H_a), 2.62 (1 H, dd, J_{bx} = 9.5 Hz and J_{ab} = 13 Hz, H_b), 4.51 (1 H, dd, J_{ax} = 11.5 Hz and J_{bx} = 9.5 Hz, H_x); ¹³C NMR (DCl + D₂O; ref 1,4-dioxane = δ 67.40 ppm) δ 7.71 and 8.14 (2 q, 2 Me), 31.03 and 31.20 (2 t, 2 CH₂), 35.16 (t, CH₂CH), 50.29 (d, CH), 92.40 (s, CEt₂), 174.19 (s, C=O).

3-Amino-5,5-di-n-propyltetrahydro-2-furanone, 24c (hydrochloride): mp >260 °C; IR (KBr) 3600-2500 (NH₃⁺), 1770 cm⁻¹ (C==O); ¹H NMR (DCl + D₂O; ref 1,4-dioxane = δ 3.64 ppm) δ 0.82 (2 × 3 H, t, overlap, 2 Me), 1.0–2.0 (4 × 2 H, m, 4 CH₂), 2.18 (1 H, dd, $J_{ax} = 11.5$ Hz and 13 Hz, H_a), 2.68 (1 H, dd, $J_{bx} = 9$ Hz and $J_{ab} = 13$ Hz, H_b), 4.56 (1 H, dd, $J_{ax} = 11.5$ Hz and $J_{bx} = 9$ Hz, H_x); ¹³C NMR (DCl + D₂O; ref 1,4-dioxane = δ 67.40 ppm) δ 14.39 (q, 2 Me, overlap), 16.98 and 17.38 (2 t, (CH_3CH_2CH_2)_2), 36.18 (t, CH_2CH), 39.64 and 40.96 (2 t, (CH₃CH₂CH₂)₂), 50.28 (d, CH), 91.79 (s, CPr₂), 174.16 (s, C=O).

Retention Values. Retention values for TLC using Kieselgel 60 F_{254} plates (5 × 10 cm; thickness 0.25 mm) with 1-butanol-acetic acid-water (4:1:1) as eluent: Compound 22a, 0.43; compound 22b,

0.60; compound 22c, 0.65 (ninhydrin positive spots of compounds 22 appeared light purple); compound 23a, 0.28; compound 23b, 0.50 (ninhydrin positive spots of compounds 23 appeared dark yellow to light brown); compound 24a, 0.39; compound 24b, 0.57; compound 24c, 0.59 (ninhydrin positive spots of compounds 24 appeared yellow).

Registry No. 11a, 4091-39-8; 11b, 13280-00-7; 11c, 2832-55-5; 11d, 2907-70-2; 12a, 78827-37-9; 12b, 118231-23-5; 12c, 118231-24-6; 12d, 128753-38-8; 14a, 118231-19-9; 14b, 118231-20-2; 14c, 118231-21-3; 14e, 128753-39-9; 14f, 128753-40-2; 21a, 123445-50-1; 21b, 123445-51-2; 21c, 123445-52-3; cis-18f, 128753-41-3; trans-18f, 128753-42-4; 19a, 114809-78-8; 22a, 123445-53-4; 22b, 123445-54-5; 22c, 123445-55-6; 23a, 104302-37-6; 23b, 123445-56-7; 24a·HCl, 15722-67-5; 24b·HCl, 128753-43-5; 24c·HCl, 128779-80-6; 25a, 128753-44-6; 25b, 128753-45-7; 26a, 128753-46-8; 26b, 128753-47-9; 27a, 128753-48-0; 27b, 128753-49-1; 28a, 128753-50-4; 28b, 128779-81-7; 29a, 128753-51-5; 29b, 128779-82-8.

Syn-Anti Conformational Analysis of Regular and Modified Nucleosides by 1D ¹H NOE Difference Spectroscopy: A Simple Graphical Method Based on **Conformationally Rigid Molecules**

Helmut Rosemeyer,[†] Gábor Tóth,[‡] Bozenna Golankiewicz,[§] Zygmunt Kazimierczuk,[⊥] Werner Bourgeois,[†] Uwe Kretschmer,[†] Heinz-Peter Muth,[†] and Frank Seela*,[†]

Laboratory of Organic and Bioorganic Chemistry, Department of Biology and Chemistry, University of Osnabrück, D-4500 Osnabrück, Federal Republic of Germany, Technical University Budapest, Institute for General and Analytical Chemistry, H-1111 Budapest, Hungary, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61704 Poznan, Poland, and Department of Biophysics, Institute of Experimental Physics, University of Warsaw, 02-089 Warsaw, Poland

Received January 30, 1990

The 1D ¹H NOE difference spectra of 50 base- and/or sugar-modified nucleosides were measured in (CD₃)₂SO with irradiation of various protons. The resulting NOE data were used for a conformational analysis with respect to their syn-anti conformer equilibrium. Irradiation of H-8 [purine numbering (purine and pyrimidine numbering has been used for all nucleosides throughout the paper)] of the conformationally fixed compounds 25β and 41β resulted in NOE values at H-1', H_{β} -2', and H_{β} -3', respectively, which were used to establish a calibration graph for a semiquantitative estimation of syn and anti conformer populations of β -D nucleosides. Moreover, the preferred conformations of a number of α -D nucleosides were qualitatively deduced from their 1D ¹H NOE difference spectra. Measurement of the NOE spectra of sterically hindered nucleosides implied that both the chemical properties as well as the van der Waals radius of a nucleobase substituent are of decisive importance for the conformation around the N-glycosylic bond.

Introduction

Nucleosides exist in solution in distinct conformational ranges with a Gaussian distribution of conformer populations within these ranges. Concerning the overall shape of a nucleoside, the most important conformational parameters are the torsion angle around the glycosylic bond (χ) as well as the sugar puckering, which are interdependent.¹ The energy barrier between the different conformational states is usually low ($\approx 25 \text{ kJ/mol}$),^{2,3} implying dynamic equilibria between them which might be more or less biased toward one side. Normally, the different conformational modes can be reliably described by two-state models (syn-anti; N/S-type sugar puckering).¹

Rare nucleotides characterized by unusual aglycon moieties like 2-thiouridine, pseudouridine, wyosine (42β) ,

and others are particularly common in tRNA's. Some of these manifest either the syn or the anti conformation around the glycosylic bond in the solid state.⁴ Moreover, the syn-anti equilibrium is a key event in going from a right-handed B-DNA to a left-handed Z-DNA involving a conformational change in guanylate residues from anti to syn.^{5,6}

As substrate or inhibitor activities of nucleosides and nucleotides might be correlated with their preferred structure in solution, the evaluation of thermodynamic and conformational parameters is of key importance in eluci-

[†]University of Osnabrück.

[‡]Technical University Budapest.

[§] Polish Acadamy of Sciences.

 $^{^{\}perp}$ University of Warsaw.

⁽¹⁾ Saenger, W. Principles of Nucleic Acid Structure; Springer Verlag: New York, 1984; pp 51-78. (2) Rhodes, L. H.; Schimmel, P. R. Biochemistry 1971, 10, 4426.

⁽³⁾ Röder, R.; Lüdemann, H.-P.; von Goldammer, E. Eur. J. Biochem. 1975, 53, 517.

⁽⁴⁾ Saenger, W.; Scheit, K. Angew. Chem. Int. Ed. Engl. 1969, 8, 139. (5) Wang, A. H.-J.; Quigley, G. J.; Kolpak, F. J.; Crawford, J. L.; van Boom, J. H.; van der Marel, G.; Rich, A. Nature 1979, 282, 680.

⁽⁶⁾ Arnott, S.; Chandrasekharan, R.; Birdsall, D. L.; Leslie, A. G. W.; Ratliff, R. L. Nature 1980, 283, 743.

NMR Analysis of Regular and Modified Nucleosides

dating the mechanism of a biological process. If in an enzymatic reaction the initial encounter between an enzyme and its binding partner is fast compared to the rate of conformational interconversion of the latter,⁷ then the enzyme can distinguish between the different conformations. If the interconversion between the conformations is so fast that both conformers are rapidly exposed to the enzyme, then the most reactive conformer is sought out even if it is only present in minute concentrations (Curtin-Hammett principle).8

1D ¹H Nuclear Overhauser enhancement spectroscopy (NOE) has been found to allow a direct approach to qualitative or semiguantitative information about the configuration as well as the preferred conformation⁹ of nucleosides and nucleotides in solution. NOE and CD measurements of some regular nucleosides in different solvents or solvent mixtures indicated that no gross conformational differences exist between D_2O and $(CD_3)_2SO$ solutions.^{10,11} As $(CD_3)_2SO$ is the most universal solvent for nucleosides where aggregate formation can be excluded,^{10,11} we measured the NOE difference spectra of the 50 sugar- and/or base-modified as well as regular nucleosides shown in the formula schemes in $(CD_3)_2SO$ solution and attempted to correlate the data with structural parameters. This may be important for an assessment of the conformation of oligo- and polynucleotides^{12,13} and may help to explain their biological activity.

Results and Discussion

Recently we have reported on the results of homonuclear ¹H NOE difference spectra with respect to the unequivocal assignment of anomeric configuration of N-nucleosides.^{14a,b} α - and β -anomers can easily be distinguished by saturating H-1' and measuring the NOE factors at H-4' and H-3'.15 Occurrence of an NOE at H-4' proves β -configuration at the anomeric center while α -anomers show an NOE at H-3' upon irradiation of H-1'. This has been successfully applied to D-ribo-, 2'-deoxy-D-ribo-, D-arabino-, 2',3'-di-deoxy-D-ribo-,^{14a,b} 2',3'-didehydro-2',3'-dideoxy-D-ribo-, as well as 2'-deoxy-D-xylo- and 2',3'-dideoxy-3'-fluoro-Dribonucleosides.¹⁶

Besides such stereochemical assignments,¹⁷ 1D ¹H NOE difference spectroscopy displays a direct approach to the conformational analysis of nucleosides with respect to the torsion angle around the glycosylic bond.

The orientation of the base relative to the sugar moiety can adopt two main ranges (syn and anti) defined by torsion angle χ (purine nucleosides: χ , O-4'-C-1'-N-9-C-4; pyrimidine nucleosides: χ , O-4'-C-1'-N-1-C-2).¹⁸ This nucleobase orientation has been analyzed in several ways: (i) spin relaxation times;¹⁹⁻²² (ii) NOE effects;^{10,11,23-26} (ii)

- (10) Hart, P. A.; Davis, J. P. J. Am. Chem. Soc. 1971, 93, 753

- (11) Hart, P. A.; Davis, J. P. J. Am. Chem. Soc. 1972, 94, 2572.
 (12) Kaiser, K., Ph.D. Thesis, University of Osnabrück, FRG, 1989.
 (13) Seela, F.; Kaiser, K.; Bindig, U. Helv. Chim. Acta 1989, 72, 868.
 (14) (a) Rosemeyer, H.; Tóth, G.; Seela, F. Nucleosides Nucleotides
- 1989, 8, 587. (b) Tôth, G.; Rosemeyer, H.; Seela, F. Nucleosides Nucleotides 1989, 8, 1091.
- (15) Knutsen, L. J. S.; Judkins, B. D.; Newton, R. F.; Scopes, D. I. C.; Klinkert, D. J. Chem. Soc., Perkin Trans. 1 1984, 621. (16) Rosemeyer, H.; Seela, F. Helv. Chim. Acta 1989, 72, 1084.

Table I. Computed Proton-Proton Distances (Å) and Torsion Angles (deg) for 25β and 41β

compd	$r_{i,j}$ of H_i – H_j (Å)	torsion angle (deg)
25 β	H-8-H-1', 2.29	O-4'-C-1'-N-9-C-4, 47.2
	H-8-H-2', 3.31	O-4'-C-1'-N-9-C-8, 147.9
	H-1'-H-4', 4.01	C-1'-C-2'-C-3'-C-4', 6.8
	H-1'-H-2', 2.82	O-4'-C-1'-C-2'-C-3', -25.6
		C-3'-C-4'-C-5'-N-3, 59.8
		C-8–N-9–C-1′–H-1′, –28.9
		H-1'-C-1'-C-2'-H-2', 103.6
		H-2'-C-2'-C-3'-H-3', 8.1
		H-3'-C-3'-C-4'-H-4', -106.8
		H-4'-C-4'-C-5'-H-5', 60.2
		H-4′–C-4′–C-5′–H-5′′, –55.5
41β	H-8–H _β -2′, 2.75	O-4'-C-1'-N-9-C-4, -141.0
	H-8–H-3′, 4.33	O-4'-C-1'-N-9-C-8, 38.6
	H-8–H-1′, 3.66	C-8–N-9–C-1′–H-1′, 155.9
	H-8-H-5', 2.20	C-1'-C-2'-C-3'-C-4', -37.3
	H-1′–CH ₃ , 2.20	C-3'-C-4'-C-5'-O-5', 166.6
	H-1' -H -4', 3.65	H-1'-C-1'-C-2'-H _{α} -2', 37.3
	H-1'- H_{α} -2', 2.39	H-1'-C-1'-C-2'-H _β -2', 160.0
		H _β -2'-C-2'-C-3'-H-3', -40.6
		H _α -2'-C-2'-C-3'-H-3', 80.8
		H-3'-C-3'-C-4'-H-4', -84.5

perturbation of sugar ¹H and ¹³C chemical shifts due to anisotropy effects of the nucleobase;^{27,28} (iv) a Karplus-like dependence of the ${}^{3}J(C-8,H-1')$ coupling constant from the torsion angle of the glycosylic bond.²⁹ While the first three methods furnish information about the conformer populations, the last one results in distinct torsion angles but without information regarding a dynamic syn-anti equilibrium. Nevertheless, characteristic discrepancies concerning the conformer populations emerge also from the comparison of the results of the first three techniques depending on the various initial assumptions and implications.

A Calibration Graph Based on the NOE Data of the Conformationally Rigid Nucleosides 25β and $41\beta/42\beta$. Computer modeling based on force-field calculations of e.g. adenosine (1β) or its 7-deazaisostere (=tubercidin, 5 β) show that H-8 is the closest proton to H-1' if the conformation is syn while in the anti conformation the closest protons to H-8 are H_{β} -2' and H-3'.²³ Only a "perfect" syn orientation of a nucleobase ($\chi \approx 40-50^{\circ}$) relative to the sugar moiety goes along with a minimum distance between H-8 and H-1'. In contrast, a "perfect" anti orientation $(-140^{\circ} \leq \chi \leq -150^{\circ})$ does not agree with the minimum distances of H-8-H_{β}-2' and H-8-H-3'. If the distance H-8-H_{β}-2' is minimized, a nucleoside adopts the rare high-anti conformation (-sc) in which the bonds C-1'-C-2'and N-9–C-8 are almost eclipsed.

One can presume if saturation of H-8 or β -D configured purine nucleosides or isosteres thereof (H-6 of pyrimidine

- (21) Tran-Dinh, S.; Neumann, J. M.; Thiery, J.-M.; Huynh-Dinh, T.; Igolen, J.; Guschlbauer, W. J. Am. Chem. Soc. 1977, 99, 3267.
- (22) Lüdemann, H.-D.; Westhof, E.; Röder, O. Eur. J. Biochem. 1974, 49, 143.
- (23) Hart, P. A.; Davis, J. P. J. Am. Chem. Soc. 1969, 91, 512
- (24) Schirmer, R. E.; Davis, J. P.; Noggle, J. H.; Hart, P. A. J. Am. Chem. Soc. 1972, 94, 2561. (25) Tran-Dinh, S.; Guschlbauer, W.; Gueron, M. J. Am. Chem. Soc.
- 1972, 94, 7903. (26) Gaudemer, A.; Nief, F.; Pontikis, R.; Zylber, J. Org. Magn. Reson.
- 1977. 10, 135. (27) Stolarski, R.; Dudycz, L.; Shugar, D. Eur. J. Biochem. 1980, 108, 111
- (28) Stolarski, R.; Hagberg, C.-E.; Shugar, D. Eur. J. Biochem. 1984, 138, 187.
- (29) Lemieux, R. U.; Nagabhushan, T. L.; Paul, B. Can. J. Chem. 1972, 50, 773.

⁽⁷⁾ Belleau, B.; Chevalier, R. J. Am. Chem. Soc. 1968, 90, 6864. (8) Eliel, E. L. Stereochemie der Kohlenstoffverbindungen; Verlag

Chemie: Weinheim, 1966; pp 177-182, 289-290. (9) Neuhaus, D.; Williamson, M. The Nuclear Overhauser Effect In Structural and Conformational Analysis; Verlag Chemie: Weinheim, 1989.

⁽¹⁷⁾ Cushley, R. J.; Blitzer, B. L.; Lipsky, S. R. Biochem. Biophys. Res. Commun. 1972, 48, 1482. (18) Saenger, W. Principles of Nucleic Acid Structure; Springer

Verlag: New York, 1984; pp 21-23.

⁽¹⁹⁾ Zens, A. P.; Bryson, T. A.; Dunlap, R. B.; Fisher, R. R.; Ellis, P. D. J. Am. Chem. Soc. 1974, 98, 7559.

⁽²⁰⁾ Chachaty, C.; Zemb, T.; Langlet, G.; Tran-Dinh, S. Eur. J. Biochem. 1976, 62, 45.

nucleosides) produces a strong NOE at H-1' and small ones at H_{β} -2' and H-3', then syn orientation of the nucleobase should be preferred. In a reverse experiment saturation of H-1' should yield a significant NOE at H-8/H-6. This should be almost unaffected by the sugar puckering. If, on the other hand, saturation of H-8/H-6 results in a strong NOE at H_{β} -2' and a smaller one at H-1', the anti orientation should dominate.

To obtain a semiquantitative estimation of the syn and anti populations of nucleosides (formula schemes) using NOE difference spectroscopy, we used the conformationally fixed compounds 25β (syn) and 41β (anti)³⁰ as calibration points. First, force-field calculations were made on both nucleosides using the Alchemy II molecular modeling program (Tripos Ass., Inc., 1988). After energy minimization of the model structures, torsion angles as well as interproton distances (r_{ij}) were measured (Table I). As the data of Table I show, compound 25β represents an ideal syn-fixed nucleoside. Moreover, the distance H-8– H-1' is minimal and found to be 2.29 Å. Therefore, a maximal NOE is observed at H-1' upon irradiation of H-8 (η (H-1') = 11.3%). Simultaneously, no NOE can be observed at H-2' (Table I).

On the other hand, computer modeling shows that compound 41β (2'-deoxywyosine) exhibits almost perfect anti conformation with a glycosylic torsion angle $\chi = -141^{\circ}$

32 α : R⁵ = H; R¹ = OH 33 α : R⁵ = CH₃; R¹ = H

and $r(H-8,H_{\beta}-2') = 2.75$ Å. This conformation is not consistent with a minimal distance $H-8-H_{\beta}-2'$ which can easily be assessed by altering the torsion angle χ stepwise toward a high-anti conformation. Applying this method the minimum distance is found to be 2.00 Å. Notwithstanding this fact, 2'-deoxywyosine (41 β) exhibits the largest NOE values [$\eta(H_{\beta}-2') + \eta(H-3')$] upon irradiation of H-8 (9.5%, Table IV); simultaneously, the η value at H-1' is found to be zero. Analogous results were obtained for the corresponding β -D-ribonucleoside (wyosine, 42 β ,³¹ Table II). With the NOE data of 25 β and 41 β /42 β an empirical calibration graph can be set up. In the following this graph is used for the determination of the syn-anti conformation of regular and modified nucleosides. Scope and limitations will be discussed.

Analysis of the NOE Data of β -D-Ribonucleosides. The NOE data (Table II) of a number of β -D-ribonucleosides shown in the formula schemes have been measured. As can be seen from Figure 1, most β -D-ribonucleosides exhibit preferentially anti conformation around the N-glycosylic bond or show an almost equal distribution of syn and anti conformers. The two-state equilibrium (syn-anti), represented by the model compounds 25β and 41β , can be deduced from the fact that for most compounds studied, the syn conformer population calculated from graph A (Figure 1) and the anti conformer population calculated from B (Figure 1) add to 100% (±10%).

It can be seen from Figure 1 that adenosine (1β) prefers slightly the syn range (60% syn) while other regular purine nucleosides like guanosine (19β) and inosine (10β) exhibit anti orientation of the nucleobase $(19\beta, 70\% \text{ anti}; 10\beta,$ 65% anti). Introduction of an O-2',3'-isopropylidene moiety $(48\beta-50\beta)$ shifts the syn-anti equilibrium toward the syn range—a finding which is consistent with results earlier described. Applying ¹H NOE spectroscopy it has been found that adenosine exhibits a 60–70% population of syn rotamers³² while O-2',3'-isopropylidenadenosine

(48 β) shows a 70-80% population of syn conformers.²⁴ Using the graph of Figure 1, 60% syn in the case of adenosine and 65% syn of *O*-2',3'-isopropylideneadenosine can be estimated. Switching to the 7-deazapurine ribonucleosides 5 β (7-deazaadenosine) a shift of populations toward the anti range by 15-20% compared to the parent nucleoside can be estimated.

Inspection of the NOE data of uridine (28β) and cytidine (26β) show a highly preferred anti orientation of the nucleobase which is consistent with X-ray data. However, the anti conformer populations calculated from graph B (Figure 1) are slightly overestimated. This may be explained by slightly different interproton distances of H-8-H-1' vs H-6-H-1'. Furthermore, the anti conformation of 26β and 28β may be slightly shifted toward high-anti which would result in an enhanced sum $[\eta(H_{\beta}-2') + \eta$ - $(H_{\beta}-3')$ compared to the corresponding NOE values of $41\beta/42\beta$ (9.5%). Nevertheless, the NOE data of 26 β and 28β clearly demonstrate a preferred conformation in the anti range. From the fit of the NOE data of various purine β -D-ribonucleosides—with certain limitations in the case of pyrimidine β -D-nucleosides—the applicability of the calibration graph (Figure 1) is demonstrated. The conformation at the glycosylic bond of new β -D-ribonucleosides can now be estimated from this empirical graph.

Analysis of NOE Data of 2'-Deoxy- β -D-ribonucleosides. The graph of Figure 1 is also useful for a semiquantitative estimation of syn and anti conformer populations for 2'-deoxy- β -D-ribonucleosides (Table IV).

Figure 1. Calibration graph for the estimation of syn and anti conformer populations of β -D-nucleosides applying ¹H NOE difference spectroscopy.

Figure 2. NOE Values (η (H-1'), irr. of H-8) of compounds 34 β , 35 β , and 40 β as a function of the van der Waals radius of R.

Figure 3. Arrhenius plot of η (H-1') and η (H-8), respectively, versus T^{-1} for compound 37β .

However, as the H-2' signals do often overlap with the solvent signal, correct integration of the NOE difference spectrum is difficult. Therefore, the most reliable method for an assessment of conformer populations is the use of η (H-1') upon irradiation of H-8/H-6.

Comparison of the η (H-1') values of compounds 35 β , 36 β , and 40 β show a decrease with increasing van der Waals radius of the chromophore substituents (H, F, Cl) being in proximity to the β -D-ribofuranosyl residue (Figure 2). A plot of the reciprocal NOE values versus the van der Waals radii show a linear dependence demonstrating the steric influence of the substituent on the syn conformer population. Electronic effects can be excluded as chlorine and fluorine show similar field effect parameters. Compounds 35 β , 34 β , and 38 β bearing substituents (H, F, NH₂)

⁽³²⁾ Plochacka, D.; Rabczenko, A.; Davis, D. B. Biochim. Biophys. Acta 1977, 476, 1.

Table II. Results of Proton-Proton 1D NOE Experiments on D-Ribonucleosides

	proton	
	irradiated	NOE (%)
18	H-1'	$H_{-2'}(1.9) H_{-4'}(2.1) H_{-8}(6.8) 2'_{-}OH(3.4)$
īρ	11-1	$2^{\prime} \cap \mathbf{U}$ (1.2), $\mathbf{H} = \mathbf{U}$ (2.1), $\mathbf{H} = \mathbf{U}$ (0.0), $\mathbf{U} = \mathbf{U}$ (0.4), \mathbf{U}
	H_1/	$H_{-1}^{(1,0)}$ $H_{-2}^{(1,0)}$ $H_{-5}^{(2,1)}$ $H_{-5}^{(4,5)}$
	п-4	$n-1$ (3.3), $n-3$ (1.0), $n_{\rm g}$ -3 (3.1), $n_{\rm b}$ -3 (4.3),
	11.0	2 - 0H(2.4), 3 - 0H(4.6)
	H-8	$H-1^{\circ}(0,7), H-2^{\circ}(3,2), H-3^{\circ}(0,8)$
$\Pi \alpha$	H-1	$H-2^{\prime}$ (10.9), $H-3^{\prime}$ (1.5), $H-8$ (2.7), 5'-OH (0.5)
	H-3″	$H-1'$ (3.6), $H-2'$ (9.2), H_a-5' (1.7), H_b-5' (3.3), $H-8$
		(1.4), 3'-OH (20.6), 5'-OH (3.9)
	H-8	H-1' (1.7), $H-4'$ (1.8), $2'-OH + 3'-OH$ (3.8)
5β	H-1'	H-2' (1.6), $H-4'$ (1.8), $H-8$ (4.2), $2'-OH$ (2.7),
		3'-OH (1)
	H-4′	H-1' (2.7), H-3' (1.2), H_2 -5' (4.3), 2'-OH (1.1),
		3'-OH (2.1)
	H-8	H-1' (4.8), H-2' (4.8), H-3' (1.0), H-7 (5.8)
13α	H-1′	H-2' (11.3), H-3' (3.5), H-8 (3.5)
	H-4'b	H5' (5.1), H5' (5.8), H-8 (5.2), 3'-OH (5.9),
		5'-OH (2.6)
	H-8	$H_{-1}'(31) = H_{-4}'(40) = H_{-7}(113) = 2'_{-0}H(29)$
		3'-OH (2.4)
8R	H-1/	$H_{-2}^{\prime}(21)$ $H_{-4}^{\prime}(21)$ $H_{-8}(26)$
op	H-4/	$H_{-1}^{-1}(A_{-1})$ $H_{-2}^{-2}(A_{-1})$ $H_{-5}^{-2}(A_{-2})$
	11-4 U Q	$\mathbf{U}_{1}(2, 4) = \mathbf{U}_{1}(2, 6) = \mathbf{U}_{1}(2, 4) = \mathbf{U}_{1}(2, 6) = \mathbf{U}_{1}(2, 6)$
15	П-0 Ц 1/с	$\mathbf{U} = 0$ (10.0) $\mathbf{U} = 0$ (1.5) $\mathbf{U} = 0$ (1.7)
13 α	H-1 *	$\Pi - 2$ (10.3), $\Pi - 3$ (1.5), $\Pi - 6$ (2.7)
66 0	п-о Ц 1/	Π -1 (1.2), Π -4 (2.7), Π -7 (10.0)
zap	H-I'	$H-2^{\circ}(2,2), H-4^{\circ}(1,7), H-6(2,1)$
	H-4'	$H-1^{\circ}(2.8), H_2-5^{\circ}(2.9), 2^{\circ}-OH(1.5), 3^{\circ}-OH+$
		5'-OH (2.8)
~~	H-6	$H-1^{\prime}$ (2.9), $H-2^{\prime}$ (7.0), $H-3^{\prime}$ (2.5), $H-5$ (12.4)
32α	H-1'	$H-2^{\prime}$ (10.0), $H-3^{\prime}$ (3.7), $H-6$ (1.4)
	H-6	H-1' (1.3), $H-4'$ (5.3), $H-5$ (17.7)
25β	H-8	H-1'(11.3), H-2'(0)
	H-1′	H-8 (10.1), H-4' (3.0)
19β	H-8	H-1' (3.6), $H-2'$ (5.7), $H-3'$ (1.1)
	H-1'	H-8 (3.0), H-2' (1.8), H-4' (1.8)
	H-2′	H-8 (7.6), 2'-OH (4.8), 3'-OH (2.1), H-3' (6.8)
	H-3′	H-8 (1.5), H-2' (5.7), H-4' (1.2)
26β	H-6	H-1' (3.6), $H-5$ (9.2), 5'-OH (1.6), $H-2' + H-3'$
		(8.5)
49β	H-8	H-1' (6.2), H-2' (5.8), H-3' (0.5), H ₂ -5' (0.9)
	H-1′	H-8 (5.7), H-2' (3.4), H-4' (2.4)
48 B	H-8	H-1'(7.4), H-2'(4.0)
	H-1′	H-8 (8.2), H-2' (2.8), H-4' (2.3)
22 B	H-8	H-7 (8.5), H-1' (2.1), H-2' (7.3), H-3' (1.3)
	H-1'	H-8 (1.8), H-2' (2.1), H-4' (2.2)
	H-2'	H-8(10.4), H-1'(3.0), H-3'(6.1)
	H-3'	H-8 (2.2) H-1' (0.8) H-2' (4.7) H-4' (1.5) H_{-5'}
		(2.5)
108	H-8	$H_{1}^{(2,0)}$ $H_{2}^{(2,0)}$ $H_{3}^{(2,0)}$ $H_{3}^{(2,0)}$ $H_{3}^{(2,0)}$
100	H.1/	$H_{-8}(4.0)$ $H_{-2}'(2.0)$ $H_{-4}'(1.6)$
	H-9/	$H_{-8}(6.5)$ $H_{-1}'(2.0)$ $H_{-3}'(7.1)$
	L 9/	$\mathbf{H} = \{(0,0), \mathbf{H} = \{(2,0), \mathbf{H} = 0 \ (1,1) \}$ $\mathbf{H} = \{(1,0), \mathbf{H} = 0 \ (2,0), \mathbf{H} = 0 \ (1,1) \}$
FO (2)	п-о ц о	$\Pi^{-0}(1.0), \Pi^{-2}(0.4), \Pi_2^{-0}(1.0)$
aυø	M-8	$\mathbf{n} \cdot 1 (0.0), \ \mathbf{n} \cdot 2 (0.1), \ \mathbf{n} \cdot 3 (0.0)$
	H-l'	\mathbf{n} - 0 (0.7), \mathbf{n} - $2'$ (3.1), \mathbf{n} - $4'$ (2.2)
	H-2′	H-8 (6.5), H-1' (3.4), H-3' (6.2), H ₂ -5' (1.7)
	H-3	H-8 (1), H-2' (6.6), H-4' (3.3), H ₂ -5' (4.0)
42β	H-8	H-1' (0.5), 5'-OH (0.8), $H-2'$ (7.4), $H-3'$ (2.1)
	H-2′	H-8 (9.1), H-3' (4.8)
44β	H-8	H-1' (2.1), $H-2'$ (2.6), $H-3'$ (1.2)
	H-1′	H-8 (1.8)

^aH-4', 15%. ^bH-3', 8%. ^cH-7, 20%.

of increasing van der Waals radii but far away from the glyconic moiety exhibit almost identical η (H-1') data upon saturation of H-8 (Table IV).

For 2'-deoxywyosine (41 β) an almost perfect anti conformation of the nucleobase was stated. Interestingly, if the methyl group at N-4 (IUPAC numbering) is shifted to N-5 as in compound 43 β^{30} the nucleobase is now able to rotate around the glycosylic bond which can be seen from an NOE value of 5.2% at H-1' (Table IV) upon saturation of H-8. The syn/anti populations assessed from the graph of Figure 1 are similar (50:50) as found for a corresponding 2'-deoxywyosine congener bearing no methyl

Table III. Results of Proton-Proton 1D NOE Experiments on D-Arabinonucleosides

	proton irradiated	NOE (%)
2β	H-1′	H-2' (9.9), H-4' (2.0), H-8 (2.0)
	H-4'	H-1' (2.1), H-3' (3.0), 3'-OH (3.6), 5'-OH (2.6)
	H-8	H-1' (1.7), $H-2' + H-3'$ (3.1), 2'-OH (1.3)
12α	H-1′	H-2' (4.1), H-3' (3.0), H-8 (6.4)
	H-3′	H-1' (3.4), H-2' (2.4), 2'-OH (4.5), 3'-OH (16.8),
		5'-OH (2.8)
	H-4′	H-2' (3.7), H ₂ -5' (3.0), H-8 (2.0), 3'-OH (4.4),
		5'-OH (2.2)
	H-8	H-1' (5.7), H-2' (4.2), H-4' (1.9), 3'-OH (0.8)
16 β	H-1′	H-2' (12.1), H-4' (2.5), H-3 (17.8), H-8 (6.4)
	$H-8^{a}$	H-1' (4.2), H-3' (4.9), H-7 (10.3), 5'-OH (2.3)
	H-3 ^b	H-1'(10.4), H-2'(1)
18α	H-1′	H-2' (2.3), H-3' (3.5), H-3 (14.1), 2'-OH (3.5)
	H-8°	H-1' (7.2), H-2' (8.3), H-4' (3.1), H-7 (13.4)

^aH-3, 12%. ^bH-8, 10%. ^cH-3, 25%.

group at one of the nitrogen atoms (45β) .³⁰

Switching to the 2'-deoxynucleosides 37β and 39β a high anti conformer population was expected due to the steric effect of the amino group. However, it was found that in both nucleosides irradiation of H-8 (purine numbering) produces a strong NOE at H-1' and vice versa (Table IV), which points to a considerable population of syn conformers. This can be explained by a hydrogen bridge between the exocyclic amino group and either 5'-OH or O-4'. Increase of the temperature from 298 to 365 K significantly reduces the NOE value of H-1' upon saturation of H-8 and vice versa. The reason for this is obviously the breakup of the bonding interactions resulting in an almost free rotation around the N-glycosylic bond. Assuming temperature independence of all dipolar relaxation terms, ΔE^* values can be estimated from corresponding Arrhenius plots (ln η (H-8 or H-1') vs T^{-1} (Figure 3)). For both nucleosides similar values $(37\beta, -10 \text{ kJ/mol}; 39\beta, -11$ kJ/mol^{44}) were assessed. In order to exclude any solvent effects we measured the NOE value at H-1' (irr. of H-8) of compound 38β as a regioisomer of 39β at three different temperatures between 295 and 330 K and found identical results ($\langle \eta(H-1') \rangle = 4.4\%$). Also compound 40 β exhibits identical $\eta(\text{H-1'})$ values (1%) within a temperature range of 300-365 K.

Enhancement of the bulkiness of a substituent at N-3 like in the 7-deazapurine 2'-deoxy nucleoside 46β leads obviously to a fixed high-syn conformation as irradiation of H-8 does not result in an NOE at one of the sugar protons (Table IV).

In conclusion, both the chemical properties as well as the van der Waals radius of a substituent is of decisive importance for the conformation around their N-glycosylic bond.

Analysis of NOE Data of α -D Configured Nucleosides. Despite the fact that the calibration graph shown in Figure 1 is developed on the basis of NOE data of β -D-nucleosides, it is also useful for the determination of the syn-anti conformation of α -D anomers. Qualitative information about the distribution of syn and anti conformers of α -D-ribonucleosides (11 α , 13 α , 15 α , 32 α) can be drawn from the NOE data of H-1' (syn) and H-4' (anti) upon irradiation of H-8/H-6: if the intensity enhancement of the H-1' signal is large and that of H-4' small then the syn conformers are preferred. If, on the other hand, the NOE value of H-4' is relatively large and that of H-1' is small then anti conformation is preferred. It can be seen from molecular models that the distance between H-8/H-6 and H-1' in α -D-ribonucleosides is almost the same as in β -D-ribonucleosides. Therefore, it can be assumed that the

Table IV. Results of Proton-Proton 1D NOE Experiments on 2'-Deoxy- and 2',3'-Dideoxy-D-ribofuranosides

	proton irradiated	NOE (%)		proton irradiated	NOE (%)		
6 B	H- 1′	H2' (5.6), H-4' (2.0), H-8 (2.5)	$17\beta^a$	H-1′	H_{a} -2' (6.4), H-4' (2.6), H-3 (10.3), H-8 (2.6)		
-1-	H2'	$H-1'$ (15.7), $H_{g}-2'$ (21.9), $H-3'$ (3.0), $H-4'$ (1.1)		H-4′	$H-1'$ (2.6), H_2-3' (5.7), H_2-5' (5.6)		
	H-4'	$H-1'$ (2.0), $H-3'$ (2.5), H_2-5' (2.2)		H-8	H-1' (1.9), $H_{\beta}^{-2'}$ (3.0), $H_{\beta}^{-3'}$ (2.4), $H_{2}^{-5'}$ (1.0), H-7 (6.3)		
	H-8	H-1' (4.1), H ₈ -2' (3.8), H-3' (0.8), H-7 (6.7)	21 β	H-1′	$H_{2}-2'$ (7.8), $H-4'$ (2.0), $H-8$ (2.6)		
14α	H-1′	$H_{\beta}-2'$ (5.6), $\tilde{H}-3'$ (1), H-8 (4.0)		$H_{2}-3'$	$H_{-1'}$ (1.7), $H_{-4'}$ (12.4), H_{2} -5' (3.6), H_{-8} (5.6), 5'-OH (1.0)		
	H_{α} -2'	$H^{-1'}(1.0), H_{\beta}^{-2'}(21.0), H^{-3'}(1.0), H^{-4'}(1.0),$		H-4′	H-1' (1.7), H_{α} -2' (1.9), H_2 -3' (5.5), H_2 -5' (4.8)		
		H-8 (8.6)		H-8	H-1' (2.7), H_{β} -2' (3.2), H_{β} -3' (2.8), 5'-OH (0.8)		
	H _β -2′	H-1' (17.9), H_{α} -2' (30.9), H-3' (9.4), H-8 (-1.8)	37β	H-8	H-1' (6.1), H_{β} -2' (5.3), H-3' (0.8)		
	H-4′	H-3' (1.5), $H-8$ (3.2)		H-1′	$H_{\alpha}-2'$ (10.0), $H-4'$ (3.2), $H-8$ (6.1), NH_2 (4.2)		
	H-8	H-1' (3.9), H _{α} -2' (3.6), H-4' (2.5), H-7 (10.3)	46β	H-8	H-1' H_{β} -2', and H-3' (0%, each)		
23β	H-1'	$H_{\alpha}-2'$ (5.1), $H-4'$ (1.5), $H-8$ (1.5)		H-1′	H-8 (0.5), CH (12.6), H-4' (2.0), H_{α} -2' (4.7)		
	H-3′	H_{α} -2' (1.0), H_{β} -2' (4.1), H-4' (2.4), H-8 (2.0),	41β	H-8	$H-1'(0), H_{\beta}-2'(6.8), H-3'(2.8)$		
	•• • • •	3'-OH (3.4), 5'-OH (1.5)		H-l'	UH_3 (13.7)		
	H-4′	H-1' (1.9), H-3' (2.4), H ₂ -5' (3.5), 3'-OH (3.4),	45 β	H-8	H-1' (6.2), H_{β} -2' (3.1), H-3' (2.3)		
	11.0	5° -UH (1.5)	49.0	H-1	H-8 (3.5), $H-4'$ (1.4)		
	H-8	$H-T$ (1.8), $H_{\beta}-2^{\circ}$ (4.3), $H-3^{\circ}$ (1.3), $H_{2}-5^{\circ}$ (1.0),	43p	H-8	$H^{-1}(5.2), H_{\beta}^{-2}(4.1), H^{-3}(1.4)$		
	2/ 04	$3 - 0\pi (1.0)$ H 1/ (1.0) H 9/ (0.0) H 9/ (0.0) H 4/ (5.0)	4 1α	п-о Ц 1/	I -1 (0), I -4 (2.3), Π_{α} -2 (0.3), I -1 (0.1) H = (0), C H (14.0), H = 9/(1.1), H = 9/(6.0)		
	3-0H	Π -1 (1.2), Π_{α} -2 (2.2), Π -3 (9.2), Π -4 (0.0), Π 5/ (1.0)	970	п-1 u с	$\Pi_{0}^{-0}(0), \ \Box\Pi(14.0), \ \Pi_{0}^{-0}(1.1), \ \Pi_{\beta}^{-2}(0.2)$		
24.0	Ц 17	H_{2}^{-0} (1.0) H_{2}^{\prime} (5.0) H_{2} (1.0)	210	H 1/	H $_{6}$ (9.3), H $_{1}$ (2.2), H $_{3}$ (1.9), H $_{2}$ (2.9) H $_{6}$ (9.1) H $_{4}$ (1.7) H $_{2}$ (6.0)		
24 00	H.3/	H_{β}^{-2} (3.6), H^{-6} (1.0) H_{-2}^{-2} (3.6), $3'_{-}$ OH (5.5)		H-3/	$H_{-6}(1, 0)$ $H_{-4}(1, 1)$, $H_{-5}(2, 6)$ $H_{-2}(6, 2)$		
	H-4'	$H_{\beta}^{-2}(0,0), 0 = 0 = (0,0)$	38	H-8	$H_{-1}^{(1,0)}, H_{-2}^{(1,0)}, H_{-2}^{(2,0)}, H_{-2}^{(2,0$		
	H-8	$H_{-1}'(1,3) = H_{-2}'(2,8) = H_{-4}'(2,3) = H_{-7}(2,7)$	U p	H-1'	$H_{-8}(6.3)$ $H_{-4}'(1.3)$ $H_{-2}'(6.1)$		
29 B	H-1/	H $-2'$ (6.3), H-4' (2.3), H-6 (2.1)		H-3′	$H_{\alpha}^{(0,0)}$, $H_{\alpha}^{(1,0)}$, $H_{\alpha}^{(2,0)}$, $H_{\alpha}^{(0,1)}$		
400	H-3'	$H_{a^{-2}}$ (6.3), $H_{a^{-2}}$ (6.3), $H_{a^{-2}}$ (2.7), $H_{a^{-6}}$ (2.2),		H2'	H-8 (2.8), H-3' (7.0), H ₂ -2' (20.0)		
		3'-OH (5.3), 5'-OH (3.0)	20 B	H-8	$H-1'$ (3.1), $H-3'$ (1.1), $H_{e}-2'$ (3.7)		
	H-4′	H-1' (3.2), H-3' (2.6), H ₂ -5' (2.6), 3'-OH (2.2),		H-1′	H-8 (3.1), H-4' (1.6), H_{2} -2' (5.6)		
		5'-OH (1.5)		H- 3′	H-8 (1.7), H-4' (3.4), $H_{\beta}^{*}-2'$ (4.2), $H_{2}-5'$ (1.5)		
	H-6	H-1' (2.5), H_2 -2' (4.6), H-3' (1.5), H_2 -5' (1.0),		H-4′	H-1'(1.8), H-3'(2.3)		
		5-CH ₃ (7.4), 5'-OH (1.0)	31β	H-6	H-1' (2.7), H-3' (3.0), H_{β} -2' (4.6), CH_3 (6.4)		
33 a	H-1′	$H_{\beta}-2'$ (7.0), H-3' (1), H-6 (2.3)		H- 1′	H-6 (2.3), H-4' (2.0), H_{α} -2' (8.0)		
	H_{α} -2'	$H-1'$ (1.8), $H_{\beta}-2'$ (36.4), $H-3'$ (2.9), $H-4'$ (1.2),	9β	H-8	H-7 (10.7), H-1' (1.4), H_{β} -2' (2.2), H_{β} -3' (2.3)		
		H-6 (14.4), 3'-OH (5.5)		H-1'	H-8 (1.1), H-4' (1.5)		
	H- 3′	H-1' (1.2), H_{α} -2' (1.1), H_{β} -2' (5.8), H-6 (1.1),	40β	H-8	H-1' (1), H-3' (1.2), H _{β} -2' (3.7)		
	•• •	3'-OH (13.4), 5'-OH (3.1)		H-1′	H-8 (1), H-4' (1.7), H_{α} -2' (5)		
	H-4′	H-6 (6.2), 3'-OH (5.3), 5'-OH (2.1)		H-3′	H-8 (2.4), H_{β} -2' (6.1)		
	H-6	H-1' (2.0), H_{α} -2' (3.4), H-4' (4.3), 5-CH ₃ (7.2),	39β	H-8	H-1' (4.5), H_{β} -2' (4.2)		
90 .0	TT 1/	3° -OH (1.7)	940	H-1'	H-8 (5.2), H-4' (2.9), H_{α} -2' (6.3)		
30 β	H-1'	H_2 -2' (5.9), H-4' (2.3), H-6 (1.5)	34ß	H-8	$H-1^{\prime}$ (4.4), $H_{\beta}-2^{\prime}$ (3.0), $H-3^{\prime}$ (0.7)		
	H-4	$H-1^{\circ}(2.8), H_2-2^{\circ}(0.8), H-3^{\circ}(2.3), 3^{\circ}-OH(3.6),$	35 0	H-8	$\Pi - \Gamma'(4,0)$		
	Цε	$\partial - \mathbf{O} \mathbf{\Pi} (1,0)$ $\mathbf{U} 1' (0,4) \mathbf{U} 0' (0,0) \mathbf{U} 0' (0,1) \mathbf{U} 7 (17,0)$		п-1 ц //	$\mathbf{H} = \mathbf{H} = $		
	11-0	$H^{-1}(2.4), H^{-2}_{2}(3.6), H^{-3}(2.1), H^{-7}(17.0), H^{-1}(4.1), 5' OH(1.7)$	368	п-4 Ц 9	$H_{1'}(2, 6)$ $H_{2'}(2, 5)$ $H_{2'}(0, 6)$		
	H-7	$H_{-6}(10.5)$	38 <i>8</i>	H-8	$H_{-1}^{(2,0)}, H_{\beta}^{-2}^{(3,0)}, H_{-3}^{(0,0)}$		
	H-8	$H_{-6}(1.8)$	78	H2'	H $_{-2}'(22)$ H $_{-3}'(20)$ 3'-OH (19) H $_{-1}'(1)$ H $_{-6}(43)$		
4 <i>B</i>	H-1'	H_{a-2}^{\prime} (6.6) H_{-4}^{\prime} (1.8) H_{-8} (4.8)	۰p	H -2'	H_{α}^{2} 22(22), H 6 (2.0), 6 OH (1.0), H 1 (1), H 6 (4.0) H_{α}^{2} (23) H-4' (16) H-3' (78) H-1' (123)		
-10	H3'	H_{2}^{-1} (1.8), H_{2}^{-2} (6.5), H_{2}^{-4} (12.1), H_{2}^{-8} (5.2)		H-3/	$H_{\mu}-2'$ (4.0), $H-4'$ (8.6), $3'-OH$ (2.5)		
	2 0	5'-OH (1.4)		H-1'	$H_{-2'}(5.7), H-4'(2.3), H-6(4.8)$		
	H-4′	$H_{2}^{-1}(1.9), H_{2}^{-2}(1.6), H_{2}^{-3}(5.8), H_{2}^{-5}(2.2).$		H-6	$H_{a}^{-2'}$ (1.9), $H^{-1'}$ (4.8), H^{-5} (7.6)		
	•	H_{h} -5' (2.7)		•	µ - <, (, (
	H-8	$H_{2}^{-1'}(4.3), H_{2}^{-2'}(1.4), H_{3}^{-3'}(2.1)$					
al	^a Measured at 50 °C.						

maximal NOE value at H-1' (irradiation of H-8) determined for the syn-fixed β -D-ribonucleoside 25β —can also be used as a calibration for the estimation of syn/anti conformer populations in the case of α -D-ribonucleosides. In general, these rules should also be valid for α -Darabinonucleosides (Table III) as well as α -D-2'-deoxyribonucleosides (Table IV). Within this series, however, the intensity enhancement of the H $_{\alpha}$ -2' signal upon saturation of H-8/H-6 can also be used as an indicator of the

anti conformation of the nucleobase. Inspection of the NOE data of α -D configured compounds (Tables II-IV) shows that the α -D-ribonucleosides 11 α , 13 α , 15 α , and 32 α exhibit preferentially anti conformation at the glycosylic bond as the η (H-1') values amount only to 1.2-3.1%. α -D-Arabinoadenosine (12 α) exhibits a significantly larger η (H-1') value (5.7%) which points to an almost equal distribution of syn and anti conformers. Simultaneous irradiation of H-8 and H-3 in the case of the base-modified α -D-arabino nucleoside 18 α (Table III) prevents a reliable estimation of syn/anti conformer populations. In Table IV the NOE data of four α -D-2'deoxyribonucleosides are included (14 α , 24 α , 33 α , and 47 α). The first three of them exhibit η (H-1') values of 1.3–3.9% upon irradiation of H-8/H-6, which points to a preferred anti orientation of the nucleobase.

A special phenomenon was observed for compound 47α bearing a bulky isopropyl group at N-3 of the purine isosteric aglycon which hinders rotation around the Nglycosylic bond. As the NOE at the H_{α}-2' signal upon saturation of H-8 amounts to 6.5% (Table IV) which is the largest value in the series of α -D-nucleosides the conformation at the glycosylic bond seems to be high-anti or at least near to this. This finding shows that in the case of the sterically hindered 2'-deoxyribonucleosides 46 β and 47 α a change of the anomeric configuration goes along with a change of the conformation around the glycosylic bond.

In conclusion, NOE measurements on the conformationally rigid nucleosides 25β and 41β allows the setting up of a calibration graph for a semiquantitative estimation of syn and anti conformer populations of regular and modified nucleosides. Deviations from the yardstick NOE values obtained on the compounds 25β and 41β are also of diagnostic value as they imply an unusual conformation around the glycosylic bond (e.g. high-syn, 46β ; high-anti, 47 α), which usually does not play an important role for the two-state equilibrium (syn-anti) of nucleosides and nucleotides.

Experimental Section

All NMR measurements were performed at 298 K with (C- D_3)₂SO (99.5%) as solvent using its deuterium for internal lock.

For the NOE measurements the solutions (ca. 0.1 M) were degassed by bubbling N₂ through it followed by ultrasound sonication. As it is known that, in contrast to all other nucleic acid constituents, guanosine forms gels from aqueous solution,³³ NOE measurements (irr. of H-8) were run on this nucleoside in (C- $D_3)_2$ SO at concentrations of 0.05, 0.1, and 0.2 M. In all cases identical $\eta(H-1')$ values ($\langle \eta(H-1') \rangle = 3.6\%$) were found. All compounds were measured under identical spectral and processing conditions by applying either the NOEDIFF or the NOEMULT 34 pulse sequence of the Bruker software package (release version 1988 or 1989) applying its recommendations for steady-state NOE measurements. As irradiation time of 1.5 s with an irradiation power of 40-45 dB below 0.2 W yielded a saturation of $\leq 95\%$.

The analysis of spectral data was performed in two different ways: (i) sequential exponential multiplication (line broadening: 0.25) and fourier transformation of two FIDs (one entry for a desired irradiation point plus one off-resonance control value for O-2) and then subtraction of the two spectra; (ii) subtraction of two FIDs followed by exponential multiplication and fourier transformation of the differential FID. All NOE values $(\eta, \text{ in } \%)$ were obtained by repeated integration of the peaks of the difference spectra.

Force-field calculations were performed using the Alchemy II software package, release 1988 (Tripos Ass., Inc., St. Louis, MO). Minimization of the potential energy of the constructed molecule was performed with a force-field equation that involves the five energy terms: bond-stretching, angle bending, torsion deformation, van der Waals interactions, and out-of-plane bending.

Compounds 1\$\beta\$, 2\$\beta\$, 11\$\alpha\$, 28\$\beta\$, 29\$\beta\$, 33\$\alpha\$, 3\$\beta\$, 10\$\beta\$, 19\$\beta\$, 20\$\beta\$, 26\$\beta\$, 27β , 31β , 48β , 49β , and 50β were purchased from either Pharma Waldhof (Darmstadt, FRG) or Sigma Chemicals Co. (St. Louis, MO). Compounds 4β and 21β were provided by Boehringer Mannheim (Mannheim, FRG). Compounds 12α and 32α were generous gifts of Dr. F. Hansske (Boehringer Mannheim, FRG), compound 30β was a gift of Prof. Dr. E. de Clercq (University of Leuven, Belgium). Compounds 41β - 45β were provided by Prof. Dr. B. Golankiewicz.^{30,31,46} All other compounds were synthesized in our laboratory: 5β , 8β , 13α , 15α ; $^{35}6\beta$; $^{36}7\beta$; $^{16}9\beta$; $^{37}14\alpha$; $^{14}16\beta$, 18α ; $^{38}17\beta$; $^{39}22\beta$; $^{40}23\beta$, 24α ; $^{41}34\beta$; $^{38}35\beta$; $^{43}36\beta$; $^{38}37\beta$; $^{43}38\beta$, 39β , 408:44 468, 47a.45

6-Amino-9-(5-chloro-β-D-ribofuranosyl)-9H-purin-2-one. 6-Amino-9-(β-D-ribofuranosyl)-9H-purin-2-one (isoguanosine, 285 mg, 1 mmol) was dissolved in hexamethylphosphoric triamide (15 mL) by heating. The solution was brought to room temperature, and thionyl chloride (0.4 mL, 5.5 mmol) was added during 1 h. The reaction mixture was stirred 1 h at ambient temperature, diluted with water (50 mL), and chromatographed on Dowex 50 W (H⁺ form, column: 1×15 cm). After washing with water (200 mL), 5% aqueous ammonia (100 mL) eluted one main zone which was pooled and evaporated to a volume of 15 mL whereupon the title compound (240 mg, 80%) crystallized as colorless needles: mp 240 °C dec; UV (0.01 N HCl) $\lambda_{\rm max}$ 281 nm (ϵ 13 900), (0.01 $\begin{array}{l} \label{eq:main_selection} \mbox{M phosphate buffer, pH 7)} \ \lambda_{max} \ 245 \ (\epsilon \ 9300), \ 288 \ nm \ (\epsilon \ 11 \ 600), \\ (0.01 \ N \ NaOH) \ \lambda_{max} \ 282 \ nm \ (\epsilon \ 11 \ 200); \ ^1 \ H \ NMR \ ((CD_3)_2 \ SO-D_2 \ O, \\ \end{array}$ 1:1) δ 3.85 (2 H, m, H₂-5'), 4.02 (1 H, q, H-4'), 4.11 (1 H, t, H-3'), 4.57 (1 H, t, H-2'), 5.68 (1 H, d, J = 5.8 Hz, H-1'), 7.96 (1 H, s, H-8). Anal. Calcd for $C_{10}H_{12}N_5O_4Cl$ (301.7): C, 39.65; H, 4.11; N, 23.01. Found: C, 39.65; H, 4.11; N, 23.01.

6-Amino-N³,5'-cyclo-9-(β-D-ribofuranosyl)-2-oxopurine $(N^3,5'-Anhydroisoguanosine, 25\beta)$. 6-Amino-9-(5-chloro- β -Dribofuranosyl)-9H-purin-2-one (150 mg, 0.5 mmol) and K₂CO₃ (500 mg), dissolved in water, were refluxed for 30 min. The title compound crystallized in colorless plates upon cooling and storage overnight at 0 °C (90 mg, 68%): mp 270 °C dec; UV (0.01 N HCl) λ_{max} 238 (ϵ 5500), 286 nm (ϵ 13100); (0.01 M phosphate buffer, pH 7 and 0.01 N NaOH) λ_{max} 279 nm (ϵ 11500); ¹H NMR ((CD₃)₂SO-D₂O, 1:1) δ 3.70 (2 H, m, H₂-5'), 3.87 (1 H, d, H-4'), 4.05 (1 H, t, H-3'), 4.52 (1 H, m, H-2'), 6.11 (1 H, s, H-1'), 7.76 (1 H, s, H-8). Anal. Calcd for $C_{10}H_{11}N_5O_4$ (265.2): C, 45.29; H, 4.18; N, 26.41. Found: C, 45.19; H, 4.26; N, 26.39.

Acknowledgment. We thank the Bundesministerium für Forschung and Technologie and the Deutsche Forschungsgemeinschaft for financial support.

Registry No. 1 β , 58-61-7; 2 β , 5536-17-4; 3 β , 958-09-8; 4 β , $4097-22-7; 5\beta, 69-33-0; 6\beta, 60129-59-1; 7\beta, 107729-48-6; 8\beta,$ 16754-80-6; 9β , 115899-34-8; 10β , 58-63-9; 11α , 5682-25-7; 12α , 3228-71-5; 13α , 72933-38-1; 14α , 103194-72-5; 15α , 120401-32-3; **16** β , 124469-57-4; **17** β , 120552-21-8; **18** α , 124469-58-5; **19** β , 118-00-3; 20*β*, 961-07-9; 21*β*, 85326-06-3; 22*β*, 62160-23-0; 23*β*, 110457-87-9; **24***α*, 110457-88-0; **25***β*, 129285-58-1; **26***β*, 65-46-3; **27***β*, 951-77-9; **28** β , 58-96-8; **29** β , 50-89-5; **30** β , 82768-44-3; **31** β , 30516-87-1; **32** α , 3258-07-9; 33α , 4449-43-8; 34β , 129266-17-7; 35β , 4845-21-0; 36β , 129266-18-8; **37***β*, 127553-28-0; **38***β*, 78582-17-9; **39***β*, 129266-19-9; **40** β , 129266-20-2; **41** β , 129266-21-3; **42** β , 52662-10-9; **43** β , 101803-01-4; 44*β*, 59327-60-5; 45*β*, 101803-00-3; 46*β*, 128751-25-7; 47α , 128751-27-9; 48β , 362-75-4; 49β , 362-76-5; 50β , 2140-11-6; isoguanosine, 1818-71-9; 6-amino-9-(5-chloro-β-D-ribofuranosyl)-9H-purin-2-one, 129266-22-4.

Supplementary Material Available: 1D ¹H NOE difference spectra (7 pages). Ordering information is given on any current masthead page.

⁽³³⁾ Saenger, W. Principles of Nucleic Acid Structure; Springer Verlag: New York, 1984; p 315.

 ⁽³⁴⁾ Kins, M.; Sanders, J. K. M. J. Magn. Reson. 1984, 56, 518.
 (35) Rosemeyer, H.; Seela, F. Helv. Chim. Acta 1988, 71, 1573.

⁽³⁶⁾ Seela, F.; Kehne, A. Liebigs Ann. Chem. 1983, 876.

⁽³⁷⁾ Seela, F.; Muth, H.-P.; Bindig, U. Synthesis 1988, 670.
(38) Seela, F.; Bourgeois, W., unpublished results.
(39) Seela, F.; Bourgeois, W. Synthesis 1988, 938.

⁽⁴⁰⁾ Seela, F.; Rosemeyer, H.; Biesewig, A.; Jürgens, T. Nucleosides Nucleotides 1988, 7, 581.

⁽⁴¹⁾ Rosemeyer, H.; Seela, F. J. Org. Chem. 1987, 52, 5136.

⁽⁴²⁾ Kazimierczuk, Z.; Stolarski, R.; Shugar, D. Z. Naturforsch. 1985, 40c, 715.

⁽⁴³⁾ Seela, F.; Bourgeois, W. Synthesis 1989, 911

 ⁽⁴⁴⁾ Seela, F.; Rosemeyer, H.; Fischer, S. Helv. Chim. Acta, in press.
 (45) Seela, F.; Kretschmer, U. J. Heterocycl. Chem. 1990, 27, 479. (46) Golankiewicz, B.; Ostrowski, T.; Folkman, W. Nucl. Acids Res., in press