ALTERPORRIOL C: A MODIFIED BIANTHRAQUINONE FROM ALTER-NARIA PORRI*

RIKISAKU SUEMITSU, TOSHIBUMI UESHIMA, TOSHINARI YAMAMOTO and SATOSHI YANAGAWASE

Department of Applied Chemistry, Faculty of Engineering, Doshisha University, Kamikyo-ku, Kyoto 602, Japan

(Received in revised form 16 March 1988)

Key Word Index—Alternaria porri; α,β' -bianthraquinone; alterporriol C.

Abstract—The spent growth medium and mycelia of *Alternaria porri* afforded a novel anthraquinone named alterporriol C, whose structure was determined by spectroscopic methods as well as by degradation to known compounds. Alterporriol C was found to be an α,β' -bianthraquinone derived from macrosporin and altersolanol A.

INTRODUCTION

In the course of our investigation on the pigments of *Alternaria porri* (Ellis) Ciferri, the causal fungus of black spot disease of stone-leek (Japanese name: negi), we isolated three dark red pigments from the culture liquid and mycelia [1]. The structures of two of these pigments, alterporriol A (Ap-A, 1) and B (Ap-B, 1), have already been determined and found to be atropisomers of each other [1, 2]. This paper deals with the structural elucidation of the third pigment (Ap-C, 2). Cladofulvin [3] and asphodelin, [4] have been reported as naturally occurring α,β' -bianthraquinone. The former is a product of *Cladosporium fulvum* and the latter is a component of *Aloe saponaria* HAW. Ap-C is the second example of an α,β' -bianthraquinone of fungal origin.

*Studies of the Metabolic Products of Alternaria porri, part 14. For Part 13 see ref. [2].

RESULTS AND DISCUSSION

When the ¹H NMR spectrum of Ap-C was compared with those of macrosporin (3) and altersolanol A (4), both are metabolic pigments of *Alternaria porri* [5,6], it was obvious that the spectrum of Ap-C was the sum of those of 3 and 4 (Table 1). This suggested Ap-C was a modified bianthraquinone formed from 3 and 4. To confirm the identities of the structural fragments of Ap-C, the reductive cleavage products formed on treatment of Ap-C with alkaline sodium dithionate were examined. Compounds 3, 4 and 1,2,8-trihydroxy-6-methoxy-3-methylanthraquinone (5) were identified by comparing their R_ts with those of authentic samples [1]. The combined results showed that Ap-C is another modified bianthraquinone derived from the monomeric units 3 and 4.

The manner of the attachment of 4 to 3 followed from the 1 H NMR spectrum of Ap-C. As shown in Table 1, the

Н	3	Н	4	Н	2
4	8.10 <i>s</i>			4	8.10 <i>s</i>
1	7.51 s			1	
7	6.70 d J = 2.2 Hz			7	6.61 d J = 2.2 Hz
5	7.27 d J = 2.2 Hz			5	7.25 d J = 2.2 Hz
Me-3	2.32 s			Me-3	2.32 s
OMe-6	3.91 s			OMe-6	3.88 s
OH-2	9.70 s	R-OH × 4	2.58 br, s	OH-5	∫12.59
OH-8	12.86 s	OH-8	12.21 s	and 8'	13.08
		4	4.41 s	4′	4.30 s
		2	3.77 d J = 6.6 Hz	2'	4.15 d J = 6.5 Hz
		1	4.64 d J = 6.6 Hz	1′	4.96 d J = 6.5 Hz
		7	6.71 d J = 2.2 Hz	7′	
		5	7.11 d J = 2.2 Hz	5'	6.85 s
		3	1.37 s	Me-3'	1.27 s
		OMe-6	3.90 s	OMe-6'	3.71 s

Table 1. ¹H NMR spectral data of macrosporin (3), altersolanol A (4) and alterporriol C (2) (400 MHz, d_8 -THF with TMS)

¹H NMR spectra of 3 and 4 exhibit the signals of H-5 and H-7 as a pair of doublets because of *meta*-coupling. In the spectrum of Ap-C, a pair of doublets appear at δ 6.61 and 7.25 corresponding to H-7 (δ 6.70) and H-5 (δ 7.27) in 3, respectively. In addition, an aromatic proton signal at δ 8.10 in Ap-C can be attributed to H-4 (δ 8.10) in 3. Moreover, the 2D ¹H NMR (NOESY) spectrum of Ap-C heptaacetate (**2a**) shows that the signal due to the aromatic proton at δ 8.21 (H-4) is correlated to the aromatic methyl protons at δ 2.26 (Me-3). These results suggest that the 3 moiety of Ap-C is linked at C-1 to the 4 moiety, and it follows that the internuclear C-C link must be C-1 to C-7' (**2**) or C-5' (**6**).

Ogihara et al. have reported [7] that in the ¹H NMR spectra of acetoxylated bianthraquinones the signals due to the protons of acetate groups ortho to the internuclear bond resonate at higher field than usual on account of anisotropy caused by the aromatic ring of the other 'half' of the molecule. In the ¹H NMR data of Ap-A previously reported [2], the signals due to methoxyl protons ortho to the internuclear C-C link resonate at higher field than those of its constituents, 3 and 4. In the case of 2a, a methoxyl group (OMe-6') and two acetoxyl groups (OAc-2 and OAc-8') resonate at unusually high field as shown in Table 2. Namely, signals of OMe-6'(δ 3.70; 4a: 3.96), OAc-2 (δ 2.14; 3a: 2.33) and OAc-8' (δ 2.10; 4a: 2.38) are observed. Hence, the structure of 2 and 2a are compatible with those of Ap-C and Ap-C heptaacetate. The structure 6 must be excluded, because it has a methoxyl and an acetoxyl group located ortho to the internuclear C-C linkage.

EXPERIMENTAL

Extraction and isolation of alterporriol C. The cultural condition using the stone-leek decoction as a medium and the method of isolation have already been reported [1]. Crude Ap-C obtained by prep. TLC was purified by reversed phase HPLC: (YMC-S343 ODS-type, solvent MeCN-H₂O 3:7). Yields of Ap-C were 81 mg from 301 culture medium.

Ap-C heptaacetate (6a)		Macrosporin		As-A		
		diace	tate (3a)	pentaacetate (4a)*		
1.91	(C-4')†			1.98	(C-4)	
1.94	(C-1')			2.06	(C-1)	
2.02	(C-2')			2.13	(C-2)	
2.08	(C-3')			2.15	(C-3)	
2.10	(C-8')			2.38	(C-8)	
2.14	(C-2)	2.33	(C-2)			
2.27	(C-8)	2.31	(C-8)			
3.70	(C-6')		. ,	3.96	(C-6)	
3.96	(C-6)	3.93	(C-6)			

Table 2. Assignment of acetyl and methoxyl protons (400 MHz, CDCl₃ with TMS)

*Values documented in ref. [8].

†Carbon number attached to OAc and OMe group.

Table 3. ¹³C NMR spectral data of alterportiol C heptaacetate (2a) (INEPT method) (400 MHz, $CDCl_3$ with TMS)

				the second				
Ме	C-3	16.83	quatC	C-3′	80.54	OCOMe		166.64
	C-3′	17.01	-	C-9' a	116.74	-		167.16
OAc		19.67		C-7′	116.74			168.04
		20.36		C-9a	118.57			168.17
		20.57		C-1	125.13			168.41
		20.59		C-4a	129.81			168.81
		20.92		C-1a	130.74			169.67
		21.08		C-10'a	132.40	C=O	C-9	179.67
		21.85		C-10a	135.69		C-9′	180.16
OMe	C-6	55.89		C-3	136.13		C-10	180.91*
	C-6′	56.53		C-5'a	137.97		C-10′	181.27†
-CH	C-4′	64.00		C-8' a	141.87			
	C-1′	66.89		C-8′	150.05			
	C-2′	72.85		C-8	150.77			
	C-5	108.65		C-2	151.30			
	C-5′	109.60		C-6	161.39			
	C-7	115.30		C-6′	163.37			
	C-4	129.15						

Assignments of * and † may be reversed, respectively.

Alterporriol C. Dark-red amorphous, mp > 300° (dec.), $[\alpha]_D^{25}$ -268° (EtOH; c 0.05). IR $\nu \frac{Km}{max}$ m⁻¹: 3600-3000 (OH), 1670, 1650 (free C=O), 1640 (chelated C=O), 1210 (Ar-OH), 1100 (sec OH); UV $\lambda \frac{E10H}{max}$ nm (log. ε) 228 (5.91), 267 (5.68), 320 (5.33), 360 (4.51), 422 (4.69), 450 (4.69); MS(FD) (rel. int.) m/z: 618 [M]⁺(24) 582 [M - 2H₂O]⁺ (100), 566; MS(SIMS) m/z (rel. int.): 643 [M + Na + 2H]⁺ (4), 621 [M + 3H]⁺ (44), 567.1306 (100), Calc. for C₃₂H₂₃O₁₆, m/z 567.1285.

Alterportial C heptaacetate (2a). On acetylation with Ac₂O containing a few drops of 70% perchloric acid, followed by purification using HPLC (YMC-S343 ODS-type, solvent MeCN-H₂O 11:9), Ap-C (20 mg) gave a yellow acetate (8 mg), mp 270-271°. MS (FD) *m/z*: 912. [M]⁺, corresponding to C₃₂H₁₉O₁₃Ac₇ (912.78); NMR δ_{MeC13}^{MeC13} : 1.53 (3H, *s*, Me-3'), 2.41 (3H, *s*, Me-3), 1.91, 1.94, 2.02, 2.08, 2.10, 2.14, 2.27 (3H, each, *s*, ROCOMe), 3.70, 3.96, (3H, each, *s*, Ar-OMe), 5.53 (1H, *d*, *J* = 7.3 Hz, H-2'), 6.21 (1H, *d*, *J* = 7.3 Hz, H-1'), 6.84 (1H, *s*, H-4'), 6.79 (1H, *s*, H-5'), 6.80 (1H, *d*, *J* = 2.6 Hz, H-7), 7.70 (1H, *d*, *J* = 2.6 Hz, H-5) 8.20 (1H, *s*, H-4); ¹³C NMR: Table 3. The assign-

ments were based on comparison with the chemical shifts of 3a and 4a [8].

Reductive cleavage of Ap-C. To a sol of Ap-C (2 mg) in 0.5 M NaOH (5 ml), an aq. sol of Na₂S₂O₄ (5 mg) in 5 ml H₂O was added. After heating at 70° for 30 min, the reaction mixture was cautiously neutralized with cooling and extd with EtOAc. After evapn of the dried extract (Na₂SO₄), the residue was analysed by HPLC. For analysis, a YMC-A314 ODS-type column was used with a mobile phase of MeOH-H₂O (7:3) for 30 min, which was then increased to 100% MeOH during the next 40 min. Compounds 3, 4 and 5 were identified by comparing their R_is with those of authentic samples.

Acknowledgements—We wish to express our deep gratitude to Emeritus Prof. M. Hiura and Prof. Y. Matsui (Rakuno College) for the donation of several strains of Alternaria porri. Grateful thanks are also due to Mr T. Miyai, Mr Y. Inoue and Mrs N. Sakaida for their help.

REFERENCES

- Suemitsu, R., Sano, T., Yamamoto, M., Arimoto, Y., Morimatsu, F. and Nabeshima, T. (1984) Agric. Biol. Chem. 48, 2611.
- 2. Suemitsu, R., Yamamoto, T., Miyai, T. and Ueshima, T. (1987) Phytochemistry 26, 3221.
- 3. Davis, D. G. and Hodge, P. (1974) J. Chem. Soc. Perkin Trans. 1 2403.
- 4. Yagi, A., Makino, K. and Nishioka, I. (1978) Chem. Pharm. Bull. 26, 1111.
- 5. Suemitsu, R., Nakajima, M. and Hiura, M. (1959) Bull. Agric. Chem. Soc. Jpn 23, 547.
- 6. Suemitsu, R. and Nakamura, A. (1981) Agric. Biol. Chem. 45, 2363.
- 7. Ogihara, Y., Kobayashi, N. and Shibata, S. (1968) Tetrahedron Letters 1181.
- 8. Stoessl, A. (1969) Can. J. Chem. 47, 777.