Nitrene-promoted α -Alkoxylation of Amides with Silyl Ethers

Michiharu MITANI,* Keiko WATANABE, Osamu TACHIZAWA, and Kikuhiko KOYAMA

Department of Chemistry and Material Engineering,

Faculty of Engineering, Shinshu University, Wakasato, Nagano 380

Thermolysis of a solution of amides, silyl ethers, and ethyl azidoformate caused the introduction of several alkoxy groups into the positions adjacent to the amide nitrogen.

The introduction of oxygen functionalities into an α -position of amino compounds affords attractive synthetic intermediates; such transformation has been so far performed by using peroxides, 1) electrochemical oxidation, 2) and metal-catalyzed reactions. 3) The previously proposed methods, however, have been limited to the introduction of only some special oxygen functionalities. A nitrene inserts into a $C(\alpha)$ -H bond of ethers and thus constitutes an alternative tool for the preparation of α -oxygenated amino compounds. 4) We have recently found that the reaction of a nitrene with a mixture of amides and silyl ethers does not bring about α -amination of the silyl ethers, unlike the reaction with ethers, but α -alkoxylation of the amides. Silyl ethers having the functional groups susceptible to oxidation or metal-catalyzed reaction may also be used.

A solution of 1-(trimethylsilyloxy)pentane ($\underline{1a}$) (3 mmol) and ethyl azidoformate (2.5 mmol) in DMF ($\underline{2j}$) (5 cm 3) was heated at 120 °C until evolution of nitrogen gas ceased (2 h). Then, DMF was removed in vacuo and purification of the residue by preparative TLC (ether) afforded N-methyl-N-(pentyloxymethyl)formamide ($\underline{3aj}$) (1.14 mmol). Also formed were N,N-dimethyl-N'-(ethoxycarbonyl)urea (0.63 mmol) as an insertion product of the nitrene into the formic C-H bond of DMF and ethyl N-pentyloxycarbamate (0.28 mmol) derived from the attack of the nitrene onto an oxygen atom of $\underline{1a}$. Heating $\underline{1a}$ in DMF at 120 °C in the absence of ethyl azidoformate did not form $\underline{3aj}$ at all. Both the acetophenone-sensitized photoreaction generating the triplet azido or nitrene⁵) and heating $\underline{1a}$ in DMF at 110 °C in the presence of AIBN as a radical initiator were not effective. Thus, a radical pathway via the triplet nitrene may be less possible. A sequence of the attack of singlet nitrene onto the oxygen atom of silyl ethers and migra-

tion of the silyl group is presumable because the thermolysis of ethyl azidoformate in $\underline{1a}$ afforded ethyl N-pentyloxy-N-trimethylsilylcarbamate, which, in turn, gave $\underline{3aj}$ on heating at 120 °C in DMF.

The results of reaction of silyl ethers and amides in the presence of ethyl azidoformate are shown in Table 1.

Table 1. α -Alkoxylation of Amides with Silyl Ethers

3	<u>aj</u>	<u>ak</u>	<u>bk</u>	<u>b1</u>	сj	<u>ck</u>	<u>dk</u>	<u>ek</u>	<u>fk</u>	gk	<u>hk</u>	<u>ik</u>
Yield/%a)	38	41	51	40	47	54	53	49	45	44	47	22

a) Isolated yields based on silyl ethers.

References

- 1) D. J. Rawlinson and G. Sosnovsky, Synthesis, 1972, 1.
- 2) T. Shono, Y. Matsumura, S. Katoh, K. Takeuchi, K. Sasaki, T. Kamada, and R. Shimizu, J. Am. Chem. Soc., <u>112</u>, 2368 (1990).
- 3) S. Murahashi, T. Naota, T. Kuwabara, T. Saito, H. Kumobayashi, and S. Akutagawa, J. Am. Chem. Soc., 112, 7820 (1990); H. Nemoto, H. N. Jimenez, and Y. Yamamoto, J. Chem. Soc., Chem. Commun., 1990, 1304.
- 4) H. Nozaki, S. Fujita, H. Takaya, and R. Noyori, Tetrahedron, 23, 45 (1967); H. Takeuchi, K. Kinoshita, S. M. Abdul-Hai, M. Mitani, T. Tsuchida, and K. Koyama, J. Chem. Soc., Perkin Trans. 2, 1976, 1201.
- 5) W. Lwowski and T. W. Mattingly, Jr., J. Am. Chem. Soc., <u>87</u>, 1947 (1965). (Received February 17, 1992)