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Abstract: The stereo- and enantioselective synthesis of clavulones 6_ and their analogues 
48 is described, y-Hydroxycyclopentenones (-)-13 and ~ which are key intermediates in 
this approach, are obtained from enantiopur---e endo-tricyclo[5.2.1.~,6]decadienones 
(+)-14 and (+)-20 in 6 and 8 steps, respectively. Crucial steps are the reductive epoxy 
ring opening in compounds (+)-25 and 39 to give the corresponding diols (+)-27 and 
and the thermal cycloreversion of tricyclodecenones (+)-27 and 4_L using the technique 
of flash vacuum thermolysis (FVT). The synthesis of enantiopure (-)-13 represents a 
formal total synthesis of clavulones 6_. The synthesis of clavulone analogues (-)-48E and 
(-)-48Z (X= CHeOH) is completed by condensation of 44 with aldehyde 4_S followed by 
elimination of water and removal of the protective THP-group. 

Introduction 

Natural products containing the cyclopentanone or cyclopentenone substructure generally show 

significant biological activity. The pharmacological importance of cyclopentanoids was especially 

recognized in the early 1960s when prostaglandins were isolated and shown to be essential human fatty 

acid hormones that control a multitude of important physiological processes 1. Later, other biologically 
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interesting cyclopentanoids were discovered which possess antibiotic and/or antitumor activity 2. 
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Examples are kjellmanianone 12b, sarkomycin _22e, methylenomycins A _3 and B _42d, pentenomycin _52~, and 

a series of marine eicosanoids related to prostaglandins, such as clavulones _63, punaglandins _74 and 

halovulones 85 (X= C1, Br and I). These discoveries initiated enormous synthetic activity aimed at 

developing effective stereo- and enantioselective methods for the construction of highly functionalized 

cyclopentanoids 6-s. 

A most direct route to these compounds would involve the chemical transformation of appropriately 

substituted cyclopentadienones -9, e.g. by conjugate addition of suitable nucleophiles followed by 

electrophilic trapping of the enolate (Scheme 1). This approach, however, is not feasible as 
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cyclopentadienones _9 are highly reactive molecules 9 which generally dimerize at temperatures above -100 
26 °C. Therefore, the endo-tricyclo[5.2.1.0 ' ]decadienone system 1__00 was explored as a synthetic equivalent 

of cyclopentadienones 9. In recent years, it has been demonstrated that this system is an extremely useful 

synthon for a great variety of naturally occurring cyclopentanoids. These tricyclodecadienones 1_.0@, which 

essentially are the Diels-Alder adducts of cyclopentadienones with cyclopentadiene, can be considered as 

cyclopentadienones _9 in which one of the double bonds is protected. Chemical transformation of the 

remaining enone system, e.g. by nucleophilic addition and/or electrophilic substitution, followed by a retro 

Diels-Alder reaction of 11 induced by Lewis acid or thermolysis using the Flash Vacuum Thermolysis 

(FVT) technique regenerates this masked enone function to yield functionalized cyclopentenones 12. The 

success of this approach is primarily due to two factors, viz. (i) the ready availability of 

endo-tricyclodecadienones 10 (R= COOEt and H) of which both enantiopure antipodes can be obtained by 

enzymatic resolution of one of its precursors sb,l°,n, and (ii) the high regio- and stereoselectivity observed 

for the 1,2- and 1,4-addition of nucleophiles to the enone moiety 12. This stereoselectivity is attributed to 

the steric hindrance of the concave endo-face in 10 (when R= H, this effect is almost completely 

preponderant). This synthetic strategy has successfully been applied by the Nijmegen research group 7 and 

others 8 for the synthesis of a great variety of naturally occurring cyclopentanoids or pharmacologically 

important structures. This paper 13 describes the stereospecific formal synthesis of clavulones _6 and the 

preparation of some analogues 48 using this strategy. 
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Stereospectflc preparation of key intermediate 13 for the total synthesis of clavulones 

Clavulones _6 are a new class of prostanoid, which were isolated from marine origin in 19823 and 

shown to have strong antitumor activities. In the past few years, the synthesis of these marine prostanoids 

has been accomplished in racemic form as well with the natural configuration 14. In these synthetic 

approaches 14a-c precusor 13 is used as the key intermediate (Scheme 2). Also a clavulone synthesis is 
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known 14d,e which starts from the Corey lactone, the well known prostaglandin intermediate. Among the 

syntheses shown in Scheme 2, only Yamada's route 14b proceeds via intermediate 13 in optically active but 

not enantiopure form (the enantiopurity is ca. 64%, vide infra). In this paper, a stereospecific synthesis of 

the key intermediate 13 is described, which can be used for the complete enantiospecific synthesis of 

clavulones. 

It has previously been demonstrated is that tricyclic epoxy ketone 1._55 undergoes a regio- and 

stereoselective nucleophilic addition with both metal hydrides and organolithium compounds to form 

epoxy endo-alcohols 16. The present approach to clavulones is based on the observation (Scheme 3) that 

nucleophilic addition to epoxy ketone 1._55 will take place preferentially from the convex side of the 

molecule. Subsequent reductive epoxy opening, selective oxidation of the secondary alcohol function and 

thermal cycloreversion will ultimately lead to 4-hydroxycyclopentenone 13, which is the key intermediate 

mentioned above. 

Scheme 3 
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For the synthesis of enantiopure parent endo-tricyclodecadienone 14, which is the pivotal starting 

material in this strategy, three practical methods have been reported so far. They are based on the 

enzymatic enantioselective hydrolysis or esterification of a suitable tricyclodecenyl precursor gb,l°Al. One 
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of the most efficient routes, which was reported by the Nijmegen group l°, involves the kinetic resolution 

of enone ester 20 using pig liver esterase (PLE). Enantiopure 20, which is not obtainable by the other two 

methods, is also the starting material for the synthesis of some clavulone analogues (vide infra). 

Racemic tricyclic ethyl ester 20 can easily be obtained by selective epoxidation of the enone moiety 

in Diels-Alder adduct 18 of cyclopentadiene and p-benzoquinone, followed by a Favorskii ring contraction 

of the resulting tricyclic epoxide 19 as shown in Scheme 410. Treatment of racemic tricyclic ethyl ester 20 

Scheme 4 
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with PLE at room temperature in a 0.1M phosphate buffer (pH 8.0) containing acetonitrile as the 

co-solvent, resulted in a slow hydrolysis to give carboxylic acid (-)-21 in excellent chemical yield and with 

a high enantiopurity. The enantiopmity could be further improved by crystallization (Scheme 5). Ester 
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(+)-20 was obtained during this enzymatic process as the remaining ester which, after repeated enzymatic 

hydrolysis followed by alkaline hydrolysis, gave enantiopure antipode (+)-21. In order to determine the 

enantiopurity of ester 20 and acid 21, the tricyclic structure (-)-21 was correlated with a known optically 

active compound, viz. 1,3-bishomocubanone (+)-22, which has been prepared by Nakazaki 16. Its absolute 

configuration was determined by using CD spectroscopy. 

The conversion of (-)-21 into cage ketone (+)-22 was accomplished by photo-ring closure after 

decarboxylation as depicted in Scheme 6. The vinylogous 13-ketoacid, (-)-21 ([~]D22= -83 °, C=0.66, 



Synthesis of clavulones from tricyclodecadienone 5851 

OOH 

O 

(-)-2~ 

oxalyl chloride 
DMF 

OCI 
0 

23 

Scheme 6 

DMF ~ 0  
IssOc 

(+)-14 

T t-butyl mercaptan hv 

NaON~'~ 

24 

benzene, hv 

(+)-~. 

CH3OH) was readily decarboxylated by heating in dimethylformamide at 155°C to give the parent 

tricyclodecadienone 1_.44 ([et]D22= +141.2 °, C=0.68, CH3OH, after recrystallization from hexane), in 83% 

yield. Intramolecular photochemical cyclization of (+)-14 gave 1,3-bishomocubanone (+)-22 in 

quantitative yield. Its optical rotation ([et]D22= +11% c=0.67, CHCI 3) was identical to that reported by 

Nakazaki e t  al. 16 Although this result strongly suggests that enantiopure (+)-22 was obtained from 

optically pure tricyclic acid (+)-14, there is still some suspicion about the stereochemical course of the 

decarboxylation step (21 to 14). The initially obtained product (+)-14 after flash chromatography gave an 

optical rotation of only 125-130 °, suggesting that some racemization may have taken place during the 

thermal decarboxylation reaction or alternatively that the starting acid 21 was not enantiopure. In order to 

remove any doubt about the integrity of the decarboxylation step, the conversion of 21 into 14 was 

performed in an alternative manner, namely by employing Barton's radical decarboxylation method. 17 

Applying this approach no racemization is feasible 8c,d. Conversion of (-)-21 into the corresponding acid 

chloride 23 followed by treatment with N-hydroxypyridin-2-thione sodium salt gave 

N-acyloxypyridin-2-thione 24 which was exposed to light in benzene at reflux in the presence of t-butyl 

mercaptan. Enantiopure (+)-14 was obtained after column chromatography ([ct]ozs= +139 °, c=0.95, 

CH3OH). This result proves that (-)-21 as obtained by the enzymatic resolution is enantiopure and that as 

a consequence, the thermal decarboxylation of 2_! must be accompanied by partial racemization (see 

initially obtained optical rotation). This supposition has been put foreward by Garland e t  al .  8¢ who 

repeated the procedure described here for the decarboxylation in dimethylformamide and suggested that a 

process of a retro Diels-Alder and recombination reaction may be responsible for the observed 

racemization. Assuming that a retro Diels-Alder reaction is indeed taking place at a temperature of 155 

°C, the decarboxylation of 21 was attempted at a lower temperature and a prolonged reaction time, viz.  at 

100°C for 24 hrs. This experimental condition gave a satisfactory result, as the decarboxylation product 14 

now had an optical rotation of [et]D25= +138.5°(C=0.41, CH3OH) after column chromatography (chemical 

yield: 78%). The results described above indicate that during the decarboxylation at ca.  100°C the 

stereochemical integrity is retained and that the chemical transformation of (-)-21 into (+)-22 provides a 
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useful method for establishing the optical purity and absolute configuration of (-)-21 as well as that of 

(+)-14. As parent tricyclodecadienone 14 is an important chiron in the synthesis of cyclopentenoid natural 

products, some further comment on its optical rotation is in place. The reports 8c,1]a about the optical 

rotation are rather confusing, because different solvents are used. It was found that the optical rotation of 

1A exhibits a considerable solvent effect, as is exemplified by the following data: [et]D25=141.2 ° (C=0.67, 

CHaOH), [Ct]D25=150.2 ° (C=0.53, CH2C12) and [et]D25=166.7°(C=0.95, CHC13), respectively. 

The key intermediate (-)-1_33 for the clavulone synthesis was obtained from (+)-tricyclo[5.2.1.02.6] - 

decadienone (+)-14 in six steps by the sequence of events outlined in Scheme 7. Exo-epoxide (+)-15 was 

Scheme 7 
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readily obtained in almost quantitative yield by treatment of (+)-14 with hydrogen peroxide under basic 

conditions. Attempts to introduce the alkynyl chain into tricyclic epoxide (+)-15 by using oct-2-ynyl 

magnesium bromide, unexpectedly gave a complex mixture of products containing alcohols 25 and 26 in a 

disappointingly low yield. A satisfactory result was obtained by applying the less reactive octynylzinc 

reagent. Again, attack of the organometallic reagent takes place preferentially from the convex side of the 

molecule. Epoxide (+)-25 was formed as the sole product in nearly 90% yield. It is interesting to note that 

with zinc reagent no detectable rearranged product 26 was found, whereas similar reactions with 

n-butyllithium and methyllithium lead to a mixture of 25 and 2615. 

Reduction of (+)-25 with lithium aluminum hydride in tetrahydrofuran at room temperature for three 

days slowly produced the desired 1,3-diol (+)-27 in 77% yield. This remarkable conversion of (+)-25 into 

(+)-27 can be rationalized as follows. Epoxide (+)-25 itself cannot undergo a reductive epoxide opening as 

its endo face is sterically blocked for hydride attack by the Cg-C 9 ethylene bridge. However, the initially 



Synthesis of clavulones from tricyclodecadienone 5853 

formed lithium aluminum alcoholate 25--M can undergo a Payne rearrangemend 5 as the endo alcoholate is 

favorably disposed for intramolecular nucleophilic attack from the concave face of the molecule. The 

rearranged epoxide alcoholate 26-M can now undergo epoxide opening by hydride attack from the readily 

accessible exo (convex) face, to give diol 27. Support for this mechanistic course was obtained by the 

reaction of 25 (R=Me) with lithium aluminum deuteride which gave exo-deuterated diol 27-D (R=Me) 

Scheme 8 
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exclusively 16 (Scheme 8). It should be noted that this conclusion is in contrast with that recently reported 

by Liu is, who claimes that direct epoxide ring-opening of 25 to afford the 3,5-diol 27 is the primary 

pathway. 

In the subsequent step this diol (+)-27 was subjected to thermal cycloreversion employing the flash 

vacuum thermolysis technique. In a smooth manner cyclopentene diol (+)-28 was obtained in a yield of 

72%. Oxidation of 28 with pyridinium chlorochromate furnished y-hydroxy cyclopentenone (+)-29 in 

almost quantitative yield. The selective hydrogenation of 29 using Lindlar catalyst strongly depended on 

the solvent used. The best result was obtained in toluene giving key intermediate (+)-13 in 84% yield 

([Ct]D25= -84.0 °, C=0.31, CHC13) (lit. 14b [Ct]D= -54.1 °, C=1.52, CHCI 3) along with a small amount of 

ring-saturated by-product 30 (9%). 

Because of the considerable difference in optical rotation of compound 13 observed in the present 

case and that reported in the literature 14b, it is necessary to provide unambiguous information about the 

enantiopurity of this compound. A 1HNMR spectral analysis of 13 using chiral shift reagents employing its 

racemate as reference material, unequivocally established that the enantiopurity of compound 13 prepared 

according to Scheme 7 is almost 100%. Consequently, the product 13 as prepared by Yamada 14b in his 

approach to clavulones has a much lower enantiomeric purity, namely ca. 64%. In order to check whether 

Yamada's route indeed leads to a lower enantiomeric purity of 1__33, this route was carefully repeated 

(Scheme 9). In this route the stereochemical integrity is determined in the first step which involves the 

reaction of the enolate of t-butyl acetate with hydroxy cyclopentenone 31. This substrate was available 

with an enantiopurity of 52% 19. Reaction of 31 with 2.2 equiv, of lithium enolate of t-butyl acetate in 

Scheme 9 
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tetrahydrofuran at -78°C for 15 min. gave diol 32 ([Ct]D25= 27.7 °, C=1.39, CHCI 3, after chromatography). A 
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gas chromatographic analysis showed only one peak and thin-layer chromatography gave only one spot, 

indicating the quantitative formation of cis-diol, as was also suggested by Yamada 14b. However, the 

optical purity was still not known. Fortunately, storing cis-diol 32 in the refrigerator for two weeks gave 

some crystalline material, which was used for seeding purposes in the subsequent crystallization of the oily 

product obtained. Repeated crystallization until constant optical rotation, led to 32 as nice needle crystals 

(m.p.= 69.5-71°C, [~t]D 25= -56.6 °, C=1.32, CHCI3). The optical rotation obtained for 32 is much higher 

than that reported by Yamada 14b ([Ct]D= -45.9 °, C=1.12, CHCI 3, they did not mention that it was a solid !). 

This result convincingly proves that the product prepared by Yamada 14b is not enantiopure. This lesser 

enantiopurity can be explained by invoking a base-induced racemization of 31, which in fact is an 

enolization reaction, as shown in Scheme 10. 

Scheme 10 

0 -OH 0 

OH OH 

31 

In summary the chemistry presented above clearly demonstrates that tricyclo[5.2.1.02,6]decadienone 

14 is a useful chiron for the stereospecific synthesis of cyclopentenoids. The preparation of key 

intermediate 13 represents a formal total synthesis of clavulones 6, as this intermediate has been converted 

into this natural product by Yamada 14b starting from 13 with an enantiomeric excess of 64% and by 

Corey 14a starting from racemic 13. 

Total synthesis of some clavulone analogues 

Soon after the reports 3 on clavulones 6, several halogenated marine prostanoids e.g. punaglandins _74 

and halovulones 85 (X= C1,Br,I) were isolated. The antitumor activities of these prostanoids having a 

halogen atom in the cyclopentenone moiety are much higher than those of clavulones 6. In the past few 

years, the synthesis of some halogenated marine prostanoids has been accomplished 2°. In attempts to find a 

O OAc 
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clinically useful compound, a great variety of marine prostanoid derivatives 33 has been synthesized. 

Most of them are reported in the Japanese patent literature 21. Biological evaluation of these analogues of 

clavulones has led to the following structure-activity relationship in this class of compounds: (i) the C1o m 

olefin unit is essential for the activity, (ii) a halogen atom at Clo increases the activity of the clavulones, 

(iii) the C12 hydroxyl or acetate is also required for full activity 22. It should be noted that some 

Clo-substituted analogues 33 with Y=S(O)nR showed significant anticancer activity and bone formation 

promotion 21d. In view of the apparent higher antitumor activity of C~o-substituted clavulone analogues, 



Synthesis of clavulenes from tricyclodecadienone 5855 

the synthesis and biological evaluation of clavulones with a modified substituent at Clo is clearly of 

interest. In this paper an effective approach to Clo-hydroxymethyl substituted analogues is described. 

Retrosynthetic analysis of these target molecules indicates that by employing the strategy as depicted 

in Scheme 1, this structural modification at Clo in clavulone-type compounds can be achieved when 

6-functionalized tricyclodecadienone 2_._Q is used instead of the parent synthon 14. This approach, if 

successful, will expand the synthetic merits of the tricyclodecadienone system. 

The stereoselective synthesis of hydroxymethyl precursor 44 for modified marine prostanoids is 

depicted in Scheme 11. This sequence of events involves chemical transformation of the ethoxycarbonyl 

Scheme 11 
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group at C 6 in tricyclodecadienone 23, which in this case is a reduction to the hydroxymethyl group by brief 

treatment of compound 36 with lithium aluminum hydride. Protection of the thus obtained alcohol function 

as a tetrahydropyranyl ether was neccessary to attain selective oxidation of the secondary alcohol at C 5 in 

40 to give 41. Flash vacuum thermolysis (FVT) was carded out with the oxidized compound 41, rather 

than with the alcohol 40 for reason of better volatility of the former compound. This order of reactions is a 

nice example of choosing the right moment for FVT in a synthetic sequence. In the final step reduction of 

the triple bond using a Lindlar catalyst afforded the desired precursor 44 in a high overall yield (45%, 

based on 2_0). 

The preparation of 37 could be accomplished by reduction of the epoxy and ester group in one step 

by prolonged treatment of compound 36 with lithium aluminum hydride. An attempt to selectively protect 

the primary hydroxyl group of compound 37 did not meet with succes. It was found, however, that the 

sequence of reduction-protection-reduction is very practical. A drawback is the introduction of an extra 

stereogenic center in compound 39 via the tetrahydropyranyl ether unit, which makes the characterization 
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of the products rather troublesome because of the diastereoisomeric mixtures obtained. For that reason 

product 41 was deprotected to give diol 4_22 which could be characterized by spectroscopic means without 

any problem. 

The introduction of the second side chain in precursor 44 was accomplished as depicted in Scheme 

12. Aldol condensation of the lithium enolate derived from precursor 44 (by treatment with 3 equiv, of 

lithium diisopropylamide) with unsaturated aldehyde 5b,z4b 4_._55 (2 equiv.) in tetrahydrofuran at -78°C for 2 

hrs smoothly furnished a mixture of diastereoisomers 46 in 90% yielcl (based on consumed 44). This 

Scheme 12 
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mixture, in principle, contains 8 diastereoisomers due to the stereogenic centers at C 7, C a and the 

tetrahydropyran unit. Column chromatography resulted in the partial isolation of compounds 46a,b_ 

(cis-configuration of the side chains) and compounds 46e,d_ (trans-configuration of the side chains) with 

unspecified stereochemistry at C7 and the tetrahydropyranyl unit in both cases. The attempted elimination 

of the 13-hydroxyl groups at C 7 in 46 by using either 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) or 

mesylation with subsequent base treatment did not produce the desired products. Satisfactory results were 

obtained however, by a base-induced elimination of the corresponding acetates of 46 (Scheme 13). 

O 
THPOCH2 
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Treatment of the mixture of 46a,_b with acetic anhydride at room temperature in the presence of 

4-dimethylaminopyridine (DMAP), smoothly gave the desired products 47E and 47Z in more than 90% 

yield and in a 3.5:1 ratio, which could be readily separated by chromatography. When the same treatment 

was carried out with the mixture of 46e,d, acetate intermediates did not eliminate at all at room 

temperature. However, complete acetate elimination was accomplished upon heating the mixture at reflux 

in benzene for 24 h, to give the respective geometrical isomers 47E and 47Z as a mixture again in a ratio 
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of 3.5:1, but now in a moderate yield of 56%. The slower reaction rate observed for the elimination in the 

acetates of 46e,d_ may be due either to the decreased accessibility of proton H a in these 

trans-o~,f}-dialkylated cyclopentenones as compared with their cis-isomers 46a,I) or to an increase of the 

Van der Waals interactions between the two trans-alkyl chains which, upon deprotonation, are forced from 

a trans-configuration into a 'gauche'-configuration. Deprotonation at C a in both the acetates of 46a,_b and 

46c,d brings about the same enolate mixture which then rapidly eliminates to form the observed alkene 

mixture. The rmding that the alkene ratio is the same for both mixtures 46a,!) and 46e,d indicates that 

product formation is thermodynamically driven. In the final step, deprotection of both 47E and 47Z was 

carried out using acetic acid in water (80%) to give 48E and 48Z in 50% yield, respectively (Scheme 14). 

Scheme 14 
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Both 48E and 48Z are not stable when stored at room temperature. This instability may be the reason for 

the moderate yield obtained during the deprotection step. The final products 48E and 48Z showed an 

optical rotation of [Ct]D25= -2.8 ° (C=I.ll,  CH3OH) and -1.2 ° (c=0.26, CH3OH) and had NMR and IR 

spectra which showed high resemblance to those of clavulone-type compounds 3,5. No attempt has been 

made to establish the enantiopurities of 48E and 48Z. Since cyclopentenone 44 was been obtained from 

enantiopure cyclic ester (+)-2t) applying essentially the same approach as used for the synthesis of (-)-13, 

in which the enantiopurity of (-)-13 has unequivocally been established, compound 44 should be also 

enantiopure. As no racemization at the chiral center of C a in 44 is conceivable during the subsequent 

condensation and elimination reactions, analogues 48E and 48Z should also be enantiopure. The 

remarkably low optical rotations observed for 48E and 48Z are not deviating from the optical rotations 

observed for other clavulone-type compounds, some of them also have low values 3a,Sa,b,l'~. The assumed 

trans-configuration of the C5-C 6 double bond and the cis-configuration of the Cl,rC15 double bond in both 

compounds 48E and 48Z were conf'trrned by the coupling constants observed for the olefinic protons, 

J5,6=15.0 Hz and 15.3 Hz, and J14,15=10.9 Hz and 10.8 Hz, respectively (Table 1). The Z configuration of 

the C7-C a double bond in 48Z was proven by the observation of a relative low-field shift for H 6 (8 7.58) in 

48Z as compared with H 6 (8 6.54) in 48E. In a similar way, the E configuration of the CT-Ca double bond 
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48E 

48Z 

Table 1. Selected 1H-NMR data (400 MHz) of 48E and 48Z 

H5 

8 6.23(dt, J4,s=7.0, 
Js,s=15.0 Hz) 

6.13(dt, J4,5=7.0, 
J5,6=15.3 Hz) 

He 

¢5 6.54(dd, J5,6=15.0, 
J8,7=11.9 Hz) 

7.58(dd, J5,6=15.4, 
Js,7=l 1.4 Hz) 

H7 

8 6.92 
(d, J6,7=11.8 Hz) 

6.55 
(d, J6,7=11.3 Hz) 

Hl I  H14 and His 

55.50 and 5.17 
8 7.29(s) (J14,15=10.9 Hz) 

8 5.51 and 5.21 
8 7.31(s) (j14js=10. 8 Hz) 

in 48E could be derived from the relative low-field shift observed for H 7 (5 6.92) in 48E as compared with 

H 7 (5 6.55) in 48Z. The deshielding observed for proton H 6 in 48Z and H 7 in 48E are the result of the 

anisotropic effect of the cyclopentenone carbonyl group. 

In this paper it has been shown that the stereo- and enantioselective synthesis of clavulones and 

analogues thereof can indeed be realized starting from endo-tricyclo[5.2.1.02,6]decadienone 2-carboxylic 

compound 20. Further studies to extend this approach to the synthesis of halovulones are in progress 23,24. 

Experimental section 

General remarks 

Melting points were measured with a Reichert Thermopan microscope and are uncorrected. IR spectra 

were recorded on a Perkin-Elmer 298 infrared spectrophotometer. 1H and 13C-NMR spectra were 

recorded on a Bruker AM-400 spectrophotometer, using TMS as an internal standard. For mass spectra a 

double focussing VG 7070E mass spectrometer was used. Capillary GC analyses were performed using a 

Hewlett-Packard 5890A gas chromatograph, containing a cross-linked methyl silicone column (25m). 

Flash chromatography was carried out at a pressure of ca. 1.5 bar, a column length of 15-25 cm and a 

column diameter of 1-4 cm, using Merck Kieselgel 60H. Elemental analyses were performed on a Carlo 

Erba Instruments CHNS-O 1108 Elemental analyzer. Optical rotations were determined on a 

Perkin-Elmer 241 polarimeter. Flash Vacuum Thermolyses was carried out using the FVT apparatus as 

developed at the Organic Laboratory of the Nijmegen University. All solvents used were dried and 

distilled according to standard procedures. 

( + )-(1R,2R,6R, 7S)-Endo-tricyclo[ 5.2.1.02"6 ]-dec-4,8-en-3-one 14 

Method h Barton's radical decarboxylation 17 

A solution of carboxylic acid (-)21 (190 rag, 1 mmol, [ct]o22= -83 °, c=0.66, CHaOH) in benzene (5 ml) 

was treated with oxalyl chloride (0.3 ml) and a drop of dimethylformamide with stirring at room temp. 

After stirring for 2 hrs with protection from moisture, the solvent and excess oxalyl chloride was 

evaporated and the residual acid chloride was used as such. 

A solution of acid chloride in benzene (5 ml) was added dropwise (15 min.) to a dried, stirred suspension 

of N-hydroxypyridin-2-thione sodium salt (180 mg, 1.2 mmol) in refluxing benzene (10 ml) containing 

t-butyl mercaptan while irradiating with a 250 W tungsten lamp in an inert atmosphere. After completion 

of the addition, the reaction mixture was cooled to room temp. and evaporated to dryness. The crude 

product was purified by flash chromatography over silica gel (n-hexane/ethyl acetate = 95/5) to give (+)-14 
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(90 rag, 62%) as a white crystalline material, [~]D25= +139 °, (c=0.95, CH3OH). 

(+)-14: 1H-NMR (400 MHz, CDCI3): 8 7.38 (dd, J4,5=5.7 Hz, J5,6=2.6 Hz, 1H, Ha), 5.96 (d, Ji,5=5.7 Hz, 

1H, HI), 5.94 A of AB (dd, Js,9=5.6 Hz, JÂ,9 resp. J7,8=2.9 Hz, 1H, H a or H9), 5.78 B of AB (dd, Js,9=5.6 

Hz, J1.9 reap. J7,8=3.0 Hz, 1H, H a or H9), 3.42, 3.22 and 2.97 (3 x brs, 3H, HI, H 6 and H7), 2.80 (dd, J1,2 = 

J2,6=5.1 Hz, 1H, H2), 1.74 and 1.63 AB x 2 (2 x d, Jloa, lOs=8.4 Hz, 2H, Hlo a and Hlos). GCEI/MS: m/e (%) 

146 (84, M+), 118 (33, M+-CO), 81 (13, M++I-CsH6), 66 (100, C5H6+). 

Method 2: thermal decarboxylation 

A solution of (-)21 (190 mg, 1 mmol, [~]D 22= -83 °, C=0.66, CH3OH) in DMF (10 ml) was stirred at 

100-110 °C for 24 hrs in a N 2 atmosphere. The reaction mixture was concentrated in vacuo and further 

purified by flash chromatography (n-hexane/ethyl acetate = 95/5) to give 14 (115 mg, 78%) as a white 

crystalline material, [~]D 25= +138.5 °, (c=0.41, CH3OH). 

(+)-(1R,2S,4S,5S,6R,7S)-exo-4,5-Epoxy-endo-tricyclo[5.2.1.02'6]-dec-8-en-3-one 15 

Hydrogen peroxide (35%, 3ml) and an aqueous solution of sodium hydroxide (0.2 N, 4ml) were added to a 

solution of (+)-14 (970 mg, 6.6 mmol, [0t]D= +139 °, C=0.95, CH3OH, ee= 99%) in CH2C12/CH3OH (1:1, 

20 ml) with vigorous stirring at room temp. Stirring was continued for 30 min. The mixture was poured 

into dichloromethane (100ml) and washed with brine, dried (Na2SO 4) and concentrated in vacuo. The 

crude product was chromatographed (n-hexane/ethyl acetate = 95/5) to give a sticky solid 15 (1.03g, 95%). 

15: [0t]D25= +189.2 ° (C=0.46, CH3OH). 1H-NMR (400 MHz, CDC13): 8 6.09 (dd, J8,9=5.7 Hz, J1,9 resp. 

J7,8=2.5 Hz, 1H, H s or H9), 6.03 (dd, J8,9=5.7 Hz, J1,9 resp. J7.8=2.8 Hz, 1H, H a or H9), 3.58 (t, J4,5=1.9 Hz, 

1H, H4), 3.20-3.25 (m, 2H, H 2 and Hs), 3.08-3.11 (m, 2H, H I and H7), 2.74-2.79 (m, 1H, Ht), 1.62 A of 

AB (dt, Jloa, lOs=5.6 Hz, 1H, one of Hlo), 1.46 B of AB (d, J10a.10s=5.6 Hz, 1H, one of Hlo). IR (CH2C12): v 

3100-2820 (C-H), 1735(C=O), 1120, 1090 cm -1. El/MS: m/e 162(M+), 97(M+l-CsH6). Found: C 73.91, 

H 6.13 [calc. for CloHloO2: C 73.05, H 6.21]. 

6 ( + )-( ~ R'2S~3S~4S~5S~6R~7S )-ex~-3-( ~ct-2-~nyl)-ex~-4~5-ep~xy-end~-tricycl~[5.2.~.~ 2' ]dec-8-en-endo-3-ol 

2_fi5 

Zinc powder (7.5 g, 0.12 mol) was added rapidly to a stirred, heated solution (120 °C) of copper(H) acetate 

(0.75 g, 4 mmol) in acetic acid (37 ml). The mixture was stirred for an additional 1 min. and then filtered 

while hot. The powder was washed several times with ether, then heated under reduced pressure (oil pump, 

120°C) for one hr. After cooling to room temp., 50 ml of THF and 1-bromo-2-octyne (2.84 g, 15 mmol) 

was added and the mixture refluxed for 2 hrs in a N 2 atmosphere. After cooling to room temp., a solution 

of (+)-15 (540 mg, 3.3 mmol) in THF (10 ml) was added. The stirring was continued overnight. The 

reaction mixture was poured into saturated NH4CI solution (50 ml) and extracted with ether (4 x 50 ml), 

washed with water, brine, dried over Na2SO 4 and then concentrated in vacuo. The crude product was 

purified by flash chromatography (n-hexane/ethyl acetate = 97/3) to give 25 (820 mg, 90 %) as a light 

yellow oil. 

25: [0~]D25= +102.3 ° (C=0.83, CH3OH). 1H-NMR (400 MHz, CDC13): 8 6.27 and 6.05 AB (2 x dd, 2H, H a 

and H9), 3.19-3.15 (m, 2H, H 4 and Hs), 2.95-2.90 (m, 2H, H 1 and HT), 2.80-2.85 (m, 1H, H2), 2.40-2.62 

(m, 3H, H 6 and Hlo), 2.30 (s, 1H, OH), 2.17-2.19 (m, 2H, Hi1), 1.40-1.65 and 1.29-1.35 [2 x m, 8H, 
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-(CH2)4-], 0.90 (t, J=7.2 Hz, 3H, CH3). IR (CH2C12): v 3540 (free OH), 3100-2820 (C-H) cm -1. EI/MS: 

m/e(%) 272 (0.6, M÷), 206 (6, M+-C5H6), 189 (3, M++I-C5H6-H20), 67 (100, C5H6++1). EI/HRMS m/e 

272.1777 [calc. for ClsH2402(M+): 272.1776]. 

( + )-(1R,2S,3R,5R,6R, 7S )-exo-3-( Oct-2-ynyl )-endo-tricyclo[ 5.2.1.02,6 ]dec-8-en-3-endo-5-exo-dio127 

Lithium aluminum hydride (500 mg) was suspended in fresh distilled THF (50 ml) with stirring at room 

temp. Stirring was continued for 30 min. then the mixture was allowed to settle overnight. A clear solution 

of lithium aluminum hydride (40 ml) was now added to a solution of epoxide (+)-25 (390 mg, 1.43 mmol) 

in THF (20 ml) with stirring at room temp. under a N2-atmosphere. The stirring was continued for 3 days. 

Reaction was stopped by carefully adding ethyl acetate (10 ml) and saturated NH4C1 aq. (0.5 ml). Stirring 

was continued for 30 min., Na2SO4(30 g) was added and the mixture stirred for another 30 min. The solid 

was filtered off and washed with ethyl acetate. The combined organic layers were dried (Na2SO4) and 

concentrated in vacuo. Flash chromatography (n-hexane/ethyl acetate = 8/2) provided (+)-27 (325 mg, 

83%) as a colorless oil. 

27: [Ct]DZ5= +43.5°(C=0.95, CHaOH). 1H-NMR (400 MHz, CDCI3): ~ 6.29 A of AB (dd, J8.9=5.6 Hz, J1,9 

resp. J7,s=2.9 Hz, 1H, H a or H9), 6.03 B of AB (dd, J8,9=5.6 Hz, J1,9 resp. J7,8=3.0 Hz, 1H, H a or H9), 3.78 

(d, J4,5=6.3 Hz, 1H, Hs), 2.90 and 2.96(2 x brs, 2H, H 1 and HT), 2.83 (m, IH, H2), 2.66 (m, 1H, H6), 2.62 

and 2.54 AB system (2 x dt, Jlla,b=13.6 Hz, 2H, Hll), 2.19(m, 2H, H14), 2.05 (brs, 1H, OH), 1.90 A of AB 

(dd, Ja,b=14.1 Hz, J4,5=6.3 Hz, 1H, one of H4), 1.72B ofAB (d, J=14.1 Hz, 1H, one of H4), 1.63 (brs, 1H, 

OH), 1.25-1.55 (m, 8H, H1o and -(CH2)3-), 0.90(t, J=7.2 Hz, 3H, CH3). IR (CH2C12): v 3590 (free OH), 

3100-2820 (C-H) cm -l. CI/MS: m/e(%) 275 (0.5, M++I), 257 (9, M++I-H20), 239 (8, M++l-2H20), 208 

(4, M÷-C5H6), 99 (100,), 66 (29, C5H6+). CI/HRMS m/e 274.1929 [calc. for C18H2602(M+): 274.1933]. 

( + )-(1R,3 R )- l-( Oct-2-ynyl )-cyclopent-4-en- l ,3-dio128 

Flash vacuum thermolysis of (+)-27 (400 mg, 1.46 mmol) [sample temp: 120°C; oven temp: 550°C; cold 

trap temp: -78°C; pressure: 3x10 -2 mbar] and purification by flash chromatography (n-hexane/ethyl acetate 

= 3/1) provided pure compound 28 (220 mg, 72%). 

28: [Ct]D25= +31.8 ° (C=0.69, CH3OH). 1H-NMR (400 MHz, CDC13): 8 5.98 (dd, J4.5=5.6 Hz, J3,4=2.2 Hz, 

1H, H4), 5.89 (d, J4,5=5.6 Hz, 1H, Hs), 4.96 (d x m, J2a,3=7.2 Hz, 1H, H3), 2.60 AB (dd, 2H, H6), 2.33 A of 

AB (dd, J~,b=14.4 Hz, J2a,3=7.2 Hz, 1H, one of H2), 2.14-2.20 (m, 2H, H9), 1.93 B ofAB (dd, J~,b=14.4 Hz, 

J2b,3=2.8 Hz, 1H, one of H2), 1.52-1.25 [m, 8H, 2 x OH and -(CH2)3-], 0.90 (t, J=7.2 Hz, 3H, CH3). IR 

(CH2C12): v 3580 (free OH), 3600-3100(H-bonded OH), 3100-2820 (C-H), 1055 cm l .  CI/MS: m/e(%) 

208 (0.2, M÷), 191 (26, M++I-H20), 173 (21, M++l-2xI-I20), 99 (100, M+-chain). CI/HRMS m/e 208.1463 

[calc. for C13H2oO2(M+): 208.1463]. 

(-)-(4R)-4-Hydroxy-4-(oct-2-ynyl)-cyclopent-2-enone 29 

A solution of (+)-28 (180 mg, 0.87 mmol) in dichloromethane (18 ml) was treated with pyridinium 

chlorochromate (470 mg, 2.18 mmol) in the presence of 3/~ molecular sieves (320 mg) at room temp. for 4 

hrs. The solid was filtered off over silica gel (4 g) and washed with hexane-ethyl acetate (1:1). The 

combined organic layers were evaporated, and the residue chromatographed (n-hexane/ethyl acetate = 8/2) 

to give (-)-29 (160 mg, 90%) as a colorless oil. 
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2_99: [0t]D 25= -137.1 ° (C=0.89, CH3OH). 1H-NMR (400 MHz, CDC13): ~ 7.47 (d, J2,3=5.6 Hz, 1H, H3) ' 6.17 

(d, J=5.6 Hz, IH, H2), 2.62 and 2.51 AB x 2 ( 2 x d, Ja,b=18.3 Hz, 2H, HS), 2.63 (m, 2H, H6), 2.15-2.19 (m, 

2H, H9), 1.65 (brs, 1H, OH), 1.36-1.47 [m, 6H, -(CH2)3-], 0.90 (t, J=7.2 Hz, 3H, CH3). IR (CH2C12): v 

3600-3100 (OH), 3100-2820 (C-H), 1720 (C=O) cm 1. CI/MS: m/e(%) 207 (100, M++I), 189 (35, 

M++ 1-H20), 97 (89, M+-chaln). CI/HRM S rrde 206.1304 [calc. for C 13 H 1802( M+): 206,1307]. 

(-)-(4R)-4-Hydroxy-4-(oct-2-enyl)-cyclopent-2-enone 13 

Hydrogenation of (-)-29 was carried out at room temp. and 1 bar of hydrogen pressure. The reaction 

mixture contained (-)-29 (100 mg) and Lindlar catalyst (5 mg, from Aldrich) in toluene (10 ml). Reaction 

progress was followed by measuring the amount of consumed hydrogen and analyzing the reaction mixture 

by gas chromatography. After filtering off the catalyst and evaporation of the solvents, a mixture of 

desired product 13 (84%) and by-product 30 (9%) was obtained. Products were separated by careful 

chromatography (n-hexane/ethyl acetate = 8/2). 

13: [a]DZ5= -84.0°(C=0.31, CHCI3)(lit. 14b [O~]D= -54.1 °, C=1.52, CHCI3). 1H-NMR (400 MHz, CDC13): 

7.42(d, J2,3=5.6 Hz, 1H, H3), 6.14 (d, J=5.6 Hz, 1H, H2), 5.67 and 5.38 (2 x m, 2H, H 7 and Hs), 2.56 A of 

AB (d, Ja,b=18.4 Hz, 1H, H5a), 2.45 B of AB (d, J=18.4 Hz, IH, Hsb), 2.40-2.60 (m, 2H, H6), 2.20 (brs, 1H, 

OH), 2.02-2.08 (m, 2H, H9), 1.25-1.40 [m, 6H, -(CH2)3-], 0.89 (t, J=6.8 Hz, 3H, CH3). IR (CH2C12): v 

3570 (free OH), 3600-3100(OH), 3010-2820 (C-H, sat.), 1715(C=O), 1045 cm -1. CI/MS: m/e(%) 209 (64, 

M++I), 191 (50, M++I-H20), 98 (100, M++l-chain). CI/HRMS m/e 190.1355 [calc.for 

C13H2oO2(M+-H20): 190.1358]. 
(4R)-3-Hydroxy-3-(oct-2-enyl)-cyclopentanone 30: 1H-NMR (400 MHz, CDC13): ~ 5.69 and 5.45 (2 x m, 

2H, H 7 and Hs), 2.45-2.59 and 2.24-2.33 (m, 6H, H2,5,6), 1.98-2.11 (m, 4H, H 9 and H4), 1.71 (brs, 1H, OH), 

1.25-1.39 [m, 6H, -(CH2)3-], 0.89 (t, J=6.8 Hz, 3H, CH3). IR (CHzC12): v 3570 (free OH), 

3600-3100(OH), 3010-2820 (C-H, sat.), 1735(C=O) cm -1. CI/MS: m/e(%) 211 (95, M++I), 193 (100, 

M÷+I-H20), 112 [38, (octenyl)++l], 99 (82, M+-chain). CI/HRMS m/e 210.1619 [calc.for C13Hz202(M+): 

210.1620]. 

(-)-(1R,4S )-(1, 4-Dihydroxy-cyclopent-2-enyl )-acetic acid t-butyl ester 32 

A solution of t-butyl acetate (3.5 g, 30 mmol) in tetrahydrofuran (5 ml) was added to a solution of lithium 

diisopropylamide (24 mmol, prepared from 30 mmol of diisopropylamine and 24 mmol of n-butyllithium) 

in freshly distilled tetrahydrofuran (15 ml) with stirring and coofing (-78 °C). After stirring for 30 min. at 

-78 °C, a solution of enone alcohol 31 19 (980 mg, 10 mmol, ee= 51%) in tetrahydrofuran (10 ml) was 

added dropwise (30 rain.). Stirring was continued at -78°C for another 15 rain. then the reaction mixture 

was poured into ice-water (ca. 25 ml), extracted with ethyl acetate (3x), washed with NH4CI aq. and 

saturated NaC1 aq., dried (Na2SO 4) and concentrated in vacuo to give a crude oil. Flash chromatography 

(n-hexane/ethyl acetate = 1/1) gave pure (-)-32 (1.51 g, 70.6%) as a colorless oil, [Ct]D22= 27.7 ° (C=1.39, 

CHCI3). After storing in the refrigerator for 2 weeks, it slowly crystallized. Recrystallization from 

diisopropyl ether until constant optical rotation (after more than eight times) gave nice crystals with 

[~]D~= -56.6 ° (C=1.32, CHC13) (Lit) 4b [C~]D= -45.9°,C=1.12, CHC13) and m.p. 69.5-71.0 °C. 

32: 1H-NMR (400 MHz, CDC13): 8 5.98 A of AB (dd, J2.,3.=5.6 Hz, J3,,4,=2.0 Hz, 1H, H3,), 5.94 B of AB 

(d, J2.,3,=5.6 Hz, 1H, H2.), 4.66 (m, 1H, H4,), 4.20 (brs, 1H, OH), 2.54 and 2.49 AB (2 x d, Ja,b=15.8 Hz, 
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2H, H2), 2.40 (brs, 1H, OH), 2.40 A of AB (dd, Ja,b=14.2 Hz, J4, 5,a=7.0 HZ, 1H, Hs,a), 1.88 B of AB (dd, 

Ja, b=14.2 Hz, J4,,5,b=3.4 Hz, 1H, Hs,b), 1.47 Is, 9H, C(CH3)3]. IR (CH2C12): v 3580 (free OH), 

3600-3100(H-bonded OH), 3010-2820 (C-H, sat.), 1720(C=O) cm -l. CI/MS: m/e(%) 215 (24, M÷+I), 197 

(26, M÷+I-H20), 159 [25, M++2-C(CH3)3], 141 (100, -H20), 99 [30, M+-CH2COOC(CH3)3], 57 [53, 

C(CH3)3]. CI/HRMS m/e 214.1205 [calc.for C11H1804(M÷): 214.1205]. 

~-)~(~R~2R~3R~4R~6R~7S)-ex~-3~4-Ep~xy~end~-tricycl~[5.2.~.~2~6~deca-8-ene-2-carb~xy!ic acid ethyl ester 

as 

To a solution of (+)-20 (3 g, 14 mmol, let]D25= +107.8 ° CH3OH, ee ~ 98%) in dichloromethane/methanol 

(1:1, 30 ml) was added a mixture of hydrogen peroxide (35%, 7.5 ml) and aq. sodium hydroxide (0.2 N, 9 

ml) with vigorous stirring at room temp. Stirring was continued for 30 min. The mixture was then poured 

into dichloromethane (100 ml), washed with brine, dried over Na2SO 4 and concentrated in vacuo to give 

almost pure 35 (3.3 g, 100 %) as a white solid. An analytically pure sample was obtained by 

recrystallization. 

35: m.p.: 110-112 °C (diisopropyl ether). [Ct]D25= -27.9 ° (C= 2.07, CH3OH). 1H-NMR (400 MHz, CDCI3): 

8 6.22 A of AB (dd, J8,9=5.7 Hz, Jl,9 resp. J7,8=3.1 Hz, 1H, H a or H9), 6.16 B of AB (dd, J8,9=5.5 Hz, J1,9 

resp. J7,s=2.8 Hz, 1H, H 8 or H9), 4.29 (m, 2H, COOCH_H_2CH3), 3.84 (t, J=2.0 Hz, 1H, H4), 3.33(brs, 1H, H 1 

or H7), 3.30-3.28 (m, 2H, H 3 and H 1 or H7), 3.26 (dd, J--4.8 Hz, J=l.8, 1H, H6), 1.81 and 1.59 AB (2 x d, 

Jloa,s=9.0 Hz, 2H, Hlo), 1.35 (t, J=7.1 Hz, 3H, CH3). IR (CH2C12): v 1700 and 1720(C=O). EI/MS: m/e(%) 

234 (1, M+), 205 (2, M+-CH2CH3), 189 (7, M+-OCH2CH3), 169 (81, M++I-CsH6), 66 (100, C5H6+). 

EI/HRMS m/e 234.0892 [calc.for C13H1404(M+): 234.0892]. Found C 66.53 % H 6.01 [calc. for 

C13H1404: C 66.66 % H 6.02 %]. 

(-)-(1R,2R,3R, 4R,5R,6R, 7S)-3, 4-Epoxy-5-hydroxy-5-(oct-2-ynyl)-endo-tricyclo[5.2.1.02'6 ]deca-8-ene-2- 

carboxvlic acid ethyl ester 36 

Zinc powder (9.5 g, 0.15 mol) was rapidly added to a stirred, heated solution (120 °C) of copper(H) acetate 

(0.95 g, 5 retool) in acetic acid (47 ml). The mixture was stirred for an additional 1 min. and then filtered 

while hot. The powder was washed several times with ether and then heated under reduced pressure (oil 

pump, 120 °C) for one hr. After cooling to room temp., 50 ml of tetrahydrofuran and 1-bromo-2-octyne 

(4 g, 21 mmol) were added and the mixture refluxed for 2 hrs under a N 2 atmosphere. After cooling to 

room temp., a solution of (-)-35 (1 g, 4.2 mmol) in THF (10ml) was added. The stirring was continued 

overnight. The reaction mixture was poured into saturated aq. NH4C1 (50 ml) and extracted with ether (4 x 

50 ml), washed with water, brine, dried over Na2SO n and then concentrated in vacuo. The crude product 

was purified by flash chromatography (n-hexane/ethyl acetate = 97/3) to give 36 (1.25 g, 86 %) as a light 

yellow oil. 

36: [0t]DZS= -23.1 ° (C= 2.11, CH3OH). 1H-NMR (400 MHz, CDCI3): ~ 6.42 A of AB (dd, J8,9=5.5 Hz, J1,9 

resp. J7,8=2.8 Hz, 1H, H 8 or H9), 6.13 B of AB (dd, J8,9=5.5 Hz, J1,9 resp. J7,8=3.1 Hz, 1H, H 8 or H9), 4.22 

(q, J=7.1 Hz, 2H, COOCH2CH3), 3,42 and 3.21 (2 x d, J3,4=2.1 Hz, 2H, H 3 and H4), 3.11 (brs, 1H, H 1 or 

HT), 3.04 (d, J6,7=4.0 Hz, 1H, H6), 3.00 (brs, 1H, H 1 or H7), 2.58 A of AB (dt, Ja.b=8.4 Hz, J=2.3 Hz, 1H, 

Hlos), 2.45 B of AB (dt, Ja.b=8.4 Hz, J=2.3 Hz, 1H, Hloa), 2.38 (s, 1H, OH), 2.18 (m, 2H, Hll), 1.58-1.26 

(m, 8H, -(CH2)4-), 0.90 (t, J=7.1 Hz, 3H, CH3). IR (CH2C12): v 3540 (free OH), 3010-2820 (C-H, sat.), 
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1725 (C=O) cm d. CI/MS: m/e(%) 345 (5, M++I), 327 (4,-H20), 278 (6, M+-CsH6), 235 (26, M++l-chain), 

169 (100, M++l-chain-CsH6), 66 (46, C5H6÷+1). EI/HRMS rrde 345.2062 [calc. for C21H2904(M++l): 

345.2066]. 

(1R,2R,3S,5S,6R, 7S)-2-Hydroxymethyl-5-(oct-2-ynyl)-endo-tricyclo[5.2.1.O2'6]dec-8-en-3,5-dio137 

Lithium aluminum hydride (500 mg) was added to freshly distilled tetrahydrofuran (50 ml) with stirring at 

room temp. Stirring was continued for 30 min. and then the mixture was stored overnight. A clear solution 

of lithium aluminum hydride (40 ml) was added to a solution of epoxide 36 (400 mg, 1.16 mmol) in 

tetrahydrofuran (20 ml) with stirring at room temp. and under a N2-atmosphere. Stirring was continued for 

4 days. The reaction was stopped by carefully adding ethyl acetate (10 ml) and saturated NH4CI aq. 

(0.5ml). Stirring was continued for 30 rain. at room temp., then Na2SO 4 (30 g) was added and the mixture 

stirred for another 30 rain. Solid was filtered off and washed with ethyl acetate. The organic layer was 

dried (Na2SO4) and concentrated in vacuo. Flash chromatography (n-hexane/ethyl acetate = 8/2) provided 

37 (325 rag, 80 %) as a colorless oil. 

37: 1H-NMR (400 MHz, CDCI3): 8 6.38 A of AB (dd, J8.9=5.6 Hz, J1,9 resp. J7,8=2.9 Hz, 1H, H a or H9), 

6.15 B ofAB (dd, J8,9=5.6 Hz, JL9 resp. J7,8=3.1 Hz, 1H, H a or H9), 4.09 and 3.69 AB (2 x d, Ja,b=l 1.0 Hz, 

1H, CH2OH), 3.96 (dd, Ja.4a=7.0 Hz, J3.4b=2.5 Hz, 1H, Ha), 2.96 and 2.88(2 x brs, 2H, H 1 and H7), 2.57 AB 

(2 x dt, 2H, Hi0), 2.74 and 2.45 (2 x OH), 2.30 (m, 1H, H2), 2.18 (m, 2H, HH), 2.10 A of AB (dd, Ja.b=13.6 

Hz, J3.4a=7.0 HZ, 1H, one of H4), 1.84 B of AB (dd, Ja, b=13.6 Hz, J3,4b=2.5 Hz, 1H, one of H4), 1.64 (brs, 

1H, OH), 1.60-1.29 [m, 8H, -(CH2)3-], 0.90 (t, J=7.1 Hz, CH3). IR (CH2C12): v 3600, 3540 (free OH), 

3600-3100 (H-bonded OH), 3100-2820 (C-H) cm -1. CI/MS: m/e(%) 305 (6, M++I), 287 (11, M++I-H20), 

269 (28, M++I-2xH20), 195 (89, M+-chain), 129 (100, M+-C5H6-chain), 66 (35, C5H6+). CI/HRMS m/e 

305.2127 [calc. for C19H2903(M++l): 305.2117]. 

(-)-(1 S,2R,3R,4R,5R,6S, 7R)-4,5-Epoxy-6-hvdroxymethyl-3-(oct-2-ynyl)-endo-tricyclo[5.2.1.O 2'6 ]- 

dec-8-en-3-ol 38 

Lithium aluminum hydride (1 g) was added to freshly distilled tetrahydrofuran (100 ml) with stirring at 

room temp. Stirring was continued for 30 min. and then the mixture stored overnight. A clear solution of 

lithium aluminum hydride (60 ml) was added to a solution of epoxide (-)-~_ (1.5 g, 4.3 mmol) in 

tetrahydrofuran (20 ml) with stirring at room temp. and under a N2-atmosphere. The stirring was continued 

for 2 hrs. Reaction was stopped by carefully adding ethyl acetate (10 ml) and saturated NHnC1 aq. (1 ml). 

Stirring was continued for 30 min. at room temp., Na2SO 4 (60g) was added and the mixture stirred for 

another 30 min. Solid was filtered off and washed with ethyl acetate. The organic layer was dried 

(Na2SO 4) and concentrated in vacuo. Flash chromatography (n-hexane/ethyl acetate = 7/3) provided 38 

(1.24 g, 93 %) as a colorless oil. 

38: [Ct]D 25= -42.2 ° (C=0.95, CH3OH). 1H-NMR (400 MHz, CDCI3): 8 6.35 A of AB (dd, J8,9=5.6 Hz, J1.9 

resp. J7,8=2.8 Hz, 1H, H 8 or H9), 6.12 B of AB (dd, J8,9=5.6 Hz, J1,9 resp. J7.8=3.1 Hz, 1H, H a or H9), 3.82 

and 3.72 AB (2 x d, Ja,b=i 1.0 Hz, 2H, CH2OH), 3.30 and 3.23 (2 x d, J4.5=2.3 Hz, 2H, H 4 and HS), 2.91 

and 2.79(2 x brs, 2H, H I and H7), 2.59 and 2.43 AB (2 x dt, Ja, b=16.4 Hz, 2H, Hit), 2.39 and 2.37 (2 x 

OH), 2.23 (d, J],2=4.0 Hz, 1H, H2), 2.18 (m, 2H, Hll), 1.51-1.25 (m, 8H, -(CH2)4-), 0.90(t, J=7.1 Hz, 3H, 

CH3). IR (CH2C12): v 3600, 3540 (free OH), 3600-3100 (H-bonded OH), 3100-2820 (C-H) cm d. CI/MS: 
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m/e(%) 303 (10, M++I), 285 (16, M÷+I-H20), 267 (16, M÷+I-2xH20), 236 (13, M+-C5H6), 127 (100, 

M+-C5H6-chaln), 66 (69, C5H6+). CI/HRMS m/e 303.1958 [calc. for C19H2703(M++l): 303.1960]. 

(1S,2R,3R,4R,5R,6S, 7R)-4,5-Epoxy-3-(oct-2-ynyl)-6-(tetrahydro-pyran-2-vloxymethyl)-endo-tricyclo- 

[5.2.1.02,61dec-8-en-3-o139 

A solution of (-)-38 (4.4 g, 14.5 mmol) in dichloromethane (80 ml) was treated with dihydropyran (4.2 g, 

50 mmol) and p-toluenesulfonic acid (10 mg) at room temp. After stirring for 3 hrs, the reaction mixture 

was poured into dichloromethane (150 ml) and washed with saturated NaC1 aq., dried over Na2SO 4 and 

concentrated in vacuo. Chromatography (n-hexane/ethyl acetate = 20/1) gave pure 39 (4.0 g, 90 %) as 

colorless oil (diastereoisomeric mixture). 

39: 1H-NMR (400 MHz, CDC13): (diastereoisomeric mixture due to the presence of THP group) ~ 6.33 and 

6.15 AB (dd, 2H, H a and I-I9), 4.67, 4.09, 3.90, 3.66, 3.53 and 3.24 (m, 7H), 3.08, 3.01 and 2.86 (3 x brs, 

2H, H 1 and H7), 2.57 and 2.40 AB (2 x m, 2H, Hlo), 2.31 (2 x s, 1H, OH), 2.00 and 1.96 (2 x d, 1H, H2), 

2.17 (m, 2H, Hn), 1.90-1.20 (m, 13H), 0.90 (t, J=7.1 Hz, CH3). IR (CH2C12): v 3540 (free OH), 

3600-3100 (H-bonded OH), 3100-2820 (C-H) cm 1. CI/MS: m/e(%) 387 (0.5, M÷+I), 303 (1, M++I-THP), 

285 (2, -H20), 85 (100, C5H90+), 66 (9, C5H6+). CI/HRMS m/e 387.2534 [calc. for C24HasO4(M++l): 

387.2535]. 

(1R,2R,3S,5S,6R, 7S)-5-(Oct-2-ynyl)-2-(tetrahydro-pyran-2-yloxymethyl)-endo-tricyclo[5.2.1.02"61dec-8-en- 

3,5-cis-dio140 

Lithium aluminum hydride (1 g) was added to freshly distilled telxahydrofuran (100 ml) with stirring at 

room temp. Stirring was continued for 30 rain. then kept overnight. A clear solution of lithium aluminum 

hydride (80 ml) was added to a solution of epoxide 39 (450 rag, 1.2 mmol) in tetrahydrofuran (10 ml) with 

stirring at room temp. and under a N2-atmosphere. The stirring was continued for 4 days. The reaction 

was stopped by carefully adding ethyl acetate (10 ml) and saturated NH4C1 aq. (1 ml). After stirring for 30 

min. Na2SO 4 (60 g) was added and the mixture stirred for another 30 min. Solid was filtered off and 

washed with ethyl acetate. The organic layer was dried (Na2SO 4) and concentrated in vacuo. Flash 

chromatography (n-hexane/ethyl acetate = 7/3) led to recovery of starting material 39 (170 mg) and 

product 40 (250 mg, 90 % based on consumed 39) as a colorless oil. 

40: 1H-NMR (400 MHz, CDC13): (diastereoisomeric mixture due to the presence of THP group) fi 6.40 and 

6.15 AB (dd, 2H, H a and H9), 4.62, 4.25, 3.84 and 3.51 (m, 6H, -O-CH. R-), 2.92 and 2.88 (2 x brs, 2H, H 1 

and H7), 2.70-2.40 AB (m, 2H, Hlo), 2.34 (2 x d, 1H, H6), 2.18 (m, 2H, Hn), 2.15-1.25 (m, 16H), 0.90 (t, 

J=7.1 Hz, CH3), 3.40, 3.12 and 2.15 (3 x brs, 2H, OH). IR (CH2C12): v 3540 (free OH), 3600-3100 

(H-bonded OH), 3100-2820 (C-H) cm 1. CI/MS: m/e(%) 389 (1, M++I), 305 (22, M++I-THP), 287 (9, 

-H20), 269 (14, -H20), 195 (85, M+-THP-chaln), 177 (8, -H20), 85 (100, C5H90+), 66 (16, C5H6+). 

CI/HRMS m/e 389.2691 [calc. for C24H37Oa(M++l): 389.2692]. 

( ~S~2R~3S~6S~7R)-5-Hydr~xy-5-(~ct-2-yny~)-2-(tetrahydr~pyran-2-y~xymethy~)-end~-tricycl~[5.2.1.~2~6 ~- 

dec-8-en-3-one 41 

To a solution of 40 (3 g, 7.7 mmol) in dichloromethane (180 ml) was added a mixture of pyridinium 

chlorochromate (5.8 g, 27 mmol) in the presence of 3/~ molecular sieves (2.4 g) at room temp. The 
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suspension was stirred overnight at room temp. The solid was filtered off over silica gel and washed with 

hexane-ethyl acetate (1:1). The combined organic layers were evaporated and the residue 

chromatographed (n-hexane/ethyl acetate = 8/2) to give product 41 (2.76 g, 92 %) as a colorless oil. 

41: 1H-NMR (400 MHz, CDCI3): (diastereoisomeric mixture due to the presence of THP group) 8 6.45 and 

6.02 AB (dd, 2H, H s and H9), 4.65, 4.58, 4.35, 3.92, 3.82, 3.64 and 3.52 (m, 5H, -O-CLaIR-), 3.16-2.77 (m, 

3H, H1,H 6 and H7), 2.72 and 2.54 (2 x m, 2H, Hlo), 2.35-2.17 (m, 4H, H 4 and Hll), 1.75-1.25 (m, 15H), 

0.90 (t, J=7.0 Hz, CH3), 3.40, 3.12 and 2.15 (3 x brs, 2H, OH). IR (CH2C12): v 3540 (free OH), 3600-3100 

(H-bonded OH), 3100-2820 (C-H), 1725 (C--O) cm l .  CI/MS: m/e(%) 387 (3, M++I), 303 (17, 

M++I-THP), 237 (54, M++I-CsH6-THP), 193 (37, M+-THP-chaln), 85 (100, C5H90+), 66 (20, C5H6+). 

( ~ S~2R~3S~6S~7R~)-5~Hydr~xy~5~(~ct-2-~nyl)-2-hydr~xYmethy~-end~-tric~cl~[5.2.~.~2~6 ~dec-8-en-3-~ne 42 

A mixture of 41 (75 rag, 0.2 mmol), fumaronitrile (78 nag, 1 retool) and ethylaluminum dichloride (1.0 M, 

0.5 ml, 0.5 retool) in 1,2-dichloroethane was stirred at room temp. for 2 hrs. The mixture was poured into 

20 ml dichloromethane, washed with brine, dried over NazSO 4 and evaporated in vacuo. Flash 

chromatography (n-hexane/ethyl acetate = 9/1) gave pure 42 (55 rag, 92%) as colorless oil. 

4._22: IH-NMR (400 MHz, CDC13): 5 6.46 A of AB (dd, J8,9=5.5 Hz, JL9 resp. J7,8=2.9 Hz, 1H, H 8 or H9), 

6.04 B of AB (rid, Js.9=5.5 Hz, J1,9 resp. JT,s=3.1 Hz, 1H, H8 or H9), 3.98 and 3.70 AB (2 x d, Ja,b=10.7 Hz, 

2H, CH2OH), 3.17 and 2.95 (2 x brs, 2H, H 1 and H7), 2.74 (d, J6,7=4.1 Hz, 1H, H6), 2.59 and 2.50 AB (2 x 

dt, Ja,b=16.4 Hz, 2H, Hlo), 2.47 (s, 1H, OH), 2.42 (d, J<l Hz, 2H, Hll), 1.70 (S, 1H, OH), 1.60-1.45 (m, 

4H, H14 and Hio), 1.40-1.25 (m, 6H, Hlsd7), 0.90(t, J=7.1 Hz, 3H, CH3). IR (CH2C12): v 3600 and 3540 

(free OH), 3600-3100 (H-bonded OH), 3100-2820 (C-H), 1720 (C=O) crn d. CI/MS: m/e(%) 303 (3, 

M++I), 285 (11, -H20), 267 (5, -H20), 237 (94, M++I-C5H6), 66 (100, C5H6+). CI/HRMS m/e 303.1958 

[calc. for C 19H2703(M++ 1): 303.1960]. 

(4R)-4•hydr•xY-4-•ct•2-yny•-2-(tetrahydr•-pyran-2-y••xymeth•l)-cyc••pent-2-en•ne 43 

Flash vacuum thermolysis of 41 (390 mg, 1 mmol) [sample temp: 150°C; oven ternp: 500°C; cold trap 

temp: -78°C; pressure: 3×10 .2 mbar] and purification by flash chromatography (hexane/ethyl acetate = 3/1) 

provided pure compound 43 (260 nag, 82 %) as a colorless oil. 

43: 1H-NMR (400 MHz, CDCI3): (diastereoisomeric mixture due to the presence of THP group) 8 7.33 (s, 

1H, H3) ' 4.67, 4.45, 4.16, 3.85 and 3.52 (5 x m, 5H, -O-CH__R-), 2.70 and 2.58 AB (2 x d, Ja.b=18.4 Hz, 2H, 

HS), 2.63 (brs, 2H, H6), 2.15-2.19 (m, 2H, H9), 1.90-1.25 (m, 13H), 0.90 (t, J=7.1 Hz, 3H, CH3). IR 

(CH2C12): v 3600-3100 (H-bonded OH), 3100-2820 (C-H), 1710 (C=O) cm l .  CI/MS: m/e(%) 321 (2, 

M++I), 237 (29, -THP), 85 (100, C5H90). CI/HRMS m/e 321.2067 [calc. for C19H2904(M++l)): 

321.2066]. 

(4R)-4•Hydr•xy•4••ct-2(cis)-eny••2-(tetrahydr•-pyran-2•y••xvmethy•)-cyc••pent-2-en•ne 44 

Hydrogenation was carried out at room temp. and 1 bar of hydrogen pressure using a standard procedure. 

The reaction mixture contained 4_33 (100 mg) and Lindlar catalyst (10 rag, from Aldrich) in methanol (10 

ml). Reaction progress was followed by measuring the amount of consumed hydrogen and analyzing the 

product by gas chromatography. After filtering off the catalyst and evaporation of the solvents, desired 

product 44 (91%) was obtained by careful flash chromatography (n-hexane/ethyl acetate = 8•2). 
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44: 1H-NMR (400 MHz, CDCI3): (diastereoisomeric mixture due to the presence of THP group) 8 7.30 (s, 

IH, H3), 5.68 and 5.41 AB (2 x dd, 2H, H 7 and Hs), 4.66, 4.44, 4.15, 3.85 and 3.52 (5 x m, 5H, -O-CHR-), 

2.65-2.45 (m, 4H, H 5 and H6), 2.06 (m, 2H, H9), 1.94-1.25 (m, 13H), 0.89 (t, J=7.0 Hz, 3H, CH3). IR 

(CH2C12): v 3570 (free OH), 3600-3100(H-bonded OH), 3100-2820 (C-H), 1710 (C=O) cm q. CI/MS: 

m/e(%) 323 (0.8, M÷+I), 239 (11, -THP), 211 (3, -H20), 85 (100, C5H90+). CI/HRMS m/e 323.2223 

[calc.for C19H3104(M++l): 323.2222]. 

(8S,12R)- and (8R~2R)-5E-4-deacetyl-7~12-dihydr~xy-1~-(tetrahydr~pyran-2~-yl-~xymethyl)-7~8-dihydr~- 

clavulone 46 

n-Butyllithium (2.6 ml, 1.6 M, 4.2 mmol) was added to a solution of diisopropylamine in THF (5 ml) with 

stirring at -30 °C. Stirring was continued for 15 rain. After lowering the temp. to -78 °C, a solution of 44 

(460 rag, 1.4 mmol) in tetrahydrofuran (5 ml) was added. Stirring was continued at -78 °C for 30 rain. and 

a solution of aldehyde 4...5514b (420 mg, 4.2 mmol) in tetrahydrofuran (4 ml) was added. The reaction was 

continued at -78 °C for another 2 hrs. The mixture was then poured into saturated aq. NH4CI (20 ml) and 

extracted with ethyl acetate. The organic layer was washed with aq. NaC1, dried over Na2SO 4 and 

concentrated in vacuo. Flash chromatography (n-hexane/ethyl acetate = 3/1) gave two product mixtures 

46a,b (210 rag, 31%) and ~___,d (215 mg, 32%), and starting material 44 (140 mg, 30%). The yield is 90% 

based on consumed 44. 

mixture ~__~__,_b: 1H-NMR (400 MHz, CDCI3): 8 7.33 (s, 1H, HH), 5.87-5.73 (m, 2H, H 5 and H6), 5.70-5.60 

and 5.52-5.45 (2 x m, 2H, H14 and H15), 4.66-4.63, 4.44-4.39, 4.17-4.11, 3.85-3.81, 3.53-3.49, 2.95-2.83 

and 2.60-2.44 (7 x m, 9H, H 7, H 8, HIs, H21, H22 and H26), 3.67 (s, 3H, COOCH3), 2.37-2.32, 2.18-2.11 and 

2.05-1.98 (3 x m, 3 x 2H, H 2, H 4 and HI6), 1.84-1.20 (m, 16H), 0.88 (t, J=7.0 Hz, 3H, CH3). IR (CH2C12): 

v 3540 (free OH), 3600-3100 (H-bonded OH), 3100-2820 (C-H), 1735 and 1710 (C=O) cm "1. CI/MS: 

m/e(%) 443 (0.2, M++l-2H20), 377 (2, M++I-THPOH), 359 (3, M++I-H20-THPOH), 341 (1, 

M++I-2H20-THPOH), 85 (100, C5H90+). CI/HRMS m/e 377.2314 [calc.for C22H33Os(M++l-THPOH): 

377.2328]. 

mixture 4~,d_: 1H-NMR (400 MHz, CDC13): 8 7.34 (s, IH, Hll), 6.05-5.85, 5.75-5.63 (2 x m, 2H, H 5 and 

H6), 5.63-5.45 and 5.45-5.35 (2 x m, 2H, H14 and H15), 4.82, 4.74, 4.65, 4.55-4.40, 4.20-4.13, 3.87-3.81 

and 3.52-3.49 (7 x m, 7H, H 7, H 8, H21, H22 and H26), 3.67 (s, 3H, COOCH3), 3.65, 3.25-3.15 and 3.05-2.95 

(3 x m, 2H, OH), 2.55-2.28 (m, 5H), 2.12-1.95 (m, 4H), 1.87-1.44 (m, 8H), 1.32-1.25 (m, 5H), 0.88 (t, 

J=7.0 Hz, 3H, CH3). IR (CH2C12): v 3540 (free OH), 3600-3100 (H-bonded OH), 3100-2820 (C-H), 1725 

and 1705 (C=O) cm q. CI/MS: m/e(%) 461 (0.2, M++I-H20), 443 (0.2, M++l-2H20), 377 (3, 

M++I-THPOH), 359 (2, M++I-H20-THPOH), 341 (2, M++I-2H20-THPOH), 85 (100, C5H90+). 

CI/HRMS m/e 461.2901 [calc.for C27H4106(M++l-H20): 461.2903]. 

( • 2R )-5E• 7E-• 2-hydr••y-• •-( tetrahydr•pyran-2 •-yl-•xymethyl)-4-deacetyl-clavul•ne 47E and (12R )-5E,- 

7Z-12-hydroxy- l O-( tetrahydropyran-2 "-yl-oxymethyl)-4-deacetyl-clavulone 47Z 

Elimination of mixture 46a,b: A solution of 4(m,_b (85 rag, ) in dichloromethane (5 ml) was treated with 

excess acetic anhydride (400 rag) and dimethylaminopyridine (100 rag) at room temp. for 3 hrs. The 

mixture was then poured into dichloromethane (50 ml) and washed with brine (3x), dried over Na2SO 4 and 

concentrated in vacuo. Flash chromatography (n-hexane/ethyl acetate = 3/1) gave pure product 47E (65 
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rag, 70 %) and 47Z (20 rag, 21%) as colorless oils. 

47E: 1H-NMR (400 MHz, CDC13): 8 7.36 (s, 1H, Hll), 6.91 (d, J6,7=11.8 Hz, 1H, H7), 6.54 (dd, J6,7=11.8 

Hz, J5,6=15.0 Hz, 1H, H6), 6.20 (dt, J5,6=15.0 Hz, J4,s=7.0 Hz, 1H, H5), 5.49 (ddd, J14,15=10.9 Hz, 

J14,13a=7.0 Hz, J14,13b=8.0 Hz, 1H, H14), 5.16 (dt, J14,15=10.9 Hz, J15,16=6.8 Hz, 1H, H15), 4.66 (m, 1H, 
H2,), 4.56-4.50 and 4.29-4.20 (2 x m, 2H, Hr),  3.83 and 3.50 (2 x m, 2H, H6,), 3.67 (s, 3H, COOCH3) , 

2.99 A of AB (dd, J13a,b=14.2 Hz, J13a,14=7.0 HZ, 1H, Hl3a), 2.71 B of AB (dd, J13a, b=14.2 HZ, J13b.14=7.0 

HZ, 1H, H13b), 2.37-2.26 (m, 4H, H 4 and H16), 2.05-1.85, 1.85-1.70, 1.70-1.47 and 1.30-1.15 (4 x m, 19H), 

0.87 (t, J=7.1 Hz, 3H, CH3). IR (CH2C12): v 3100-2820 (C-H), 1730 and 1695 (C=O), 1630 (C=C, conj.) 

cm -1. El/MS: m/e(%) 358 (7, M++I-AcOH-THP), 85 (100, C5H90+). Cl/HRMS m/e 358.2145 [calc.for 

C22HaoO4(M++ 1-AcOH-THP): 358.2144]. 

47Z: tH-NMR (400 MHz, CDC13): 8 7.60 (dd, J6,7=11.5 Hz, J5,6=15.3 Hz, 1H, H6), 7.39 (s, 1H, HH), 6.55 

(d, J6,7=11.3 Hz, 1H, H7), 6.20 (dt, J5,6=15.3 Hz, J4.5=7.1 Hz, 1H, Hs), 5.50 (ddd, JlaA5=10.9 Hz, 

J14,13a=7.5 Hz, J14,13b=7.1 HZ, 1H, H14), 5.20 (dt, J14,15=10.9 Hz, J15,16=6.8 Hz, 1H, H15), 4.67 (m, 1H, 

H20), 4.51 and 4.24 AB (2 x d, Ja,b=14.9 Hz, 2H, Hr),  3.83 and 3.51 (2 x m, 2H, H6.), 3.67 (s, 3H, 

COOCH3), 2.91 A of AB (dd, J13a, b=14.2 Hz, J13a,14=7.1 Hz, 1H, H13a), 2.67 B of AB (dd, J13a.b=14.2 Hz, 

J13b.14=7.5 Hz, IH, H13b), 2.40-2.22 (m, 4H, H 4 and H16), 2.05-1.90, 1.90-1.70, 1.70-1.45 and 1.35-1.20 (4 

x m, 19H), 0.87 (t, J=7.1 Hz, 3H, CH3). IR (CH2C12): v 3100-2820 (C-H), 1730 and 1690 (C=O), 1630 

(C=C, conj.) cm -1. El/MS: m/e(%) 502 (0.6, M+), 443 (9, M+-AcO), 359 (25, M+-AcOH-THP), 85 (100, 

C5H90+). Cl/HRMS m/e 502.2932 [calc.for C29H42OT(M+): 502.2930]. 

Elimination of mixture 46~d: A solution of 46e,d (150 rag, ), excess acetic anhydride (1 ml) and dimethyl- 

aminopyridine (300 mg) in benzene (10 ml) was stirred at 80°C for 24 hrs. The mixture was then poured 

into ether (50 ml) and washed with brine (3x), dried over Na2SO 4 and concentrated in vacuo. Flash 

chromatography (hexane/ethyl acetate = 3/1) gave pure product 47E (75 mg, 44 %) and 47Z (20 mg, 12 %) 

as a colorless oils. 

(-)-(12R)-5E,7E-lO-(Hydroxymethyl)-4-deacetyl-clavulone 48E 

A solution of 47E (85 rag) in acetic acid (4 ml) and water (1 ml) was stirred at room temp. for 4 hrs. The 

solution was then poured into ethyl acetate (30 ml) and washed with aq. NaCl (3x). After drying (NaSO4) 

and concentration in vacuo, flash chromatography (n-hexane/ethyl acetate = 2/1) gave product 48E (35 

rag, 50%) as an oil. 

48E: [Ot]D25= -2.8 o (C=I.11, CH3OH). IH-NMR (400 MHz, CDC13): 8 7.29 (s, 1H, Hll), 6.92 (d, J6,7=11.8 

Hz, 1H, HT), 6.54 (rid, J6,7=11.9 Hz, J5,6=15.0 Hz, 1H, H6), 6.23 (dt, J5,6=15.0 Hz, J4,5=7.0 Hz, 1H, Hs), 

5.50 (dt, J14AS=10.9 Hz, J14Aa = --7.4 Hz, 1H, H14), 5.17 (dt, J14AS=10.9 Hz, J15,16=7.8 Hz, 1H, H15), 4.46 

(s, 2H, Hr),  3.67 (s, 3H, COOCH3), 2.97 A of AB (dd, J13a.b=14.4 Hz, J13aA4=7.2 Hz, 1H, H13a), 2.71 B of 

AB (dd, Jl3a,b=14.2 Hz, J13b,14=8.0 Hz, 1H, Hi3b), 2.48 (S, 1H, OH), 2.37-2.27 (m, 4H, H 4 and H16), 
2.07-1.92 (m, 5H), 1.85-1.76 (m, 2H), 1.34-1.20 (m, 6H), 0.88 (t, J=7.1 Hz, 3H, CH3). 13C-NMR (100 

MHz, H-dec., CDCI3): 8 193.3/173.5/169.4 (quat.), 150.6 (tert), 146.8 (quat.), 146.7/134.7 (tert), 134.5 

(quat.), 131.5/125.3/121.3 (tert.), 84.4 (quat.), 57.7 (sec.), 51.5 (prim.), 35.5133.2132.6/31.5/ 

29.0127.4/23.7122.5 (sec.), 21.4/14.0 (prim.). IR (CH2C12): v 3600 (free OH), 3600-3020 (H-bonded OH), 

3100-2820 (C-H), 1735 and 1700 (C=O), 1635 (C--C, conj.) cm -1. Cl/MS: m/e(%) 419 (5, M++I), 359 (48, 



5868 J. ZHU et al. 

M+-OCOCH3), 341 (67, M+-H20-OCOCH3), 43 (100, +COCH3). EI/HRMS m/e 418.2357 [calc.for 

C24Hs406(M+): 418.2355]. 

(-)-(12R)-5E, 7Z-lO-(Hydroxymethyl)-4-deacetyl-clavulone 48Z 

A solution of 47Z (30 mg) in acetic acid (4 ml) and water (1 ml) was stirred at room temp. for 4 hrs. The 

solution was then poured into ethyl acetate (30 ml) and washed with aq. NaC1 (3x). After drying (NaSO4) 

and concentration in vacuo, flash chromatography (n-hexane/ethyl acetate = 2/1) gave product 48Z (12 

rag, 50%) as an oil. 

48__.ZZ: [~]D25= -1.50 (C=0.26, CH3OH). 1H-NMR (400 MHz, CDC13): 8 7.58 (dd, J5,6=15.4 Hz, J6,7=11.4 Hz, 

1H, H6), 7.31 (s, 1H, Hll), 6.55 (d, J6,7=11.3 Hz, 1H, H7), 6.13 (tit, J5,6=15.3 Hz, J4,5=7.0 Hz, 1H, H5), 5.51 

(dt, J14,15=10.8 Hz, J14,13 = ~7.3 Hz, 1H, H14), 5.22 (dt, J14,15=10.8 Hz, J15,16=7.5 Hz, 1H, H15), 4.45 (s, 2H, 
HI,), 3.67 (s, 3H, COOCH3), 2.89 A of AB (dd, J13a, b=14.1 HZ, J13a.14=7.0 Hz, 1H, Hl3a), 2.66 B of AB 

(dd, J13a, b=14.2 Hz, J13b,14=7.4 Hz, 1H, H13b), 2.40-2.23 (m, 5H, OH, H 4 and H16), 2.08-1.94 (m, 5H), 
1.84-1.76 (m, 2H), 1.30-1.15 (m, 6H), 0.88 (t, J=7.1 Hz, 3H, CH3). IR (CH2C12): v 3600 (free OH), 

3600-3040 (H-bonded OH), 3100-2820 (C-H), 1730 and 1695 (C=O), 1630 (C--C, conj.) cm -1. CI/MS: 

m/e(%) 419 (4, M++I), 359 (19, M+-OCOCH3), 341 (26, M+-H20-OCOCH3), 43 (100, +COCH3). 

EI/HRMS m/e 418.2357 [calc.for C24Ha406(M+): 418.2355]. 
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