Kinetics of the Reactions between Alkyl Radicals and Molecular Oxygen in Aqueous Solution

Adam Marchaj, Douglas G. Kelley, Andreja Bakac,* and James H. Espenson*

Ames Laboratory and the Department of Chemistry, Iowa State University, Ames, Iowa 50011 (Received: November 13, 1990; In Final Form: January 17, 1991)

The rate constant for the reaction $R^* + O_2 \rightarrow ROO^*$ in aqueous solution was determined for 18 alkyl radicals by laser flash photolysis. The values are all at the diffusion-controlled limit and lie in the range $(1.6 - 4.9) \times 10^9$ L mol⁻¹ s⁻¹. The radicals studied are primary, substituted primary, secondary, and benzyl radicals.

Introduction

Peroxyalkyl radicals, ROO[•], are important intermediates in combustion chemistry, radiation chemistry, atmospheric chemistry, and photochemistry.¹ Although reactions of alkyl radicals with oxygen, eq 1, have been extensively studied in the gas phase,²

$$\mathbf{R}^{\bullet} + \mathbf{O}_2 \to \mathbf{ROO}^{\bullet} \quad (k_1) \tag{1}$$

mechanistic uncertainty remains. At T < 600 K the reaction is believed to follow the addition process, as in eq 1. At higher temperatures an equilibrium with the excited state, *RO2*, becomes more important, leading to alkene:

$$\mathbf{ROO^{\bullet}} \stackrel{a}{\rightleftharpoons} *\mathbf{ROO^{\bullet}} \to *\mathbf{R}_{-H}\mathbf{O}_{2}\mathbf{H} \to \mathbf{R}_{-H} + \mathbf{HO}_{2}^{\bullet} \qquad (2)$$

Relatively few values are available for k_1 in solution. This may be so because the clean generation of the alkyl radicals is possible only for those derived from hydrocarbons with all C-H bonds equivalent. Thus rate constants have been reported for ${}^{\circ}CH_{3}^{3,4}$ ${}^{\circ}C_{2}H_{5}^{5}$, c- ${}^{\circ}C_{5}H_{9}^{6}$, and C₆H₅CH₂.^{7,8}

Photohomolysis of organocobalt(III) complexes, RCo- $(dmgH)_2OH_2$ and RCo(cyclam)H₂O²⁺, affords a method for generating a wide range of R[•] radicals in solution, in a way that is amenable to examination by laser flash photolysis.⁹ We have used this technique in combination with either of two chemical schemes to study the reactions of an entire series of alkyl radicals with oxygen.

Experimental Section

Reagents. Literature methods were used to prepare alkylaquobis(dimethylglyoximato)cobalt(III),¹⁰ alkylaquocobalt(cy-clam) perchlorate¹¹ (cyclam = 1,4,8,11-tetraazacyclotetradecane), and (R,R,S,S)-nickel(cyclam) perchlorate.¹² Stock solutions of Ni(cyclam)²⁺ were prepared in 0.0100 M perchloric acid and standardized spectrophotometrically, $\epsilon_{448} = 45 \text{ L mol}^{-1} \text{ cm}^{-1.12}$ The reagent ABTS²⁻ (2,2'-azinobis(3-ethylbenzthiazoline-6-

(1) (a) Ingold, K. U. Acc. Chem. Res. 1969, 2, 1. (b) McKay, B. Prog. Energy Combust. Sci. 1977, 3, 105. (c) Howard, J. A. Free Radicals; Kochi, J. K., Ed.; Wiley: New York, 1973; Vol. II, Chapter 12. (d) Simic, M. G.; Karel, M. Autoxidation in Food and Biological Systems; Plenum: New York, 1980

- 3863
 - (5) Hickel, B. J. Phys. Chem. 1975, 79, 1054.
 - (6) Rabani, J.; Rick, M.; Simic, M. J. Phys. Chem. 1974, 78, 1049.
 (7) Maillard, B.; Ingold, K. U.; Scaino, J. C. J. Am. Chem. Soc. 1983, 105,
- 5095
- (8) Neta, P.; Huie, R. E.; Mosseri, S.; Shastri, L. V.; Mittal, P.; Maru-(a) Foca, F., Face, K. E., Mossiri, G., Massiri, E., Martell, F., Martell, F., Martell, P., Steenken, S. J. Phys. Chem. 1989, 93, 4099.
 (9) Bakac, A.; Espenson, J. H. Inorg. Chem. 1989, 28, 3901.
 (10) Yamazaki, N.; Hohokabe, Y. Bull. Chem. Soc. Jpn. 1971, 44, 63.
 (11) Bakac, A.; Espenson, J. H. Inorg. Chem. 1987, 26, 4353.
 (12) Paraick P. Tche. M. J. Wilder, C. Larger, Chem. 1967, 4, 1100.

 - (12) Bosnich, B.; Tobe, M. L.; Webb, G. A. Inorg. Chem. 1965, 4, 1109.

TABLE I: Rate Constants⁴ for $\mathbb{R}^{\bullet} + \mathbb{O}_1 \rightarrow \mathbb{ROO}^{\bullet}$ at 25 °C in Aqueous Solution

R	method ^b	$k_1/10^9 L$ mol ⁻¹ s ⁻¹	R	method ^b	$k_1/10^9 \text{ L}$ mol ⁻¹ s ⁻¹
CH3	PR	4.7 (7) ^c	CH ₃ OCH ₂	Ni	4.9 (4)
	PR	$0.32(4)^{d}$	CICH ₂	Ni	1.9 (4)
	Ni	3.7°	BrCH ₂	Ni	2.0 (5)
	Α	4.1 (3)	$CH_2CH(CH_3)_2$	Α	3.21 (5)
	Ni	4.1 (15)	$CH_2C(CH_1)_1$	Α	2.65 (9)
C ₂ H ₅	PR	2.9 (8) ^f	2-C ₃ H ₇	Α·	3.78 (9)
	Ni	2.1 (2)	2-C ₄ H ₉	Α	3.2 (Ì)
$1-C_{1}H_{7}$	Ni	3.5 (2)	c-C,H	PR	4.9 (6)8
1-C₄H。	Ni	1.8 (2)		Α	3.5 (1)
1-C ₄ H ₁₁	Ni	3.8 (4)	$2 - C_8 H_{17}$	Α	3.70 (7)
1-CAH	Ni	3.9 (5)	C,H,CH,	PR	2.0 [*] `´
1-C ₂ H ₁₅	Ni	1.6 (2)		Α	2.77 (9)
1-C ₈ H ₁₇	Ni	2.4 (3)			

^aIn 1.0 M HClO₄ (Ni) or 0.1 M HClO₄ (A). ^bPR = pulse radiol-ysis, A = ABTS²⁻ method, Ni = Ni(cyclam)²⁺ method. ^cReference 3. ^dReference 4. ^eReference 16. ^fReference 5. ^gReference 6. ^hReference 8.

sulfonate)) was oxidized by aqueous bromine to the persistent radical ABTS^{•-} ($\epsilon_{650} = 1.0 \times 10^4 \text{ L mol}^{-1} \text{ cm}^{-1}$).¹³ Molecular oxygen (99.5%, Fischer) was bubbled into water to saturate it (1.26 mM); this solution was diluted as required for the reactions studied. All solutions were made with water purified by a Milli-Q Millipore reagent water system.

Kinetics. Depending on the method used (see Results) the reaction was followed by the disappearance of ABTS⁻⁻ at 650 nm or by the buildup of ROONi(cyclam) H_2O^{2+} at 360 nm. Reactions were initiated by a laser pulse at 490 nm, produced by use of the LD490 dve. The cobaloximes were the major source of R[•], but the RCo(cyclam)H₂O²⁺ complexes were used where available. Absorbance (D)-time data followed first-order kinetics and were fit by a nonlinear least-squares method to the equation $D_t = D_{\infty}$ + $(D_0 - D_\infty) \exp(-k_{\psi}t)$.

Results

Two techniques to determine the rate constant were employed. One method (A) was based on the competition between the reaction of bulk concentrations of R^{\bullet} (1-2 μ M) with O₂ (eq 1) and its addition to (and oxidation by)¹⁴ the ABTS^{*-} radical:

$$R^{\bullet} + ABTS^{\bullet-} \rightarrow adduct \quad (k_3) \tag{3}$$

The rate of loss of R[•] is given by

 $-d[R^{\bullet}]/dt = 2k_d[R^{\bullet}]^2 + k_1[R^{\bullet}][O_2] + k_3[R^{\bullet}][ABTS^{\bullet-}]$ (4)

where the first term on the right-hand side refers to $R^* + R^*$ self-reactions. Since the first term is quite small, the data can

⁽²⁾ Wagner, A. F.; Slagle, I. R.; Sarzynski, D.; Gutman, D. J. Phys. Chem. 1990, 94, 1853 and references therein.
(3) Thomas, J. K. J. Phys. Chem. 1967, 71, 1919.
(4) Stevens, G. C.; Clarke, R. M.; Hart, E. J. J. Phys. Chem. 1972, 76,

⁽¹³⁾ Wolfenden, B. S.; Willson, R. L. J. Chem. Soc., Perkin Trans. 2 1982,

^{805.} (14) Equation 2 is accompanied by an appreciable amount (\sim 30% for R[•] = $^{\circ}C_{2}H_{3}$) of outer-sphere oxidation to the alkene.

Figure 1. Plots of k_{ψ}^{-1} versus [Ni(cyclam)²⁺]/[O₂] for the homolysis of RNi(cyclam)H₂O²⁺ in the presence of oxygen. Kinetic data were obtained in 0.1 M perchloric acid at 25 °C by using the radical precursors RCo(dmgH)₂OH₂ (for hexyl) and RCo(cyclam)H₂O²⁺ (for methoxymethyl and ethyl).

be (and were) fit to a single exponential¹⁵ with a rate constant given by

$$k_{\psi} = 2k_{\rm d}[{\rm R}^{\bullet}]_{\rm av} + k_1[{\rm O}_2] + k_3[{\rm ABTS}^{\bullet-}]$$
 (5)

Since values of k_d and k_3 are known, k_1 can be determined. The second method (Ni) is based on the reversible homolysis

of alkylnickel complexes,^{16,17} eq 6. First, the radicals produced

$$RNi(cyclam)^{2+} \rightleftharpoons R^{\bullet} + Ni(cyclam)^{2+} \quad (k_6, k_{-6}) \quad (6)$$

in the flash are consumed rapidly $(t_{1/2} \le 1 \ \mu s)$ in reactions with O₂ (eq 1) and with Ni(cyclam)²⁺ (eq -6). Subsequent homolysis of RNi(cyclam)²⁺ initiates the sequence of reactions 6, 1, and 7.

$$ROO^{\bullet} + Ni(cyclam)^{2+} \rightarrow ROONi(cyclam)^{2+}$$
(7)

In this scheme the radical R is a steady-state intermediate. The rate law for the formation of RO_2^{\bullet} is given in eq 8. This equation

$$\frac{d[RO_2^{\bullet}]}{dt} = \frac{k_6[RNi(cyclam)^{2+}]}{1 + k_{-6}[Ni(cyclam)^{2+}]/k_1[O_2]} = k_{\psi}[RNi(cyclam)^{2+}] (8)$$

(15) Kelley, D. G.; Bakac, A.; Espenson, J. H. Inorg. Chem. 1990, 29, 4996.

can be rearranged to a form showing a linear relationship between $1/k_{\psi}$ and the ratio of concentrations. k_1 can be calculated from

$$\frac{1}{k_{\psi}} = \frac{1}{k_{6}} + \frac{k_{-6}}{k_{1}k_{6}} \frac{[\text{Ni}(\text{cyclam})^{2+}]}{[\text{O}_{2}]}$$
(9)

the slope of the suggested plot, since k_6 and k_{-6} are known.^{16,17} This provides a useful form in which to depict the data, as shown in Figure 1. In practice a nonlinear least-squares fit of k_{ψ} according to eq 8 was used to calculate values of k_1 . The least-squares values and their standard deviations are given in Table I.

Discussion

The reversibility of the reactions of O_2 with carbon-centerd radicals¹⁸ is expected (and has been observed) only for stabilized radicals such as $(C_6H_5)_3C^{\circ}$, cyclohexadienyl, etc. For all the radicals studied in this work the reaction with O_2 can be safely considered irreversible. As expected, we obtained no evidence for the reverse of reaction 1 for any of the radicals examined.

The values of k_1 are at the diffusion-controlled limit for molecules of this size. The range is $(1.6-4.9) \times 10^9$ L mol⁻¹ s⁻¹. No perceptible trend is seen as the nature of the alkyl radical was varied, nor is one expected in view of the diffusion-controlled character of the reactions. It should be noted that one⁴ of the previously determined values for $O_2 + {}^{\circ}CH_3$ from pulse radiolysis can be safely rejected. In three other cases, C_2H_5 , c- C_5H_9 , and $C_6H_5CH_2$, pulse radiolytic values are in reasonable agreement with the ones we have determined.

Several rate constants are available for the gas phase. Values of $k_1/10^9 \text{ L} \text{ mol}^{-1} \text{ s}^{-} 1.2 ({}^{\circ}\text{CH}_3), {}^{19} 1.0 ({}^{\circ}\text{C}_2\text{H}_5), {}^{20} \text{ and } 0.67 (C_6-H_5\text{CH}_2)^{21}$ are smaller than for the solution reactions. This is consistent with related observations²² that reactions of other radical transients (e.g., H[•], HO[•]) with gases having low affinity for the solvent (e.g., H₂, CO, O₂) occur with rate constants that are higher in the solution phase.

Acknowledgment. This research was supported by the U.S. Department of Energy under Contract W-7405-Eng-82.

⁽¹⁶⁾ Sauer, A.; Cohen, H.; Meyerstein, D. Inorg. Chem. 1988, 27, 4578. (17) Kelley, D. G.; Espenson, J. H.; Bakac, A., submitted for publication.

^{(18) (}a) Finkel'shtein, E. I.; Gerasimov, G. N. Russ. J. Phys. Chem. 1984, 58, 570. (b) Batt, L. Int. Rev. Phys. Chem. 1987, 6, 53. (c) Pan, X.-M.; von Sonntag, C. Z. Naturforsch. 1990, 45b, 1337 and references therein.

⁽¹⁹⁾ Hochanadel, C. J.; Ghormley, J. A.; Boyle, J. W.; Ogren, P. J. J. Phys. Chem. 1977, 81, 3.

 ⁽²⁰⁾ Nelson, H. H.; McDonald, J. R. J. Phys. Chem. 1982, 86, 1242.
 (21) Lenhardt, T. M.; McDade, C. E.; Bayes, K. D. J. Phys. Chem. 1980, 84, 304.

⁽²²⁾ Schwartz, H. A.; Weston, R. E. Chemical Kinetics; Prentice-Hall: Englewood Cliffs, NJ, 1972; p 179.