ON POSITIVE MULTIPEAK SOLUTIONS OF A NONLINEAR
ELLIPTIC PROBLEM
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1. Introduction
In this paper we continue our investigation in [5, 7, 8] on multipeak solutions to

th bl ;
© problem —&Au+u = Q(x) [u]"*u, xeRY,
ue H'(RY), (1.1)

where A = )N, 0%/0x} is the Laplace operator in RV, 2 <g< oo for N=1,2,2<
g <2N/(N—2)for N = 3, and Q(x) is a bounded positive continuous function on RY
satisfying the following conditions.
(Q,) O has a strict local minimum at some point x,€ RY, that is, for some J > 0
0(x) > O(x,)
for all 0 < |x—x,| < 0.
(Q,) There are constants C, 0 > 0 such that

10(x) =0 < Clx—yI’

for all |x—x,| < 9, |y—y,| < 0.

Our aim here is to show that corresponding to each strict local minimum point x,
of Q(x) in RY, and for each positive integer k, (1.1) has a positive solution with k-
peaks concentrating near x,, provided ¢ is sufficiently small, that is, a solution with
k-maximum points converging to x,, while vanishing as € -0 everywhere else
in RY,

Problem (1.1) arises in various applications, such as chemotaxis, population
genetics, chemical reactor theory, and the study of standing wave solutions of certain
nonlinear Schrédinger equations.

The study of single and multi-peak solutions to (1.1) and related problems has
attracted considerable attention in recent years, and there are several results in the
literature on the existence of such solutions.

However, to the best of the authors’ knowledge, all previous results on this
problem are restricted to solutions with at most one positive peak near x,, where x,
is assumed to be a nondegenerate critical point of Q, a strict local maximum
point, or some other classes of ‘topologically nontrivial critical points’ (see [11]). We
mention the recent results by the authors and D. Cao [5, 8] for the case of a
nondegenerate critical point, and [7] for the degenerate case. For the related
Schrodinger equation

—EAu+V(X)u = |u|"*u, xeR",
u € HY(RY),
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there are various results by several authors. We mention the works of Floer and
Weinstein [13], Oh [22, 23], X. Wang [26], Z. Q. Wang [27], P. Rabinowitz [24], M. del
Pino and P. Felmer [11, 12], C. Gui [15], and Y. Y. Li [17], and the references therein.

When Q(x) is a positive constant and RY is replaced by an arbitrary domain €,
problem (1.1) has been considered by several authors. In these studies both the
topology of Q (see, for example, Benci and Cerami [3, 4]) and the geometry of Q (see
[6,9, 20, 21]) play an important role in the existence and multiplicity of positive
solutions of (1.1), and on the location of their peaks (see [6, 25]).

To state our results we introduce some notations first. Let w denote the ground
state solution of the problem

—Aw+w=w"l  xeR"V,
w e HY(RY),
w(0) = max w(x). (1.2)

2eRY

It is well known [16] that w is unique and satisfies

w(x) = w(|x|), vV xeRY,

Ww(r) <0, V>0, w(0)<0,
lim r¥D2e"yw(r) = 4, > 0,

W)

1 =—

()

Let
v, () =0v((-—»)/e), yeRY,

{v,v), =& fVu ‘Vo+ fuv,

el = <u,up,,

and we write || |, = || | for all u,ve H'(RY), where all our integrals are Lebesgue
integrals over R, unless otherwise stated. The main results of this paper may be
stated as follows.

THEOREM A. Assume that conditions (Q,) and (Q,) hold. Then, for each k =
1,2,..., there exists &, = (k) such that for all € (0, &,) problem (1.1) has a solution u, of
the form

k
uz: = Z ‘XZ,- M}.TZ,I: + Ué,'
j=1 )

for some positive constants ol, j=1,...,k, points xX'eR™, j=1,2,....k, and v,e
HY(RY), satisfying
X — X,
x,— X

—+00, I[#],
&

ol = Q(x,) V@,

[v,ll, = o(e""®),
as ¢ — 0.



A NONLINEAR ELLIPTIC PROBLEM 215

Our procedure is based on local reduction methods like those by O. Rey [24], A.
Bahri [1], and Y. Li [17]. We should mention that the reduction procedure has been
modified here to allow for the degeneracy of the critical point of Q.

We mention that there is a similarity between problem (1.1) and the singularly
perturbed elliptic problem with Neumann boundary condition (see [10]), where the
mean curvature function on 0dQ plays a similar role to that of Q(x) here.

We also mention the following example which shows that when x, is a local
maximum point of Q, one cannot expect, in general, to have a positive solution with
more than one peak concentrating at x,,.

ExaMPLE 1.1. Let u be any positive solution of

—&®Au+u=Q(x))u*", inR",
ue HY(RY),
where O is a non-increasing continuous positive function, which is radically

symmetric. It is well known [14] that u is radially symmetric and non-increasing, and
hence has a single peak in RY.

This paper is organized as follows. In Section 2, we introduce some notations and
establish two basic results; one is a decomposition lemma for functions in H'(RY),
and the other is a spectrum result. In Section 3 we prove Theorem A.

REMARK 1.2. Recently we learnt from the referee that similar results were
obtained by G. Lu and J. Wei [18] for similar equations, although not including the
one considered here.

2. Notations and preliminary results

Without loss of generality, we assume that x, = 0 and Q(0) = 1. Set

I(u) =3 Iu?—;JQ(X) luldx,  ue H'(RY). 2.1

Let B, = {xeR", |x| < r}, and B, be its closure.
For 6, R > 0 and any positive integer k = 1,2,...,
Df L, s={(x"....x")eR™, XeBy, j=1,....k, |x'—x| /e = R for i # j}
ow,i, ; .
ax,’ >C=0,]: 1,....k, i= 1,...,N}
M, =A@ o X X o) (x LX) eDE sl — 1] <0,

i=1,....k veE,, || < o). 2.2)

&

E:,k = {U € HI(RN) : <U, sz,z:>(; = <U,

Set
i .
J(oh o Xt L X ) = IS(Z oc’vvxj_s—i—v)
=1

(s ey Oy X, X 0)EM, s (2.3)
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LEMMA 2.1.  There exist R, > 0, 6 > 0 and g, > 0 such that for ¢€(0,¢,], R = R,,
0€(0,0,], we have the equivalence (o', ...,o" x',...,x",v) is a critical point of the

functional JM, p;— R
k
.. ok, X, Xt v)—>1(ZWWJ +v)
Jj=1
if and only if ko
=) AT 4
j=1

is a critical point of I in H'(R").

LEmMMA 2.2.  There exist p >0, R, >0, 6, > 0 and ¢, > 0 such that for ¢€(0,¢y],
0€(0,6,] and R = R,, we have

k q—2
lvllz — (q—DJ(Z ) * = plol? 2.5)
for all (x',...,x")eD ;and veE,,.

The proofs of Lemmas 2.1 and 2.2 are given in Appendix A.
We notice that (o, ..., o, x*, ...,x v)eM, p ,is a critical point of J, if and only

if there are scalars 4,, B, ,, / =1,...,k, h = 1 ., N, such that
N 0 Wi,
NeLh <vmw§s @6
o, _
ool 0 (2~7)

k N
(Ger) = LAt an+ £ 8., (G20) 3)
0 /=1n=1 0x,
for all pe HY(RY).

In order to prove Theorem A, we show first that for (x', x%, ..., x") given, ¢ small
enough, there exist o', i=1,....k, v,€E,,, and scalars 4, B,,, /=1,...,k,
h=1,...,N, such that (2.7) and (2.8) are satisfied, and the mappings (x, ..., x")—
o'(x!, L xh), (LX) —— (X . X e E, , are CY(D) , ;). We then show that for
sufficiently small &, there exists a point (x',...,x")e D}, ; such that (o,..., ",
x',...,x", v)eM, , s and satisfies (2.6).

3. Existence of a multi-peak solution

In this section we fix k = 1,2,..., and write
o= (a,...,0") e R*
x = (x4 ..., x") e RN,

We define inner products in R* and R” x E‘g » respectively, by
(,7), = & Z oy, o yeRr, 3.1
Jj=1

(2, 0), (y, ), = (. 9), + (v, 1), (32)

for (o, v), (y,u)e R* x E, .. The corresponding norms are denoted by

”OCHm ”(OC, U)H(:'
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Let
k
=) Wi, (3.3)
j=1

PrOPOSITION 3.1.  Assume that x, = 0 and conditions (Q,) and (Q,) hold. Then for
any given integer k = 1,2, ..., there exist constants &,, R, 0, > 0 such that for e€ (0, &),
R > R,, 0€(0,0,], there is a C'-mapping

(o, v): Dy s— R XE,
such that (2.7) and (2.8) hold. Moreover,

£N/2 i |O‘§_ 1]+ ”1)8”8 _ 8N/20(8()+ Z efmin((qfl)/?,1)|xi7xj|/e
=1 i#]
k
+ 2 10() —1)). (3.4)

Proof. We follow an argument due to A.Bahri [1]. We expand J, in a
neighbourhood of (a,v) =(1,0). Let fi=o'—1, f=(f....0" and u=(p,v)e
RFXE, ,.

Define

JE(x,u) = J (o, x,0).
Then
Jru) = J*(x, 00+ f, () + 0, (W) + R, (1)

where u = (f,v),

1) = —jQ(y) HEH () o) dy

+Z[( o) [om HE |8 (3.5)

0..() = 0(H)+020) + 0%, (f.0) (3.6)
00 = [Zl(wm o d—a=D X [QIH I g 3)
050) = 0~ (q—an(y)(H,x)q“ (3.8)
020 = =% [ QU )7, 1 (39)

and R, , denotes all the higher order terms, and it satisfies
Rz:, T(Ll) = O(HuHiVIin(:s.q))
R: (1) = O(||u| Mine-av)
R () = O(ul} ). a0

Now f, , is a continuous linear form over R* x E, , equipped with the scalar product
defined in (3.2). Therefore there exists a un1que f8 €R*XE, , such that f, (u) =

(fo ).
In the same way Q, , is a continuous quadratic form over R* x E, ;, and therefore
there exists a continuous linear operator 4, , from R*x E, , onto itself such that

Qs,x(u) = (As,z Ll, u)s’
(A, usu), = O0(B) + 0%,(0) + O (B, v). (3.11)
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We show next that for R sufficiently large, and J and ¢ sufficiently small, the
operator A4, , has a bounded inverse.

From Lemma 2.2 there exists p, R, ,, &, > 0 such that for e€(0, ], 6€(0, J,] and
R = R,, we have

09,w) > pllo|? (3.12)

for all xe D}, ;.

On the other hand, if R, > 0 is sufficiently large and J,, > 0 is sufficiently small, we
have

0(B) = Z (Iw,i ]I —(g—1) JQ(y) wii JIBYP+ O e ™) | fI*
=&2—q) Iw]*+o,(1)+ O(e )} p*
< —Cyet|p =—CylIpl2 (3.13)

for some constant C, > 0, which depends only on AN, where o41)—0 as 6 -0,
and

18]

Q8B < X

fQ(y) HEEwyi v

_ (fQ(y) Wi 4 OV |v|,;) B

i

=~

=

3 ([wrorane el o e o) g1
— (0t ™+ 00 1Bl I, (.14

From the above estimates, there is, for e (0, ¢,), R > R,, 6€(0, J,), a unique linear
operator from R* x E, , to itself such that

Furthermore, from (3.12) and (3.13), B, , is invertible and

.
I

IBLIl < C

for some constant C > 0, independently of ¢ and x.
From (3.14) we have

14, .= B, .| = Q2] < O(e™)+o0,(1).

.z

Hence we can choose R, d,¢, such that for e€(0,¢], R> R, 6€(0,9,), 4, , is
invertible and
4.5 < C
for some constant C > 0.
We now follow the argument in Rey [24].
Since
oJ*

51,{ RkXEc.IC

(x,u)=f, ,+24, ,u+R; (u)

there is an equivalence between the existence of u = (o, v) such that (2.7) and (2.8) are
satisfied and
foot24, ,u+ R, (u)=0. (3.15)
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As in [24] we employ the implicit function theorem to conclude that for some
&9 Ry» 0y, We have a C'-mapping

ua:((xw e)D —)RkXE
for ¢€(0,¢,], R = R, 6€(0,J,], satisfying (3.15), and
lu,ll, < CIf,, .- (3.16)

We estimate next | £, ..
We claim that

JQ(y) H o = Z O Wi o+ OEY? Y e Mmook =1y o) (3.17)

i#]

In fact, if 2 < ¢ < 3, from the inequality

Cla||b]** if |al < |b]
[la+b|""t —lal*t —]b|" Y < s e
Clbl|al*= if |b] < gl
< Cla|@ V72 p|@vi2
for some constant C > 0, we obtain
UQ(y) (Hq — wzai)v < C| X wy ey
i)
q/(¢—1)\1-1/q
N/2 ~1)/2 1)/2
< Ce U|S(J<Z' wl w(lqw vjl/é) )
1#]
= 0 Y e o) (3.18)
i#]

if ¢ > 3, then
S CY [ wiiiw,i Jol = O ) e =) o]l (3.19)

UQ(y) (Hq Y ) >

Combining (3.18) and (3.19), we obtain (3.17).
However,

JQ(y) winzv=| Q) WZ?iUJFO(J oow 1|U|>
Byah ly—=a'|>0

_ Q(xf)f , wzasz(f Iyt
By(x") By(x')
+0 (f wii 1Ivl)
ly—a'|>0
_ OU , |y—xi|“w;ﬁa1|v|)+0(j | wza1|v|)
By ly=2'|=06

= O(eM*? J|y|€ wo(ey + X))+ O (eN j

|y|=d/e

w Ho(ey +X")|)

— 0(81\"/2+()+8N/2e—5/1;) HUH6

= 0" [lv].. (3.20)
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Using (3.17) and (3.20), we obtain

fQ(y) Hq;l _ O(SN/ZM—}—&‘N/? Z e—Min((afn/z.n|z’—zj|/s) HUH(;' (3.21)

i#]

We also have

1/q
Jomazwe | omztmvol([ w])
|y|=d/e

By

= Q(x") CHT'w, +0 (J
B

By(x")

|y _ xi|() Hlfl_il Wl;i’{;) + O(ENQ—O‘/s:)

5@
= 0(xY) J w0V N ) el
By(z") i#]

— Q(X{) 8NHWH2 +0 (81\"+(7+8N Z e*\xi—zj\/s) . (322)
i#]

Thus
(H, . w.tagg—fQ(y) H we, = ¥ (]2 40/ (Y e 1))
i#]
—(QCN N |W*+ 0 (Ve Y e )
i#]
= 0<gﬂ+ ]Z -0+ Y e'xi"j/‘g> &N, (3.23)
i=1 i#]
From (3.21), (3.23) and (3.5), we have
I(f,. .o u),| = V20 (e”+ i 11—+ e-Mm“q“/Zv“l”w) o]l
i=1 i#]
which implies that
Il = &30 (30+ Y sk e 3 O(xt) 1|>. (3.24)
i#j i=1

Combining the above estimate and (3.16), (3.4) follows. This completes the proof of
Proposition 3.1. O

Let ¢, R, 0, be as in Proposition 3.1. For e€(0,¢], R>=R,, 6€(0,5,], let
(o,(x),v,(x)) be the C'-mapping established in Proposition 3.1. Define

J(x) = J(o,(x), X, 0,(x)),

k
X € D&.R,z)"

Let x, = (x},...,x)eD, , ; be any point for which

e

J(x,) = Max{J(x):xe Dl , ;}. (3.25)
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In the following proposition we show that x, for small ¢ is an interior point of D, , ,,
and hence a critical point of J..

PrOPOSITION 3.2.  Let x, satisfy (3.25). Then as ¢ — 0,
x>0, i=1,2,...,k,
Wi—xlfe> o0, i)

Proof. With the notations of Proposition 3.1 and from Appendix B and the
estimates (3.4) and (3.24), we have

Jz:(az:(xz:)’ xa:’ vé;(xl.')) = ‘]:’.'*(Xl:’ uz:)
= J5(x, 00+ O £, |17+ Null?)

= J¥(x,0)+0 (6 (82” ¥ el ey 30— 1 l))

i#] i=1

1.k . ) k-1 k q-1
:(g—gz Q(X’)) w2~ — Q(y)ZW,s( ) w)

j=i+1

k P

FO[e (e L 1- QU+ e ) 329
j=1 i#]

Let

Zi=¢%e, i=1,2,...,k,

1

for some 7€ (3, 1) and some vectors ey, ..., e, with e, # e, (i # j). Then

|Zf—Zf|/8 = |€[—€j|/81_7 — 00
as ¢— 0.
Thus z, = (z},...,2F) e D! , ; for ¢ sufficiently small, and by (3.25) and (3.26) we
obtain

Js((xs(xa)> xe’ Ue(xe )) > JS(OCS(ZS/), Zs’ Ua(ze ))

k 12 ) ;
>|z—- zZD | w]*eN
(55 0D) vl

k
+0 (sN (82€+ Y1=0E)HP+ ), e(l*”)ei"’-f’g_r))
i1

i#]

= (1—1)k|w|2g"+ O(eV ") (3.27)
2 q
where 0, = Min(z, 260) and 1 +¢ = Min(¢—1,2).

Using (3.26) and (3.27), we obtain

i=1 j=i+1

+0 (s“' (829+ Y 1—=0EHE+ Y e“*”)"z“i’s))
i-1 i
1 1

> (———) k|wl2e™ + O(eN ).
2 q
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Thus

ég@(xz)— Dlwlze¥+ |00 Y mg,,,.( Y w)

i=1 j=i+

k o
<0 (81\' (8204- Z |1 _ Q(xi;)|2 + Z e—(1+a)|z§—xﬂ/l;>> (3.28)

i=1 i#]
but
k-1 k q—1 k-1 k q—1
Q(y) Z ‘/in,x:( Z M}xi,z:) > Z W:c[,;:( Z er,;:)
-1 \y=is1 RY i=1  \j=it1
k—1 k q—1
S IR N (RN
lyl<o i=1 j=i+1
k-1 k q—1
| em-nEw L] 629
ly|=6 i=1 j=i+1
and

ly|=0o 1

i=1 j=i+
< CeV ), w(y)wi(y—(xi—x))/e) dy
i#id |yl=0/e
< CeN Z e*\y\e*(q%)\yf(mffxﬁ:)\/n dy
i#jJ |yl=0d/e
= O(e¥e™). (3.30)

From (3.29), (3.30), and assumptions (Q,), (Q,), we have

k-1 k q—1 ) .
oY wﬁ,g( 3 owy ) > C ) e Wroin-niligN 1 O(eNe %) (3.31)
-1 -

j=i+1 i

where C is a positive constant.
From (3.28) and (3.31) we have

&% Y (Q(x) = D)+ C Y e troiirligy < O 31),
i=1 i#]
which implies that
0(x)) > 1= 0(0),
X =0,
|x§_xi|/8—’00a l#]a
ase—0,0,7=1,2,...,k.
This completes the proof of Proposition 3.2. O

Proof of Theorem A. From Proposition 3.1, for each k, there exist ¢,, R, J,, and
a Cl_ma‘pping (OC,:(X,;), v{l(‘xl,‘)) : Ds:, R,0 - Rk X Ef:, k for eaCh g€e (03 80]9 R > R()) 56 (09 50]:
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such that (2.7) and (2.8) hold. By Proposition 3.2 we can choose x, such that xi >0,
|x!—x/| /e > 00, as € >0, i,j = 1,2,...,k, i #j, and dJ(x,)/0x) = 0. That is,
ko, 0o dJ, 0J, ov
0=Y 222 4 0oy [T O0e
Lot oxit o < v’ ax;.>€

kN aW// ay
13393 BM< g > (3.32)

xh

by (2.7) and (2.8). However <{w, ,v>,=0, {dw, ,/0x},v,>, =0, since v,eE,,.
Therefore, <w, ., dv ./ 0xIy, =0, and from (3.32) we obtain

oJ al OZW/C
:Z Yy B Y
S LB,

which is (2.6). Theorem A follows easily. O

REMARK 3.3. If Q(x) has several strict local minimum points, say «,,...,a,,, the
above arguments may be used to show that (1.1) has, for any given integers k,, / =
1,...,m, a solution u, of the form

m k,

u:: = Z Z a(;,/,iwrz,,,n—i_vx

/=1i=1

for sufficiently small ¢, and as ¢ - 0,

X, ;= a, i=12,...,k,
X!, —x! ,|/e > o0, i %],
o, = 1/( Q@) >,  i=1,2,..k,
[v.]% = o(e™).

REMARK 3.4. The requirement that Q(x) has a strict local minimum may be
replaced by the weaker condition that there is a set A = R" such that

Minj; O(x) < Ming, O(x).

We may use the same arguments to construct a solution u, of the form

k
Z Wi,

for any given positive integer k, provided & = (k) is sufficient small, and as ¢ - 0,
xi— x
O(xy) = Min, O(x)
o, ; — 1/(Q(x)) ™

w12 = o(e).

Appendix A

We give here a sketch of the proofs of Lemmas 2.1 and 2.2. The results are
essentially known, and have been used in one form or another by several authors.
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To prove Lemma 2.1, we need the following decomposition lemma.
Let k =1,2,... be fixed. Let x = (x,...,x") e R*™, a = (o, ..., ") e RY,

Yo =t a? ot X X)X o = 1] < 0,0 = 1,2, ..., k)
)
k

i . N k
—Y M}x;,ﬂ’ < d¢" for some x € D(;,R,(;}.

W(, R, &) = {u:ueHl,

LeMMA A.1.  There are R, &,, 6, > 0 such that for R = R, e€(0,¢,], 6€(0,9,] and
ue W(o, R, &), the minimization problem

k
1nf{ UEDIATRE
i=1

is achieved in )5 and not in Y ,,\Y_,5. Furthermore, the above minimization problem
admits a unique solution.

2:(oc, x)eZ} (A.1)

40

For the proof of the above lemma we refer the reader to [7, 8].

REMARK A.2. Let (o, x) be the minimizer of (A.1), as given by Lemma A.1. Set
k

v=u—y a'w, .
i=1

ow,i,
(w0 >, = < i > —0,

j=1,...,k, i=1,...,N. Therefore, (&, x,v)e M,  ; for e€(0,¢)], R > R,, 6€[0, J,].

Then v satisfies

The proof of Lemma 2.1 then follows as in [24, Proposition 3]. See also [8].

LEMMA A.3. There exist Ry, &y, 0, > 0 such that for ¢€(0,¢,], 0€(0,6,], R = R,,

ol — (q—l)J (Zl o, ) vt = plol?
for all xe D, , ., ve E, ,, where p > 0 is a positive constant.
This lemma can be proved in exactly the same way as [8, Lemma B.2].
Appendix B
We establish here an estimate for J*(x,0).

LemMmA B.1.  For any xe Dy , ,, x = (x',...,x") we have

k u A :
7400 = (523 00wl

0L T wr)

j=i+1

+ 0( (a + Z 11— Q)P+ Y e ok’ M))

i#]
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Proof. Let H,,= )" w, . Then

1H, 17 = ke¥ Wi+ 30 (i o w,s ) = ke[ wl*+2 3 [wiilw,i,.

N i<j

We also have

jQ(y) qu,zc_ Q(y) 2 WZ",e = JQ(y) ( i W:Ej,s)q_ Q(y) ; ng,e

+QJQ(J’)WQ 1(2 )
+qJQ(y) wml(z Wi )q

+0 (8N Z e—(1+a)\x —x]\/z.-)

i#j

for some ¢ > 0, as ¢ —» 0, where we have used the following inequalities:
(1) For2 <¢<3

Clbl“al, |b] < lal,

Cla|"'bl, |b] > lal,

< C‘|a|f1/2 Iblll/2.

lla+b|*—a’—b'—qa'b—qab®'| < {

(i) Forp>3
|la+bl"—a'—b"—ga""'b—qab"™'| < C(a"*b*+a*b">).

By repeated application of the above inequalities to (B.2), we obtain

JQ(y) qu,x = JQ(y) Z qu +qJQ(y) Z Wx1 FW.Z7 ¢

i<j

rafom Lo L v

j=i+1

+ O (SN Z e—(1+a) \x[—le/z;) .

i#]

Using the estimates (1.3) we also have

fQ(y) Wi, = J O(y) Wi .+ O(eNe %)
By '

=qwf Whs 4 0(E)
By
— 00) ]2+ 0()

JQ()’) wiiiw,i, = | Q) wiiiw,,+0ENe )

By
=gwf_w%wm+mﬂ%
Bj(x?)

=0 szat. Wi, +O0E ).
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(B.1)

(B.2)

(B.3)

(B.4)

(B.5)
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Combining (B.1)—(B.5), we obtain

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

1
J*(xla "'axka 0) = %|Hs,1|32_5J‘Q(y) Hgar

- (550w ) wie
3 (1-00) [wiitw.

1<j

- e e ¥ waf

j=i+1

g N _ JROBP T
_l_O(gA +0+81\ Z e (1+o)|z"—2 |/é,). l:'
)
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