Novel Synthesis of Pyrimido[4,5-b]quinoline-2(3H),4(10H)-diones (5-Deazaflavins)

By KENYA MORI, KAZUO SHINOZUKA, YOSHIHARU SAKUMA, and FUMIO YONEDA*

(Fauulty of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi, Kumamoto 862, Japan)

Summary Treatment of 5-benzylidene-6-(N-substituted amino)uracils with diethyl azodiformate led to the formation of the corresponding pyrimido [4,5-b]quinoline-2(3H), 4(10H)-diones (5-deazaflavins).

Pyrimido [4,5-b] guinoline-2(3H),4(10H)-diones (5-deazaflavins), where N-5 of the flavin is replaced by CH, have become of recent interest, because of the discovery that they serve as cofactors for several flavin-dependent enzymic reactions.¹ Also, the 5-deazaflavins can be considered as 'flavin shaped nicotinamide analogues,' since they oxidize simple alcohols under alkaline conditions to the corresponding carbonyl compounds and they are themselves hydrogenated to 1,5-dihydro-5-deazaflavins.² 5-Deazaflavins have previously been synthesized by the condensation of anthranilaldehydes with barbituric acid,3 by the cyclization of 6-(N-alkylanilino)uracils with one-carbon reagents including the Vilsmeier reagent,⁴ and by the condensation of 6-chloro-5-formyluracils with N-substituted anilines.⁴ This paper describes a novel and general synthesis of 5deazaflavins which consists of the oxidative coupling of 5-benzylidene-6-(N-substituted amino)uracils with diethyl azodiformate (DAD).

The starting materials, the 5-benzylidene-3-methyl-6-(N-substituted amino)uracils (Ia-k)[†] were synthesized by heating 6-alkylamino-5,6 and 6-anilino-3-methyluracils7 with the respective aryl aldehydes in refluxing acetic acid for 2 h. Compounds (Ig-k) were alternatively synthesized as follows. Refluxing of 5-benzylidene-3-methylbarbituric acid (III), m.p. 237 °C, prepared by the condensation of 3-methylbarbituric acid and benzaldehyde in ethanol, with phosphorus trichloride oxide gave 5-benzylidene-6-chloro-3-methyluracil (IV) (unstable) which, on treatment with the respective alkylamines or anilines, afforded (Ig-k).

Fusion of compound (Ia) with excess of DAD (10 equiv.) at 150 °C for 30 min with stirring, followed by dilution with ethanol, caused the separation of the dione (IIa) (3,10dimethyl-5-deazaflavin). The reaction is equally applicable to compounds (Ib-i) to give the corresponding 5-deazaflavins (IIb-i) (see Table). Fusion of the 6-anilino-5benzylidene-3-methyluracils (Ij,k) with DAD at 210 °C for 3 h with stirring gave the corresponding 10-aryl-5-deazaflavins (IIj,k), whereas treatment of 6-diphenylamino-3methyluracil with the Vilsmeier reagent according to the known procedure⁴ led to complete recovery of starting material under all conditions.

TABLE. Formation of the 5-deazaflavins (II) by reaction of the 5-benzylidene-6-(N-substituted amino)uracils (I) with DAD.

5-Deaza-	M - /9C	Recryst.	0/ 37: 14
navin	M.p./ C	solvent	
(IIa) ^a	327	EtOH	50
(IIb)	328	HCONMe ₂	63
(IIc)	> 360	HCONMe,	65
(IId)	345	EtOH	45
(IIe)	309	EtOH	55
(IIf)	> 360	EtOH	52
(IIg)a	267	EtOH	65
(IIh)a	245	EtOH	58
(III)	249	EtOH	70
(IIj)	> 360	AcOH	53
(IIŔ)	> 360	AcOH	69
~			

^a Cf. ref. 4.

We thank Miss J. Ide for technical assistance and the Ministry of Education of Japan for financial support.

(Received, 9th May 1978; Com. 499.)

† Satisfactory analytical and spectral data were obtained for all products.

- ¹ P. Hemmerich, V. Massey, and H. Fenner, FEBS Letters, 1977, 84, 5, and references cited therein.
- ² F. Yoneda,, Y. Sakuma, and P. Hemmerich, J.C.S. Chem. Comm., 1977, 825.
- ^a D. E. O'Brien, L. T. Weinstock, and F. Heinheitelti, J.C.S. Oktm. Comm. 1971, 622.
 ^a D. E. O'Brien, L. T. Weinstock, and C. C. Cheng, J. Heterocyclic Chem., 1970, 7, 99.
 ⁴ F. Yoneda, Y. Sakuma, S. Mizumoto, and R. Ito, J.C.S. Perkin I, 1976, 1805.
 ⁵ H. Goldner, G. Dietz, and E. Carstens, Annalen, 1966, 691, 142.
 ⁶ F. Yoneda and T. Nagamatsu, J.C.S. Perkin I, 1976, 1547.
 ⁷ H. Goldner, G. Dietz, and E. Carstens, Annalen, 1966, 694, 142.