
SOME ESTERS OF PHOSPHORUS THIOACIDS THAT CONTAIN THE FRAGMENTS OF CYCLIC AMINO ACID DERIVATIVES

T. A. Mastryukova, A. É. Shipov,
Z. O. Mndzhoyan, S. A. Roslavtseva,
Yu. S. Kagan, E. A. Ershova,
P. V. Petrovskii, and M. I. Kabachnik

Previously we described [1, 2] a number phosphorus thioacid derivatives, which contain amino acid fragments of general formula $R(R'O)P(X)SCH_2-CONH-A-COY$ (X = S, O; Y = OR", NHCH₃; A = amino acid fragment) (I), among which were found active insecticides and acaricides with a selective action and either a low or moderate toxicity for animals. It was shown [1-3] that both the toxicity and selectivity of action are noticeably affected by the nature of the amino acid fragment. In this connection we synthesized for biological testing a number of structurally close compounds, which contain the fragments of cyclic amino acid derivatives, and specifically of 2,5-diketopiperazine and pyroglutamic acid.

$R = C_2 H_5 O(a), CH_3(b).$

Compounds (II)-(IV) were obtained by reacting either the Na or the K salts of phosphorus thio- and dithioacids with 1,4-di(chloroacetyl)-2,5-diketopiperazine (V) [4], 1,4-di(chloro-methyl)-2,5-diketopiperazine (VI), or 1-chloromethyl-5-carbethoxy-2-pyrrolidinone (VII). The purity of (II)-(IV) was confirmed by the elemental analysis and TLC data, and the structure was confirmed by the NMR and IR spectroscopy methods (Table 1).

For (IVb), which contains two chiral centers in the molecule, the phenomenon of anisochronicity is observed in the PMR spectrum, taken in CCl₄ or benzene, which is especially noticeable on the signals of the protons of the Me group attached to the P atom: two close doublets [δ 2.40 ppm, $\Delta\delta$ 1.33 Hz (CCl₄); δ 1.90 m ppm, $\Delta\delta$ 2.70 Hz (C₆H₆)]. For compounds (IIc) and (IIIb), which also represent a mixture of diastereomeric racemates, the diastereomeric anisochronicity is observed only in the ³¹P-{¹H} NMR spectra, taken in benzene: two close signals (δ 103.47 ppm, $\Delta\delta$ 1.83 Hz) for (IIb) and (δ 110.11 ppm, $\Delta\delta$ 1.1 Hz) for (IIIb).

The contact insecticidal activity was tested on houseflies (Musca domestica L.), rice weevil (Calendra orizae L.), and black beet aphis (Aphis fabe L.); the contact acaricidal activity was tested on the spider mite (Tetranychus urticae K.); the toxicity of (IIIa, b) and (IVa, b) was determined on white mice (orally) (Table 2). Compounds (IIa-g) displayed a

A. N. Nesmeyanov Institute of Heteroorganic Compounds, Academy of Sciences of the USSR, Moscow. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 2, pp. 469-472, February, 1983. Original articlé submitted June 21, 1982.

UDC 542.91:547.1'118

TABLE 1. Constants, Yields, and Elemental Analysis Data for Esters of Phosphorus Thioacids, Containing the Fragments of Cyclic Amino Acid Derivatives (11)-(1V)

Compound	10 F F - 422			Found, %	0	- Emnirical formula	Ŭ	Calculated, 7/0	olo
-	rieta, %	mp, c	υ	Ш	Д		υ	Ħ	<u>е</u>
(IIa)	62,5	Viscous oil *	33,86	5,00	10,85	C16H28N2O8P2S4	33,91	4,98	10,93
(IIb)	55,9	124-126	5	1	12,72	$C_{12}H_{20}N_2O_6P_2S_4$	i	I	12,95
(IIc)	41,5	Viscous oil *	32,71	4,62	12,26	$\mathrm{C}_{14}\mathrm{H}_{24}\mathrm{N}_{2}\mathrm{O}_{6}\mathrm{P}_{2}\mathrm{S}_{4}$	33,19	4,77	12,22
(pII)	88,3	210-211	J	1	8,62	$\mathrm{C}_{32}\mathrm{H}_{28}\mathrm{N}_{2}\mathrm{O}_{4}\mathrm{P}_{2}\mathrm{S}_{4}$	1	1	8,92
(IIe)	87,9	98-100	36,26	4,78	11,84	G16H28N2O10P2S2	35,95	5,28	11,59
(IIf)	47,3	101-103	35,17	5,13	12,82	$\mathrm{C}_{44}\mathrm{H}_{24}\mathrm{N}_{2}\mathrm{O}_{8}\mathrm{P}_{2}\mathrm{S}_{2}$	35,44	. 5,09	13,05
(III8)	73,2	218-219	1	1	9,10	$C_{32}H_{28}N_2O_6P_2S_2$	1	1	9,35
(IIIa)	85,5	34-34,5	33,00	5,42	12, 24	G14H28N2O6P2S4	32,93	5,53	12,13
(qIII)	90'0	98-107	32,11	5,25	13,63	C12H24N2O4P2S4	31,99	5,37	13,75
(IVa)	71.7	4 1	1	1	8,98	$C_{12}H_{22}NO_5PS_2$	I	I	8,71
(qAI)	94,4	+ * ş	1	1	9,61	$G_{11}H_{20}NO_{4}PS_{2}$	8	4	9,52
*Purified †n50 1.52	$\frac{1 \text{ by chron}}{15. d_1^2 0}$	*Purified by chromatography. †n2 ⁰ 1.5215, d ² 1.2258, Found: MR 88.22.	R 88.22.	Calcula	Calculated: MR 87.56.	87.56.	-	•	

 r_{nD}^{20} 1.5215, d_{1}^{20} 1.2258. Found: MR 88.22. Calculated: MR 87.56. r_{D}^{20} 1.5405, d_{1}^{40} 1.2368. Found: MR 82.61. Calculated: MR 81.88.

427

Compound	Death at given concentration, %				LD ₅₀ , mg/kg
	houseflies (0.15)	rice weevil (0.15)	black beet aphis (0.01)	spider mite (0.05)	(mice orally)
(IIa) (IIb) (IId) (IIe) (IIf) (IIIa) (IIIb) (IVa) (IVb) Metaphos Carbophos	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 12 \\ - \\ 53 \\ 90 \\ 95 (0,015) \end{array} $	0 0 2 84 - 6 70 95 (0,015)	3 7 3 97 33 400	$\begin{array}{c} 7\\9\\9\\0\\13\\46\\71\\54\\92\\97\ (0,005)\end{array}$	- - 25 <25 300 75

TABLE 2. Physiological Activity of Esters of Phosphorus Thioacids, Containing the Fragments of Cyclic Amino Acid Derivatives (II)-(IV)

weak effect, while compounds (IIIa, b) and (IVa, b) displayed a moderate activity, which was substantially inferior to the standards, in which connection (IIIa, b) and (IVa, b) are toxic for animals.

EXPERIMENTAL

The PMR spectra were obtained on a Perkin-Elmer R-12 instrument (60 MHz), and the $^{19}P-$ {¹H} NMR spectra were obtained on a Bruker HX-90 instrument (36.43 MHz), using 85% H₃PO₄ as the external standard.

1,4-Di(chloroacety1)-2,5-diketopiperazine (V). Obtained as described in [4]. It was purified by recrystallization from MeCN using activated C, and then from MeCN (instead of PhNO₂ [4]), mp 171.5-172°C. Literature data: mp 168.5 [4].

1,4-Di(chloromethyl)-2,5-diketopiperazine (VI). With stirring, to 9.84 g (0.056 mole) of 1,4-di(hydroxymethyl)-2,5-diketopiperazine [5] in 30 ml of CHCl₃ was added 13.80 g (0.116 mole) of SOCl₂, the mixture was refluxed for 3.5 h, 20 ml of CHCl₃ was added, the precipitate was filtered, and the filtrate was evaporated to give a small amount of crystals. After recrystallization from CHCl₃ and benzene we isolated 10.20 g (85.6%) of product with mp 173-175°. Literature data: mp 162° [5]. PMR spectrum (in CDCl₃, δ , ppm): 4.38 s (CH₂CO, 4H), 5.49 s (CH₂Cl, 4H).

<u>1-Chloromethyl-5-carbethoxy-2-pyrrolidinone (VII)</u>. A mixture of 5.71 g (0.036 mole) of ethyl pyroglutamate [6], 3.64 g (0.048 mole) of 40% formalin, and 0.06 g of K_2CO_3 was heated for 4 h at 100°, extracted with CHCl₃, and the extracts were washed with cold water, dried over Na₂SO₃, and evaporated in vacuo. The residue was dissolved in 15 ml of dry CHCl₃ and then 5.54 g (0.046 mole) of SOCl₂ was added dropwise. The mixture was refluxed for 4 h, and the CHCl₃ was removed in vacuo to give 6.17 g (82.7%) of (VII) with bp 111-112° (0.5 mm), n_D^{20} 1.4672, d_4^{20} 1.2458. Found: C 46.80; H 5.87; N 6.90%. MR 47.41. C₈H₁₂ClNO₃. Calculated: C 46.72; H 5.88; N 6.81%. MR 47.09.

<u>S-Phosphorylated Derivatives of 1,4-Di(mercaptoacetyl)-2,5-diketopiperazine (IIa-g).</u> To 0.015 mole of (V) in 20 ml of dry acetone was added dropwise a solution of 0.033 mole of the salt of either the phosphorus thio- or dithioacid in 20 ml of acetone, and the stirred mixture was refluxed for 3 h and the precipitate was filtered. The filtrate was evaporated in vacuo, and the residue was dissolved in CHCl₃, washed in succession with water, satd. NaHCO₃ solution, and water, dried over Na_2SO_4 , and evaporated in vacuo. The residue was dissolved in acetone, filtered, the filtrate was evaporated in vacuo, and the product was either recrystallized or purified by chromatography on a column packed with SiO₂ L 100/160 μ (the eluant was a hexane-acetone mixture in ratios that smoothly changed from 99:1 to 3:2, with checking of the fractions by TLC on the same support, using 4:1 and 3:2 hexane-acetone mixtures as the eluant) (see Table 1).

S-Phosphorylated Derivatives of 1,4-Di(mercaptomethyl)-2,5-diketopiperazine (IIIa, b). To a solution of 0.045 mole of either diethyl dithiophosphate or 0-ethyl methyldithiophosphonate in 20 ml of acetone was added in drops a solution of 4.22 g (0.020 mole) of (VI), the mixture was kept at 20° for 3-4 h, filtered, the filtrate was evaporated in vacuo, and the residue was dissolved in benzene, washed in succession with water, satd. NaHCO₃ solution, and water, dried over Na₂SO₄, and evaporated in vacuo. The residue was crystallized by rubbing with hexane. The compounds were purified by recrystallization from either an etherhexane (IIIa) or benzene-hexane (IIIb) mixture (see Table 1).

S-Phosphorylated Derivatives of N-Mercaptomethyl-5-carbethoxy-2-pyrrolidinone (IVa, b). Obtained in a similar manner from 0.017 mole of the salt of the phosphorus dithioacid and 3.08 g (0.015 mole) of (VII) in 20 ml of acetone. The products were kept for 1 h at 80° (1 mm) to give the pure (IVa, b) (see Table 1).

CONCLUSIONS

The reaction of the salts of phosphorus thio- and dithioacids with the 1,4-di(chloroacetyl)- and 1,4-di(chloromethyl)-2,5-diketopiperazines, and also with 1-chloromethyl-5carbethoxy-2-pyrrolidinone, gave new thio- and dithiophosphorus compounds, which display either a moderate or weak insecticidal and acaricidal activity and a substantial toxicity for animals in a number of cases.

LITERATURE CITED

- T. A. Mastryukova, A. É. Shipov, É. B. Gorbenko, M. P. Shabanova, K. N. Savchenko, Yu. S. Kagan, and M. I. Kabachnik, Izv. Akad. Nauk SSSR, Ser. Khim., 2042 (1968).
- T. A. Mastryukova, A. É. Shipov, É. B. Gorbenko, M. I. Kabachnik, Yu. S. Kagan, E. A. Ershova, M. P. Shabanova, and K. N. Savchenko, Izv. Akad. Nauk SSSR, Ser. Khim., 2003 (1971).
- 3. T. A. Mastryukova and M. I. Kabachnik, Zh. Vses. Khim. Obshchestva im. D. I. Mendeleeva, 23, 160 (1978).
- 4. E. Abderhalder and E. Klarmann, Z. Physiol. Chem., 129, 320 (1923).
- 5. E. Cherbuliez and E. Feer, Helv. Chim. Acta, 5, 678 (1922).
- 6. H. Adkins and H. R. Billica, J. Am. Chem. Soc., 70, 3121 (1948).

REACTION OF B-HALONIUM DERIVATIVES OF CARBORANES-12

WITH TRIPHENYLPHOSPHINE

- V. V. Grushin, T. P. Tolstaya,
- I. N. Lisichkina, Yu. K. Gríshin,
- T. M. Shcherbina, V. Ts. Kampel,
- V. I. Bregadze, and N. N. Godovikov

Recently we reported the synthesis of the phenyl-9-o- and phenyl-9-m-carboranyliodonium salts [1] and their reactions with nucleophiles [2]. In the present paper we describe the reaction of the phenyl-9-o- (I) and phenyl-9-m-carboranyliodonium (II) fluoborates with tri-phenylphosphine (TPP), and also the "carboranylation" of PPh₃ with bis(9-m-carboranyl)bromonium fluoborate (III).

It is known that diphenylhalonium fluoborates react with TPP to give tetraphenylphosphonium fluoborate (IV). As was shown in [3, 4], these reactions proceed by the radical mechanism via the intermediate formation of the complex of the Ph_2Hal^+ cation with one PPh_3 molecule and are initiated by light.

We found that the radical reaction also proceeds easily when acetone solutions of mixtures of either (I) or (II) with TPP are illuminated with an incandescent lamp, resulting in the formation of two main products: (IV) and the corresponding 9-iodocarborane, and also $\sim 1\%$ of benzene and traces of diphenyl.

> (I) or (II) + PPh₃ \rightarrow Ph₄PBF₄⁻ + 9-o (m)-C₂H₂B₁₀H₉I + PhH + Ph₂ (IV)

A. N. Nesmeyanov Institute of Heteroorganic Compounds, Academy of Sciences of the USSR, Moscow. M. V. Lomonosov Moscow State University. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 2, pp. 472-474, February, 1983. Original article submitted June 24, 1982.

UDC 542.91:547.1'127:547.558.1