768 Communications SYNTHESIS

We had previously reported that succinimides (5) with substituents on C-3 of the imide ring undergo the Norrish type I reaction to give alkenamides 6, but no Paterno-Büchi products (7) were obtained (Scheme \mathbf{B})⁸.

Scheme B

Intermolecular Photocycloaddition of Ring-Substituted Cyclic Dithioimides with 2,3-Dimethyl-2-butene: A Facile Synthesis of Spiro-Thietanes¹

Kazuaki Oda, Minoru Machida*

Faculty of Pharmaceutical Sciences, Higashi-Nippon-Gakuen University, Ishikari-Tobetsu, Hokkaido 061-02, Japan

Yuichi Kanaoka

Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan

Upon irradiation, unsymmetrically 3-substituted and symmetrical bicyclic dithiosuccinimides undergo photocycloaddition with 2,3-dimethyl-2-butene to give various spiro-thietanes, including highly strained multicycles.

The photoreactions of cyclic thioimides (1) have recently been extensively studied 2,3,4 . Most dithioimides are inert to both the Norrish type I (α -cleavage) and Norrish type II (hydrogen abstraction) reactions in contrast to the behavior of their oxygen analogs (imides) and nitrogen-lacking counterparts (thiones) 6,7 . However, many aliphatic and aromatic diand mono-thioimides undergo both inter- 2,3 and intramolecular 1,4 photocycloaddition (Paterno-Büchi type reaction) with olefins to afford imide-thietanes (2 and 3) (Scheme A).

Scheme A

By contrast, we have now found that photolysis of ringsubstituted dithiosuccinimides gives rise to thietanes which correspond to Paterno-Büchi type products.

As part of our photochemical synthetic studies dealing with nitrogen-thiocarbonyl systems¹, we now report the facile synthesis of spiro-thietanes by the photocycloaddition of unsymmetrically 3-substituted and symmetrical bicyclic dithiosuccinimides with olefins.

Dithiosuccinimides (10a-e and 13) were prepared from the corresponding imides (8a-e and 9) and phosphorus(V) sulfide9. Photolysis of the dithioimides in benzene was carried out in the presence of an excess of 2,3-dimethyl-2butene. The reaction of 1,3-dimethyldithiosuccinimide (10a) gave two regioisomers (11 a and 12 a), one of these consists of two stereoisomers (11a-i and 11a-ii), which are formed by the preferential cycloaddition at the less-hindered thiocarbonyl group2. The other product is a single stereoisomer (12a). The reaction of unsymmetrically ethyl-substituted dithioimide 10b also gave thietanes 11b-i and 11b-ii in 30 and 12% yields, respectively, accompanied by a mixture of two unseparable stereoisomers 12b. Irradiation of dimethylsubstituted dithioimide 10c produced only thietane 11c in 54% yield as a single regioisomer along with recovered starting material (25%).

Table 1. Dithioimides 10a-e, 13 Prepared

Dithioimide No.	Yield [%]	b.p. [°C]/torr	Molecular Formula
10a	68	143-145/12	$C_6H_9NS_2$ (159.3)
10Ъ	62.	152-158/12	$C_7H_{11}NS_2$ (173.3)
10c	54	160-162/12	$C_7H_{11}NS_2$ (173.3)
10d	69	m.p. 80~81°C	$C_{10}H_{15}NS_2$ (213.3)
10e	52	128-134/8	$C_7H_9NS_2$ (171.3)
13	51	149155/10	$C_7H_9NS_2$ (171.3)

 $[^]a$ The microanalyses were in good agreement with the calculated values: C $\pm 0.17,$ H $\pm 0.24,$ N $\pm 0.13.$

Table 2. Synthesis of Spirothietanes 11, 12, 14

Sub- strate	<i>lrradi-</i> ation ^a [h]	Photo Product	Yield [%]	т. р. [°С]	Molecular Formula ^b	$\frac{MS}{m/e} \; (M^+)$	1 H-NMR (CDCl ₃) c δ [ppm]	¹³ C-NMR (CDCl ₃) ^c δ[ppm]
10a	3.0	11a~i	22	8990.5	C ₁₂ H ₂₁ NS ₂ (243.4)	243	1.15 (s, 3H, CH ₃); 1.20 (s, 3H, CH ₃); 1.30 (d, 3H, <i>J</i> = 7 Hz, CH ₃); 1.50 (s, 6H, 2CH ₃); 2.3–3.2 (m, 3H); 3.55 (s, 3H, NCH ₃)	16.8; 20.8; 21.0; 23.4; 27.0; 34.4; 42.0; 42.3; 45.0; 56.2; 79.4; 206.8
		11a~ii	18	115117	C ₁₂ H ₂₁ NS ₂ (243.4)	243	1.15 (s, 6H, 2CH ₃); 1.30 (d, 3H, <i>J</i> = 7 Hz, CH ₃); 1.40 (s, 3H, CH ₃); 1.55 (s, 3H, CH ₃); 1.6–3.4 (m, 3H); 3.45 (s, 3H, NCH ₃)	17.2; 21.3; 23.6; 25.0; 26.8; 34.6; 40.8; 44.8; 44.8; 56.0; 83.1; 207.0
		12a	5	54-56	C ₁₂ H ₂₁ NS ₂ (243.4)	243	0.95 (d, 3H, J = 7 Hz, CH ₃); 1.10 (s, 3H, CH ₃); 1.20 (s, 3H, CH ₃); 1.50 (s, 3H, CH ₃); 2.7 3.0 (m, 3H); 3.45 (s, 3H, NCH ₃);	15.8; 20.7; 20.8; 24.6; 27.0; 34.4; 35.8; 45.8; 47.0; 55.4; 87.4; 200.1
10b	2.5	11b–i	30	65-67	C ₁₃ H ₂₃ NS ₂ (257.5)	257	0.8 (t, 3H, <i>J</i> = 7 Hz); 1.5-1.9 (m, 5H); 1.10 (s, 3H, CH ₃); 1.15 (s, 3H, CH ₃); 1.35 (s, 3H, CH ₃); 1.45 (s, 3H, CH ₃); 3.40 (s, 3H, NCH ₃)	15.6; 15.9; 21.3; 23.6; 24.4; 32.8; 34.4; 42.4; 42.6; 45.4; 56.2; 78.3; 206.9
		11b-ii 12b	12 20	82~83.5	C ₁₃ H ₂₃ NS ₂ (257.5)	257	1.10 (t. 3H, CH ₃); 1.15 (s, 3H, CH ₃); 1.20 (s, 3H, CH ₃); 1.50 (s, 6H, 2CH ₃); 1.5–1.9 (m, 5H); 3.50 (s, 3H, NCH ₃)	15.9; 18.9; 21.1; 22.8; 24.4; 32.8; 34.8; 40.4; 40.4; 44.9; 56.1; 78.8; 207.6
10c	2.0	11c	54	77~79	C ₁₃ H ₂₃ NS ₂ (257.5)	257	(a mixture of two s 1.10 (s, 3 H, CH ₃); 1.15 (s, 3 H, CH ₃); 1.25 (s, 3 H, CH ₃); 1.30 (s, 6 H, 2 CH ₃); 1.35 (s, 3 H, CH ₃); 1.8 (d, 1 H, $J = 12$ Hz); 2.3 (d, 1 H, J = 12 Hz); 3.55 (s, 3 H, NCH ₃)	22.7; 25.5; 27.6; 29.0; 29.7; 36.8; 36.8; 46.1; 48.3; 49.6; 56.4; 80.2; 212.6
10d	1.0	11d	50	114–117	C ₁₆ H ₂₇ NS ₂ (297.5)	297	1.10 (s, 3H, CH ₃); 1.20 (s, 3H, CH ₃); 1.50 (s, 6H, 2CH ₃); 0.8–2.1 (m, 10H); 1.95 (d, 1H, $J = 12$ Hz); 3.55 (s, 3H, NCH ₃)	22.8; 23.4; 23.4; 23.5; 24.3; 25.0; 25.5; 27.4; 30.4; 36.8; 41.9; 48.4; 55.1; 56.4; 80.2; 206.1
10e	3.0	11e	32	85~87	C ₁₃ H ₂₁ NS ₂ (255.5)	255	1.00 (s, 3H, CH ₃); 1.20 (s, 3H, CH ₃); 1.35 (s, 3H, CH ₃); 1.55 (s, 3H, CH ₃); 1.5-2.8 (m, 6H); 3.1 (s, 3H, CH ₃)	21.7; 23.7; 23.8; 26.4; 27.0; 30.4; 36.8; 41.5; 47.2; 52.1; 57.0; 85.8; 206.7
3	0.5	14	64	6062	$C_{13}H_{24}NS_2$ (255.5)	255	1.15 (s, 3H, CH ₃); 1.30 (s, 3H, CH ₃); 1.35 (s, 3H, CH ₃); 1.55 (s, 3H, CH ₃); 1.5-2.8 (m, 6H); 3.1 (s, 3H, NCH ₃)	18.4; 18.9; 25.5; 27.5; 28.8; 29.4; 30.8; 32.8; 45.4; 50.8; 56.2; 80.4; 212.8

¹kW High-pressure mercury lamp (Pyrex filter).

° JEOL FX 90 Q spectrometer.

Although the stereochemistry of the isomers is not known, the regioisomers could easily be distinguished on the basis of the chemical shifts of the thiocarbonyl C-atoms in the ¹³C-NMR spectra. For a typical example (11a), the signal of the

thiocarbonyl C-atom is located at $\delta = 206$ – 207 ppm relative to that of 12a (200 ppm), thus indicating the presence of a methyl substituent at the α -position with respect to the thiocarbonyl group.

The microanalyses were in good agreement with the calculated values: $C \pm 0.23$, $H \pm 0.20$, $N \pm 0.18$, $S \pm 0.12$.

$$R^{1}$$
 S R^{2} N-CH₃ + R^{2} N-CH₃ H S R^{3} H S R^{3

8, 10, 11, 12	R^1	R ²	R ⁻³
a b c d	CH ₃ C ₂ H ₅ CH ₃ —(CH ₂) ₅ —	H Н СН ₃ −СН ₂ −СН ₂ −	H H H

$$\begin{array}{c|c}
& P_4S_{10}(Ref^9) \\
& S \\$$

Scheme C

In order to prove the structural requirements of the Paterno-Büchi processes, the photolysis of some bicyclic dithioimides (10d, 10e, and 13) was examined. As expected for the 3,3-spiro-substituted dithioimide 10d, thietane 11d was obtained via selective reaction with the less hindered thiocarbonyl group.

The reaction of symmetrically substituted cyclic dithioimides (10e, 13) readily produced strained ring compounds, *i.e.*, tricyclic monospiro (11e) and dispiro (14) systems, respectively (Scheme C). These imide-thietanes (11, 12, 14) represent spiro systems which contain both sulfur and nitrogen and which are otherwise unaccessible; they possess structural features of interest as intermediates for various synthetic transformations^{2,3,4}. Thus, the photocycloaddition of thioimides may provide a novel synthetic route to new N- and S-containing multiheterocyclic systems.

lmides:

The imides $8a^{10}$, $8b^{11}$, $8c^{12}$, $8d^{13}$, $8e^{14}$, and 9^8 , were prepared following the reported procedures.

Dithioimides

Dithioimides (10a-e and 13) were prepared from the corresponding imides and phosphorus(V) sulfide by the procedure of Ref.⁹, and purified by column chromatography (Table 1).

Irradiation of Dithioimides; General Procedure:

A solution of the dithioimide (5 mmol) and 2,3-dimethyl-2-butene (2.11 g, 25 mmol) in benzene (500 ml) is irradiated through Pyrex

glass at room temperature using a 1 kW high-pressure mercury lamp. After removal of the solvent *in vacuo*, the products are separated by column chromatography on silica gel (using benzene as solvent), and purified by recrystallization (Table 2).

Received: August 30, 1985 (Revised form: December 12, 1985)

- ¹(a) Photochemistry of the Nitrogen-Thiocarbonyl Systems; 6. Part 5: Machida, M., Oda, K., Kanaoka, Y. *Tetrahedron Lett.* **1985**, *26*, 5173.
- (b) Photoinduced Reactions; 81. Part 80: Ref. 1a.
- ² Machida, M., Oda, K., Yoshida, E., Kanaoka, Y. J. Org. Chem. 1985, 50, 1681.
- Machida, M., Oda, K., Yoshida, E., Wakao, S., Ohno, K., Kanaoka, Y. Heterocycles 1985, 23, 1615.
- ⁴ Machida, M., Oda, K., Kanaoka, Y. Chem. Pharm. Bull. 1985, 33, 3552.
- ⁵ Kanaoka, Y. Acc. Chem. Res. 1978, 11, 407.
- 6 de Mayo, P. Acc. Chem. Res. 1976, 9, 52.
- Couture, A., Gomez, J., de Mayo, P. J. Org. Chem. 1981, 46, 2010; and references cited therein.
- 8 Kanaoka, Y., Okajima, H., Hatanaka, Y. J. Org. Chem. 1979, 44, 1740
- ⁹ Bergand, U., Sandström, J. Acta Chem. Scand. 1966, 20, 689.
- ¹⁰ Miller, C.A., Lang, L.M. J. Am. Chem. Soc. 1953, 75, 373.
- Lukes, R., Pergal, M. Collect. Czech. Chem. Commun. 1962, 27, 1387
- ¹² Menshutkin, N. Liebigs Ann. Chem. 1872, 162, 181.
- ¹³ Moal, H. L., Foucaud, A., Carrie, R., Robert, A., Danion, D. *Bull. Soc. Chim. Fr.* **1964**, 2553.
- ¹⁴ Rice, L.M., Grogan, C.H. J. Org. Chem. 1957, 22, 1100.