Analyse Conformationnelle de **Pseudoprotoberbérines** Naturelles

II.[†] Etude Structurale par RMN de ¹³C des Tétrahydropseudoprotoberbérines provenant de l'Isopyrum thalictroïdes§

Claude Moulis* et Edouard Stanislas

Laboratoire de Matière Médicale, Faculté des Sciences Pharmaceutiques, Université Paul Sabatier, 37, Allées J. Guesde, 31400 Toulouse, France

Jean-Claude Rossi

Laboratoire de Chimie Pharmaceutique, Faculté des Sciences Pharmaceutiques, Université Paul Sabatier, 37 Allées J. Guesde, 31400 Toulouse, France

The four pseudoprotoberberins extracted from Isopyrum thalictroides L. were reduced with sodium borohydride to the corresponding tetrahydropseudoprotoberberins. Comparison between the ¹³C NMR spectra of these and of synthetic protoberberins allowed us to assign a trans-1 configuration to the four reduced alkaloids and also to provide for this particular configuration an unequivocal criterion for the differentiation (based on the chemical shift of C-8) between tetrahydroprotoberberins (9, 10 substituted) and tetrahydropseudoprotoberberins (10, 11 substituted).

Les quatre pseudoprotoberbérines extraites de l'Isopyrum thalictroïdes L. ont été réduites par NaBH₄ en tétrahydropseudoprotoberbérines correspondantes. La confrontation de leurs données de RMN de ¹³C avec celles de protoberbérines de synthèse permet d'une part d'attribuer une configuration du type trans-1 à ces quatre bases réduites et d'autre part de mettre en évidence pour cette configuration trans-1 un critère sûr de différenciation, basé sur le déplacement chimique du carbone C-8, entre tétrahydroprotoberbérines (substituées en 9, 10) et tétrahydropseudoprotoberbérines (substituées en 10, 11).

Nous avons démontré la structure de quatre alcaloïdes nouveaux 1-4 (Fig. 1) qui ont été extraits des feuilles de l'Isopyrum thalictroïdes L. Ils appartiennent au groupe des pseudoprotoberbérines¹ et sont caractérisés par une disubstitution du cycle D en position 10, 11.

L'étude structurale, du fait de la très faible solubilité de ces quatre bases, a été réalisée sur les formes réduites correspondantes 1'-4' (Fig. 1) présentant le squelette tétrahydropseudoprotoberbérine. La réduction est réalisée au moyen de NaBH₄.¹

L'objet de notre travail sur ces quatre composés réduits 1'-4' est, au moyen de la RMN du ¹³C, d'une part l'analyse conformationnelle du squelette pseudoberbérine et d'autre part la mise en évidence de caractéristiques spectrales définissant la disubstitution en position 10 et 11.

En effet, une étude conformationnelle réalisée sur les modèles de Dreiding permet de mettre en évidence pour le squelette dibenzo[a,g]quinolizidinique (Fig. 2) trois modes de fusion de cycle^{2,3} pour les cycles B et C: un isomère de configuration trans-1 dans lequel le doublet libre de l'azote est du côté opposé à l'hydrogène

* Author to whom correspondence should be addressed.

† Partie I: voir Réf. 1.

§ Ce travail constitue une partie de la thèse de Doctorat d'Etat en Pharmacie de Claude Moulis, Toulouse, Juillet 1977.

angulaire fixé en C-13a et son isomère de configuration pouvant présenter les deux conformations cis 2 et 3, où

- 1 (Pseudoberbérine) R₁ = R₂ = $O_{H_2} - O; R_3 = R_4 = OCH_3;$ $R_5 = R_6 = H$
- 2 (Pseudocoptisine) $R_1 = R_2$ $= R_3 = R_4 = O - CH_2 - R_5 = R_6 = H$ -0:
- 3 (Pseudocolumbamine) R1 = OH; $R_2 = R_3 = R_4 = OCH_3$; $R_5 = R_8 = H$ 4 (Déhydropseudochei-

lanthifoline) $R_1 = OH; R_2 = OCH_3; R_3 = R_4 =$ $-CH_2 - O; R_5 = R_6 = H$

- 2' (Tétrahydropseudocoptisine)
- 3' (Tétrahydropseudocolumbamine)
- 4' (Pseudocheilanthifoline)
- 5 $R_1 = R_2 w_3$ $R_4 = H$ 6 $R_1 = R_2 = O CH_2 O; R_3 = R_5$ $= OCH_3; R_4 = OH; R_6 = H$ 7 $R_1 = R_2 = O CH_2 O; R_3 = R_6$ $= OCH_3; R_4 = R_5 = H$ $= O R_1 = R_2 = OCH_3; R_6 = OH;$ **5** $R_1 = R_2 = R_3 = R_5 = R_6 = OCH_3;$
- 8 $R_1 = R_2 = R_3 = OCH_3; R_6 = OH;$ $R_4 = R_5 = H$ **9** $R_1 = R_2 = R_3 = R_4 = OCH_3$: $R_5 =$

R₆ == H (Tétrahydroprotoberbérine)

Figure 1

0030-4921/78/0011-0398\$01.50

398 ORGANIC MAGNETIC RESONANCE, VOL. 11, NO. 8, 1978

© Heyden & Son Ltd, 1978

Figure. 2. Conformations du dibenzo[a,g]quinolizidine obtenues par inversion de l'azote.

le doublet libre de l'azote N-7 et l'hydrogène H-13a sont du même côté par rapport à la liaison C-13a—N-7 (Fig. 2).

En l'absence de substituant sur le carbone C-1, la configuration *trans-1* du système tétracyclique est thermodynamiquement la plus stable.⁴ La présence de bandes de Bohlmann^{5,6} vers 2800 cm⁻¹ permet de déceler cette dernière.

Si le carbone C-1 présente une substitution, la configuration trans-1 se convertit en configuration cis-2: ceci est dû aux interactions stériques entre les hydrogènes en C-13 et le substituant fixé en C-1, interactions qui déstabilisent la forme trans-1. La prédominance de l'isomère de configuration cis-2 sur l'isomère cis-3 s'explique par la présence dans ce dernier d'interactions de non-liaisons C-1—R et 2 H-13. On constate d'une manière générale que les formes cis ne présentent pas de bandes de Bohlmann. Cependant, l'absence ou la présence de ces bandes, ainsi que l'ont montré certains auteurs^{2,7-9} ne représente pas un moyen définitif de distinction entre configuration *cis* et *trans.* surtout si ces bandes sont de faible intensité.^{10,11}

Notons que les deux hétérocycles saturés B et C du squelette dibenzo[a,g]quinolizidinique sont en conformation demi-chaise. Cette constatation est en accord avec les données RMN et de rayons-X.^{12,13}

Uskokovic et coll.¹⁴ ont montré qu'il est possible de distinguer les configurations *trans* et *cis* en comparant en RMN du proton la valeur du déplacement chimique et le couplage du proton angulaire porté par le carbone C-13a: pour une configuration *trans*, on constate que ce proton résonne à des champs forts et au-dessus de 3,8 ppm (δ), alors que son signal apparaît à des champs faibles et au delà de 3,8 ppm s'il appartient à une configuration *cis*. Si ce critère peut être appliqué au composé de réduction 2' où aucun signal n'apparaît entre 3,80 et 5,87 ppm,¹ permettant de lui attribuer une configuration *trans-1*, par contre, avec les autres composés **1'**, **3'** et **4'**, la présence de groupements —OCH₃ rend illusoire l'emploi d'un tel critère.

Les déplacements chimiques des ¹³C groupés dans le

Tableau 1. Déplacements chimiques du ¹³C des tétrahydropseudoberbérines^a

epiacements cm	inques un Cues i	cuanymopset	uoberbermes			
1'	2 [′] (Réf. 3)°	3′	9 ^d (Réf. 3) ^c	4'	5 (Réf. 3) ^c	6 (Réf. 3) ^c
105,58	105,52 (105,6)	110,74	108,66 (108,5 ^b)	110.79	151,9	147 <i>,</i> 8
146,13	146,21 (146,1)	144,13	147,52 ^b (147,3)	144,13	140,2	134,5
146,31	146,25 (146,1)	145,28	147,52 ^b (147,3)	145,28	150,1	140,4
108,55	108,49 (108,5)	111,89 ⁵	111,55 (111,3)	111,46	107,4	103,1
127,86	127,80 (127,9)	126,04	126,79 (126,6)	126,04	130,6 ^ь	128,5
29,74	29,57 (29,6)	29,14	29,11 (29,0)	29,08	30,0	30,1
51,30	51,24 (51,3)	51,54	51,40 (51,3)	51,48	48,3	46,9
58,22	58,59 (58,7)	58,34	58,29 (58,2)	58,64	53,3	57,3
126,40	127,31 (127,4)	126,58 ^ь	126,45 (126,2)	127,31 ^b	128,3 ^ь	124,8 ^b
109,22	106,12 (106,5)	109,15	109,12 (109,5 ^b)	106,12	150,9	108,7
147,89 ^b	146,25 ^b (146,1)	147,83 ^ь	147,65 ^b (147,3)	146,25	145,3	145,3
147,65 ^ь	146,01 ^b (146,1)	147,83 ^ь	147,65 ^ь (147,3)	146,01	110,9	144,3
111,59	108,49 (108,5)	111,59 ^b	111,45 (111,3)	108,61	124,0	114,6
126,4	127,31 (127,4)	126,40 ^ь	126,45 (126,2)	127,49 ^b	128,6 ^ь	127,3⁵
36,54	36,97 (37,1)	36,30	36,45 (36,3)	36,73	33,0	31,6
59,98	59,86 (59,9)	59,62	59,66 (59,5)	59,49	55,5	54,7
131,01	130,89 (130,9)	130,71	129,85 (129,6)	130,53	124,2	123,9
2(56,037)		3(55,98)	4(55,95) 4(55,8)	55,98	2(60,6)	59,5
					60,1	56,1
					2(55,8)	
100,84	100,84 (100,8)			100,72		100,7
	(2,3)			(–10,11)		
	100,72 (100,8)					
	(-10,11)					
	1' 105,58 146,13 146,31 108,55 127,86 29,74 51,30 58,22 126,40 109,22 147,89 ^b 147,65 ^b 111,59 126,4 36,54 59,98 131,01 2(56,037) 100,84	1' 2' (Ref. 3) ^e 105,58 105,52 (105,6) 146,13 146,21 (146,1) 146,13 146,21 (146,1) 146,25 (146,1) 108,55 108,49 (108,5) 127,86 127,80 (127,9) 29,74 29,57 (29,6) 51,24 (51,3) 58,22 58,59 (58,7) 126,40 127,31 (127,4) 109,22 106,12 (106,5) 147,89 ^b 146,25 ^b (146,1) 141,59 106,42 (106,5) 126,4 127,31 (127,4) 36,54 36,97 (37,1) 126,4 127,31 (127,4) 36,54 36,97 (37,1) 59,98 59,86 (59,9) 131,01 130,89 (130,9) 2(56,037) 100,84 (100,8) (-2,3) 100,72 (100,8)	1' 2' (Ref. 3)* 3' 105,58 105,52 (105,6) 110,74 146,13 146,21 (146,1) 144,13 146,31 146,25 (146,1) 144,13 146,31 146,25 (146,1) 145,28 108,55 108,49 (108,5) 111,89 ^b 127,86 127,80 (127,9) 126,04 29,74 29,57 (29,6) 29,14 51,30 51,24 (51,3) 51,54 58,22 58,59 (58,7) 58,34 126,40 127,31 (127,4) 126,58 ^b 109,22 106,12 (106,5) 109,15 147,65 ^b 146,01 ^b (146,1) 147,83 ^b 111,59 108,49 (108,5) 111,59 ^b 126,4 127,31 (127,4) 126,40 ^b 36,54 36,97 (37,1) 36,30 59,98 59,86 (59,9) 59,62 131,01 130,89 (130,9) 130,71 2(56,037) 3(55,98) 100,72 (100,8) (-2,3) 100,72 (100,8) (-10,11)	1'2'Ref. 3)*3' g^d Ref. 3)*105,58105,52 (105,6)110,74108,66 (108,5 ^b)146,13146,21 (146,1)144,13147,52 ^b (147,3)146,31146,25 (146,1)145,28147,52 ^b (147,3)108,55108,49 (108,5)111,89 ^b 111,55 (111,3)127,86127,80 (127,9)126,04126,79 (126,6)29,7429,57 (29,6)29,1429,11 (29,0)51,3051,24 (51,3)51,5451,40 (51,3)58,2258,59 (58,7)58,3458,29 (58,2)126,40127,31 (127,4)126,68 ^b 126,45 (126,2)109,22106,12 (106,5)109,15109,12 (109,5 ^b)147,89 ^b 146,25 ^b (146,1)147,83 ^b 147,65 ^b (147,3)111,59108,49 (108,5)111,59 ^b 111,45 (111,3)126,4127,31 (127,4)126,40 ^b 126,45 (126,2)36,5436,97 (37,1)36,3036,45 (36,3)59,9859,86 (59,9)59,6259,66 (59,5)131,01130,89 (130,9)130,71129,85 (129,6)2(56,037)3(55,98)4(55,95) 4(55,8)100,84100,84 (100,8)(-2,3)(-10,11)100,72 (100,8)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c} \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

^a Les spectres ont été enregistrés dans le $CDCI_3$ (concentration 100 mg ml⁻¹) sur appareil Bruker WP-80-DS et en 'off resonance' (δ ppm par rapport au TMS).

^b Correspond à des signaux qui n'ont pu être strictement assignés. Il est possible qu'il faille permuter les indices de C correspondants.

^c Composés de synthèse.

^d Le produit de réduction 3' est transformé en dérivé tétraméthoxylé par traitement au moyen du diazométhane.

Tableau 1 sont plus significatifs. D'une manière générale, les deux modes de fusion des cycles B et C affectant grandement les interactions gauches, les carbones les plus touchés dans leurs déplacements sont ceux situés à proximité de l'azote: C-6, C-8, C-13a et C-5, C-13, C-13b. C'est ainsi que les ¹³C d'une forme quinolizidinique *trans* résonnent toujours à des champs plus faibles que leurs homologues cis.^{2,3,15,16}

La configuration *cis* des composés de synthèse **5** et **6** étant établie,³ on constate que les signaux des carbones C-6, C-8, C-13, C-13a et C-13b dans les composés 1'-4' résonnent tous à des champs plus faibles de 1,29 ppm (58,59 ppm pour 2' et 57,3 ppm pour **6**) et de 5,37 ppm (36,97 ppm pour 2' et 31,6 ppm pour **6**) pour ne citer respectivement que les carbones C-8 et C-13.

Ces résultats permettent d'attribuer une configuration de type trans-1 aux quatre bases réduites 1'-4', ainsi qu'au produit 9 (que nous avons préparé à partir de 3' par méthylation au moyen du diazométhane et dont les caractéristiques en ¹³C-RMN sont identiques à celles du produit synthétisé par Kametani et coll.³). Ces résultats sont en accord avec la présence dans ces cinq composés de bandes de Bohlmann, entre 2700 et 2800 cm⁻¹, d'intensité variable. Les carbones qui présentent les déplacements les plus importants sont dans l'ordre: C-8 (1,29 ppm à 4,99 ppm), C-13 (3,3 à 5,37 ppm), C-6 (3,1 à 4,34 ppm) et C-13a (3,99 à 5,16 ppm).

- 1. C. Moulis, J. Gleye et E. Stanislas, *Phytochemistry* 16, 1283 (1977).
- T. Kamentani, K. Fukumoto, M. Ihara, A. Ujiie et H. Koizumi, J. Org. Chem. 40, 22, 3280 (1975).
- T. Kametani, A. Ujiie, M. Ihara, K. Fukumoto et H. Koizumi, Heterocycles 3, 5, 371 (1975).
- 4. M. Shamma, The Isoquinoline Alkaloids, Academic Press, New York (1972).
- 5. F. Bohlmann, Angew. Chem. 69, 641 (1967) et Chem. Ber. 91, 2157 (1958).
- 6. V. M. Kolb et M. Stefanovic, Tetrahedron 30, 2233 (1974).
- 7. J. C. Sicar et A. J. Meyers, *J. Org. Chem.* **32**, 12, 1248 (1967).
- 8. C. D. Johnson, R. A. Y. Jones, A. R. Katritzky, C. R. Palmer, K. Scofield et R. J. Welles, *J. Chem. Soc.* 6797 (1965).
- 9. T. M. Moynehan, K. Schofield, R. A. Y. Jones et A. R. Katritzki, J. Chem. Soc. 2637 (1962).
- 10. L. Blahaa, B. Kabac et J. Weicher, Coll. Czech. Chem. Commun. 27, 857 (1962).

On note cependant une inversion pour le C-5 d'une forme *cis* (30,0 ppm pour le **5**) qui résonne à un champ plus faible de 0,26 à 0,92 ppm que celui d'une forme *trans* (29,08 ppm pour **4**' et 29,74 ppm pour **1**'). Cette inversion pourrait être reliée à l'interaction γ gauche H-5 axial et doublet libre de l'azote telle qu'elle apparaît sur les modèles moléculaires en conformation *cis*-2 (Fig. 2).

Enfin, le déplacement chimique de C-8 étant affecté par la substitution en C-9, on peut définir pour des composés à squelette dibenzo[a,g]quinolizidinique de configuration trans-1 un critère permettant la différenciation entre tétrahydroprotoberbérine (substituée en 9, 10) et tétrahydropseudoprotoberbérine (substituée en 10, 11). En effet, dans les composés 1', 2', 4' et 9, le signal du carbone C-8 résonne entre 58,22 et 58,64 ppm pour une substitution C-10, C-11, alors que ces mêmes signaux pour des composés de même configuration trans-1 de type 7 et 8 apparaissent entre 53,7 et 54,0 ppm.²

Remerciements

Les auteurs remercient MM. P. Potier, A. Ahond et C. Thal (Institut de Chimie des Substances Naturelles, Gif-sur-Yvette) pour le support technique du travail ainsi que les discussions fructueuses qu'ils ont eues avec eux.

BIBLIOGRAPHIE

- T. Takemoto, Y. Kondo et K. Kondo, J. Chem. Soc. Jpn 33, 162 (1963).
- 12. P. Jeffs, The Alkaloīds, Ed. by R. H. F. Manske, Vol. 9, p. 41. Academic Press (1967).
- G. Snatzke, J. Heber, J. Hruban, L. Hruban, A. Horeau et F. Santavy, *Tetrahedron*, 26, 5013 (1970).
- M. Uskokovic, H. Bruderer, C. von Planta, T. Williams et A. Brossi, J. Am. Chem. Soc. 86, 3364 (1964).
- D. M. Grant et V. B. Cheney, J. Am. Chem. Soc. 89, 5315 (1967).
- K. I. Yoshikawa, J. Morishima, J. I. Kunitomo, M. Ju-Ichi et Y. Moshida, *Chem. Lett.* 961 (1975).

Received 18 July 1977; accepted 19 October 1977 (received in UK 28 October 1977; accepted in UK 9 December 1977)

© Heyden & Son Ltd, 1978