hexane	1–17	waxes	6.0
n-Hexane–C ₆ H ₆ (9:1)	18-21	cycloartenone	0.5
n-Hexane–C ₆ H ₆ (9:1)	22-40	cycloartenone and 24-methylenecycloartanone	3.1
n-Hexane–C ₆ H ₆ (4:1)	41–44	friedelin	0.12
n-Hexane–C ₆ H ₆ (4:1)	45-46	taraxerone	0.08
n-Hexane–C ₆ H ₆ (3:2)	47–49	friedelan-3β-ol	0.07
n-Hexane–C ₆ H ₆ (2:3)	50-64	α -amyrin, β -amyrin	1.2
<i>n</i> -Hexane– C_6H_6 (2:3)	65-87	cycloartenol	2.6
n-Hexane–C ₆ H ₆ (2:3)	88-93	24-methylenecycloartanol	0.5
n-Hexane-C ₆ H ₆ (1:4)	94–114	β-sitosterol	2.1
C ₆ H ₆	115-129	fraction A	1.9
C ₆ H ₆	130-134	6β-hydroxystigmast -4-en-3-one	0.2
C_6H_6 -EtoAc (9:1)	135-146	24-methylenecycloartane -3β , 26-diol	0.3
C_6H_6 -EtoAc (9:1)	147-152	intractable gum	_
C_6H_6 -EtoAc (4:1)	153-158	C-24 epimeric mixture of cvcloartane-3 <i>B</i> .24.25-triol	0.18
$C_{\epsilon}H_{\epsilon}$ -EtoAc (3:2)	159-165	uncharacterised	0.005
$C_{\epsilon}H_{\epsilon}$ -EtoAc (2:3)	166-170	intractable gum	_
EtoAc	171–182	intractable gum	-

 Table 3

 Triterpenoids isolated from the neutral fraction of the Mangifera indica extract

Table 4 Triterpenoid acids isolated from the acidic fraction of the *Mangifera indica* extract

Eluent	Fractions	Compound	Yield (g)
<i>ı</i> -Hexane	1-10	fatty acids	_
n-Hexane–C ₆ H ₆ (1:1)	11-16	intractable gum	_
C_6H_6	17-42	mangiferonic acid	2.8
$C_{6}H_{6}$ -EtoAc (19:1)	43-47	ambonic acid	0.6
C_6H_6 -EtoAc (9:1)	48-67	isomangiferolic acid	2.4
C_6H_6 -EtoAc (4:1)	68-97	mangiferolic acid	3.2
C_6H_6 -EtoAc (7:3)	98-105	mangiferolic acid, ambolic acid	0.08
C_6H_6 -EtoAc (3:2)	106-115	compound 3	0.03
C_6H_6 -EtoAc (2:3)	116-120	compound 4	0.08
C_6H_6 -EtoAc (1:4)	121-140	compound 5	0.04
EtoAc	141-150	intractable gum	_
		•	

3600, 1695. ¹H NMR (90 MHz, CDCl₃): δ 0.89 (3H, d, J=7 Hz), 0.97 (6H), 1.03 (3H), 1.07 (9H), 1.17 (3H). MS m/z (rel. int.): M⁺ 424 (25), 371 (35), 205 (30), 189 (11), 151 (36), 123 (35), 95 (58), 82 (58), 43 (100).

3.6. Dehydration of compound B with thionyl chloride

Compound B (20 mg) in dry pyridine (5 ml) was cooled in ice and freshly distilled thionyl chloride (0.5 ml) was added drop-wise followed by stirring. The mixture was stirred for 10 min. The contents were poured into water and extracted with Et₂O. The Et₂O extract was dried (over anhydrous Na₂SO₄). Removal of the solvent and crystallisation from CHCl₃–MeOH gave ψ -taraxastenone (7) as colourless needles (15 mg), m.p. 175–176°C, $[\alpha]_{D}^{30}$ +81° (CHCl₃, *c* 1.2).

3.7. LAH reduction of compound B

To a cooled soln of LAH (50 mg) in dry THF (10 ml) a solution by compound B (20 mg) in THF (10 ml) was added drop by drop. The mixture was cooled with constant stirring for 1 h and then refluxed for 5 h. The unreacted LAH is decomposed by adding H₂O. Removal of solvent and crystallisation from benzene gave ψ -taraxastan-3 β ,20-diol (Anjaneyulu et al., 1985) as colourless plates (30 mg), m.p. 272–274°C; $[\alpha]_D^{30} - 10.2^\circ$ (CHCl₃, *c* 0.5). IR $\nu_{max}^{CHCl_3}$ cm⁻¹: 3480 (br). ¹H NMR (100 MHz,

V. Anjaneyulu et al./Phytochemistry 50 (1999) 1229-1236

CDCl₃): δ 0.80, 0.83, 0.90, 0.92, 0.96, 1.05, 1.07 (24 H, 8 × CH₃), 3.19 (1H, m, H-3 α).

3.8. Compound C: mixture of 3α ,22(R or S)-dihydroxycycloart-24-en-26-oic acid (11) and 3-oxo-23(R or S)-dihydroxycycloart-24-en-26-oic acid (12)

It was contaminated with gummy material and showed a streak on TLC and resisted crystallisation in various solvent systems. Hence it was acetylated. Compound C (25 mg) in pyridine (1 ml) was treated with Ac₂O (2 ml) and kept overnight at room temp. After the usual workup, it afforded a semisolid (20 mg). IR $\nu_{max}^{CHCl_3}$ cm⁻¹: 3300–2500, 1745 (br), 1705, 1690 and 1640. UV $\lambda_{max}^{CHCl_3}$ 217 nm (ε =9800). ¹H NMR (90 MHz, CDCl₃): δ 0.35, 0.55, 0.77 (three d, J=3.6 Hz), 1.81 (br.s), 1.82, 1.85 (two s, each 3H), 2.05, 2.10, 2.11 (3H, s), 4.75 (1H, br s), 5.0 (1H, d, J=3 Hz) 5.65 (1H, t, J=8 Hz, H-23), 6.65 (1H, t, J=8 Hz), 6.7 (1H, d, J=8 Hz).

3.9. Compound D: 3β ,23(R or S)-dihydroxycycloart-24en-26-oic acid (13)

It was recrystallised from CHCl₃–MeOH as shining crystals, m.p. 279–281°C, $[\alpha]_{D}^{30}$ +49° (MeOH, *c* 0.52) (found: C, 96.75; H, 12.88 requires: C, 96.77; H, 12.9%). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3600, 3300–2500, 1695 and 1640; UV $\lambda_{\text{max}}^{\text{EtOH}}$ 217 nm. ¹H NMR (90 MHz, CDCl₃+a drop of DMSO-d₆): δ 0.35, 0.55 (2H, ABq, *J*=4 Hz, H₂-19), 0.80, 0.85, 0.95 (15 H, 5 × Me), 1.86 (3H, s, H₃-27), 3.20 (1H, m, H-3 β), 4.4–4.7 (1H, broad, buried under DMSO peak, H-23), 6.60 (1H, d, *J*=4.5 Hz, H-24). MS *m*/*z* (rel. int): 454 (2), 439 (2), 332 (6), 315 (3), 297 (7), 175 (7).

3.10. Compound E: 23-epimeric 3β,23-dihydroxycycloart-24-en-26-oic acid (14)

It was recrystallised from CHCl₃–MeOH as shining crystals, m.p. 240–242°C (found: C, 96.6; H, 12.8 calc. for C₃₀H₄₈O₄: C, 96.77; H, 12.9%). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3590, 3200–2500, 1690, 1635. UV $\lambda_{\text{max}}^{\text{EIOH}}$ 218 nm. ¹H NMR (90 MHz, CDCl₃+1 drop of DMSO-d₆): δ 0.35, 0.55 (2H, ABq, J=4 Hz, H₂-19), 0.75, 0.80, 0.90, 0.95 (15H,

 $5 \times$ Me), 1.85, 1.92 (each 3H, two br.s, 27-H₃), 3.2 (1H, m, H-3 β), 4.55 (1H, m, H-23), 6.65, 6.75 (each 1H, two d, J=4.5 Hz, H-24).

Acknowledgements

Our thanks are due to CSIR, New Delhi India for the award of Senior Research Fellow to K.N.R. and P.R.

References

- Alpin, R. T. & Hornby, G. M. (1966). Journal of Chemical Society B, 1078.
- Amarendra, P., Mukhopadhyay, A. K., & Mitra, A. K. (1981). Organic Magnetic Resonance, 17, 166.
- Anjaneyulu, V., & Row, L. R. (1965). Current Science, 37, 156.
- Anjaneyulu, V., Prasad, K. H., & Rao, G. S. (1982). Indian Journal of Pharmaceutical Sciences, 44, 58.
- Anjaneyulu, V., Prasad, K. H., & Rao, G. S. (1982) Indian Journal of Pharmaceutical Sciences, 44, 85.
- Anjaneyulu, V., Harischandra Prasad, K., Ravi, K., & Connolly, J. D. (1985). *Phytochemistry*, 24, 2359.
- Anjaneyulu, V., Ravi, K., Harischandra Prasad, K., & Connolly, J. D. (1989). *Phytochemistry*, 28, 1471.
- Anjaneyulu, V., Suresh Babu, J., & Murali Krishna, M. (1992). Acta Ciencia Indica, 18C, 173.
- Anjaneyulu, V., Suresh Babu, J., Murali Krishna, M., & Connolly, J. D. (1993). *Phytochemisty*, 32, 469.
- Anjaneyulu, V., Suresh Babu, J., & Connolly, J. D. (1994). Phytochemistry, 35, 1301.
- Anjaneyulu, V., Suresh Babu, J., & Jyothi, G. (1994). Acta Ciencia Indica, 20C(3), 109.
- Audier, H. E., Bengelmans, R., & Das, B. C. (1966). Tetrahedron Letters, 4341.
- Bortolotto, M., Brackmann, J. C., Daloze, D., & Tursch, B. (1976). Bull. Soc. Chim. Belg., 85, 27.
- Budzikiewicz, H., Wilson, J. M., & Djerassi, C. (1963). Journal of American Chemical Society, 85, 3688.
- Corsano, S., & Mincione, E. (1967). Ann. Chim. (Rome), 57, 522.
- Corsano, S. & Mincione, E. (1968). Journal of Chemical Society Chemical Communications, 738.
- Corsano, S., & Mincione, E. (1966). Ric. Sci., 36, 494.
- Hinge, V. K., Paknikar, S. K., Das, K. G., Bose, A. K., & Bhattacharya, S. C. (1966). *Tetrahedron*, 22, 2861.
- Ohta, G. (1960). Chemical Pharmaceutical Bulletin, 8, 5 and 9.
- Sakurai, N., Yaguchi, Y., & Inoue, T. (1987). Phytochemistry, 26, 217.
- Wyllie, S. G., & Djerassi, C. (1968). Journal of Organic Chemistry, 33, 305.

1236