TABLE 4. Kinetic Constants of the Interaction of S-B-Benzylmercaptoethyl Esters of Phosphorus Thioacids RR<sup>1</sup>P(0)SCH<sub>2</sub>CH<sub>2</sub>SCH<sub>2</sub>Ph with Cholinesterases

|                                     | R                             | R1                                                           | AChE                                                                                                                       |                                                                                                                       |                                                                                                              | BuChE                                                                                  |                                                                                              |                                                                 |
|-------------------------------------|-------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Com-<br>pound                       |                               |                                                              | ka<br>liter/                                                                                                               | к <sub>і, г</sub>                                                                                                     | к <sub>і, s</sub>                                                                                            | k <sub>a</sub> ,<br>liter/<br>mole.                                                    | К <sub>і, т</sub>                                                                            | K <sub>i,s</sub>                                                |
|                                     |                               |                                                              | min                                                                                                                        | moles/liter                                                                                                           |                                                                                                              | min                                                                                    | moles/liter                                                                                  |                                                                 |
| (I)<br>(II)<br>(III)<br>(IV)<br>(V) | Me<br>Me<br>Me<br>Ph<br>C6H11 | EtO<br>BuO<br>C <sub>6</sub> H <sub>11</sub> O<br>EtO<br>EtO | $\begin{array}{c} 2,5\cdot 10^{7} \\ 2,5\cdot 10^{7} \\ 8,3\cdot 10^{5} \\ 6,7\cdot 10^{4} \\ 1,8\cdot 10^{2} \end{array}$ | $\begin{array}{c} -* \\ 2,2 \cdot 10^{-9} \\ 2,4 \cdot 10^{-6} \\ 1,6 \cdot 10^{-6} \\ 5,5 \cdot 10^{-4} \end{array}$ | $\begin{array}{c} - \\ 4,1\cdot10^{-9} \\ 8,4\cdot10^{-7} \\ 4,6\cdot10^{-7} \\ 2,0\cdot10^{-5} \end{array}$ | $5,8\cdot10^5$<br>$5,3\cdot10^7$<br>$3,8\cdot10^6$<br>$1,4\cdot10^6$<br>$5,6\cdot10^4$ | 2,8·10 <sup>-9</sup><br>4,0·10 <sup>-8</sup><br>6,6·10 <sup>-8</sup><br>1,7·10 <sup>-6</sup> | $7,3\cdot10^{-16}6,7\cdot10^{-8}1,1\cdot10^{-7}4,2\cdot10^{-6}$ |
| (VI)<br>(VII)<br>(VIII)             | EtO<br>BuO<br>C6H13O          | EtO<br>BuO<br>C6H13O                                         | $\begin{array}{c c} 1,6\cdot 10^4 \\ 2,5\cdot 10^5 \\ 4,3\cdot 10^4 \end{array}$                                           | $7,5\cdot10^{-7}$<br>1,7\cdot10^{-6}                                                                                  | $_{2,2\cdot10^{-7}}^{-7}$                                                                                    | 1,7 106<br>2,4 107<br>5,9 106                                                          | -<br>6,5·10 <sup>-8</sup><br>2,6·10 <sup>-8</sup>                                            |                                                                 |

\*Reversible components of inhibition could not be determined with sufficient reliability.

### LITERATURE CITED

- M. Kh. Berkhamov, L. I. Zakharova, L. G. Grineva, V. M. Kuzamyshev, G. G. Ol'khovaya, 1. M. Kh. Bekanov, R. S. Agabekyan, N. N. Godovikov, and M. I. Kabachnik, Izv. Akad. Nauk SSSR, Ser. Khim., 879 (1981).
- A. P. Brestkin and N. N. Godovikov, Uspekhi Khim., 47, 1609 (1978). 2.
- L. G. Grineva, G. G. Ol'khovaya, V. M. Kuzamyshev, M. Kh. Bekanov, A. Z. Taubulatova, 3. T. M. Musukaeva, M. Kh. Berkhamov, and N. N. Godovikov, in: The Chemistry of Physiologically Active Substances [in Russian], Vol. 2, Nal'chik (1978), pp. 9-13.
- 4.
- V. A. Yakovlev and R. S. Agabekyan, Biokhimiya, <u>31</u>, 258 (1966). V. A. Yakovlev, Kinetics of Enzymatic Catalysis [in Russian], Nauka, Moscow (1965), p. 5. 115.
- A. P. Brestkin, R. I. Volkova, N. N. Godovikov, M. I. Kabachnik, and N. A. Kardanov, 6. Izv. Akad. Nauk SSSR, Ser. Khim., 622 (1973).
- V. M. Kuzamyshev, Dissertation [in Russian], Moscow (1977). 7.

SYNTHESIS AND PMR SPECTRA OF FUNCTIONAL METHYLCYCLOHEXA(HEPTA,

## OCTA)SILOXANES AND THEIR STRUCTURAL ISOMERS

N. N. Makarova and B. D. Lavrukhin

UDC 542.91:543.422.25:547.1'128

We have earlier reported the synthesis of functional methylcyclotetra(penta-, and hexa)siloxanes, by the stepwise condensation of methyltrichlorosilane with dimethylsilanediol, 1,3-dihydroxytetramethyldisiloxane, and 1,5-dihydroxyhexamethyltrisiloxane [1]. The reaction between 1,1,7,7-tetrachlorohexamethyltetrasiloxane and 1,3-dihydroxytetramethyldisiloxane (DHMS) has given 2,8-dichloro-2,4,4,6,6,8,10,10,12,12-decamethylcyclohexasiloxane. In contrast, reaction of 1,1,5,5-tetrachlorotetramethyltrisiloxane with 1,5-dihydroxyhexamethyltrisiloxane (DHMTS) is more complex. It appears that intramolecular cyclization takes place by two routes to give both 2,6-dichloro-2,4,4,6,6,8,8,10,10,12,12-decamethylcyclohexasiloxane and its structural isomer.

We here continue a study of the condensation of  $\alpha, \alpha, \omega, \omega$ -tetrachlorodimethylsiloxanes with DHMTS with a view to obtaining 2,6-dichlorooctamethylcyclohexa- and 2,10-dichlorotetradecamethylcyclooctasiloxanes.

The reaction products were found by PMR to consist of a complex mixture of products, a common feature of which was the possession of MeSiCl<sub>2</sub> groups ( $\delta$ Me  $\approx$  0.8 ppm) and MeSiCl (δMe ≈ 0.4 ppm) groups. In addition, the elemental analyses of the fractions presumed to

A. N. Nesmeyanov Institute of Heteroorganic Compounds, Academy of Sciences of the USSR, Moscow. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 3, pp. 652-659, March, 1986. Original article submitted February 9, 1984.

contain 2,6- dichlorodecamethylcyclooctasiloxane and 2,10-dichlorotetradecamethylcyclooctasiloxane were in agreement with the calculated values. In the mass spectra of the fractions of the products of the reaction between 1,1,5,5-tetrachlorotetramethyltrisiloxane and 1,1,9,9-tetrachlorooctamethylpentasiloxane with DHMTS, the peaks of greatest mass were those with m/z 469 and 617 respectively, corresponding to the loss of a methyl group from the molecular ions of dichloromethylcyclohexa-(and octa-)siloxanes or their structural isomers.

The PMR spectral data suggests that the condensation of  $\alpha$ , $\alpha$ , $\omega$ , $\omega$ -tetrachlorodimethylsiloxanes with DHMTS involves intramolecular cyclization by two routes, as follows:

 $Cl_2MeSiO(Me_2SiO)_nSi(Me)Cl_2 + HO(Me_2SiO)_3H \longrightarrow$ 



In order to confirm the formation of compounds with the proposed structure (II), it was attempted to obtain these compounds by direct synthesis (route 2)



The physicochemical constants of the compounds (II) are shown in Table 1.

In the IR spectra of (IIa-f) (Table 1), in the region characteristic of  $v_{as}$  vibrations of the Si-O bond, only (IIc) showed broadening of the absorption at 1080-1090 cm<sup>-1</sup>, whereas in the other compounds (IIa, b, d-f) the band was split to form two maxima at 1040-1050 and 1050 cm<sup>-1</sup>, it being observed that as the number of Me<sub>2</sub>SiO units in the straight chain increased there was an increase in the intensity of the absorption at 1090 cm<sup>-1</sup>. The IR spectra of (IIa-f) also contained absorption for the Si-Me and Si-Cl bonds and for the Si-Cl<sub>2</sub> group at 1270, 460, and 560 cm<sup>-1</sup>, respectively. Thus, a characteristic feature of the IR spectra

|                       | 4                                 | o, ppun  | $\begin{array}{c} 0,775\\ 0,193\\ 0,109\end{array}$                            | 0,111<br>0,096<br>0,116<br>0,085<br>0,092<br>0,210<br>0,778                                                                                                                                                                               | 0,084<br>0,088<br>0,107<br>0,082<br>0,088<br>0,088<br>0,109<br>0,109<br>0,109<br>0,192<br>0,192                             | 0,131<br>0,038<br>0,038<br>0,038<br>0,098<br>0,098<br>0,461 | 0,085-0,110<br>0,106<br>0,132<br>0,447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,097<br>0,097<br>0,120<br>0,086<br>0,0 <b>97</b><br>0,141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                |
|-----------------------|-----------------------------------|----------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
|                       | Number of                         | Si atoms | $ \begin{array}{c} 1,11 \\ 3,9 \\ 5,7 \end{array} $                            | (4)<br>(4)<br>(4)<br>(4)<br>(5)<br>(4)<br>(4)<br>(5)<br>(4)<br>(5)<br>(4)<br>(5)<br>(4)<br>(5)<br>(4)<br>(5)<br>(4)<br>(5)<br>(4)<br>(5)<br>(4)<br>(5)<br>(5)<br>(6)<br>(7)<br>(6)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7 | 86642<br>6 8 6 4 2<br>8 6 8<br>7 8<br>8 6<br>7 8<br>7 8<br>8 9<br>8 9<br>8 9<br>8 9<br>8 9<br>8 9<br>8 9<br>8 9<br>8 9<br>8 | 2<br>4,8<br>6 a<br>b<br>(2)<br>b                            | $ \left. \begin{array}{c} 2 \\ 4,8 \\ 6 \\ 8 \\ (2) \\ (4) \\ (6) \\ (6) \end{array} \right. \left. \begin{array}{c} 2 \\ (2) \\ (4) \\ (6) \end{array} \right. \left. \begin{array}{c} 2 \\ (2) \\ (2) \\ (3) \end{array} \right. \left. \begin{array}{c} 2 \\ (2) \\ (3) \\ (4) \end{array} \right. \left. \begin{array}{c} 2 \\ (2) \\ (2) \\ (2) \end{array} \right. \left. \begin{array}{c} 2 \\ (2) \\ (2) \\ (2) \end{array} \right. \left. \begin{array}{c} 2 \\ (2) \\ (2) \\ (2) \end{array} \right. \left. \begin{array}{c} 2 \\ (2) \\ (2) \\ (2) \end{array} \right. \left. \begin{array}{c} 2 \\ (2) \\ (2) \\ (2) \end{array} \right. \left. \begin{array}{c} 2 \\ (2) \\ (2) \\ (2) \end{array} \right. \left. \begin{array}{c} 2 \\ (2) \\ (2) \\ (2) \end{array} \right. \left. \begin{array}{c} 2 \\ (2) \\ (2) \\ (2) \end{array} \right. \left. \begin{array}{c} 2 \\ (2) \\ (2) \end{array} \right. \left. \begin{array}{c} 2 \\ (2) \\ (2) \end{array} \right. \left. \begin{array}{c} 2 \\ (2) \\ (2) \\ (2) \end{array} \right. \left. \begin{array}{c} 2 \\ (2) \\ (2) \end{array} \right. \left. \begin{array}{c} 2 \\ (2) \\ (2) \end{array} \right. \left. \begin{array}{c} 2 \\ (2) \\ (2) \end{array} \right. \left. \begin{array}{c} 2 \\ (2) \\ (2) \end{array} \right. \left. \begin{array}{c} 2 \\ (2) \\ (2) \end{array} \right. \left. \begin{array}{c} 2 \\ (2) \\ (2) \end{array} \right. \left. \begin{array}{c} 2 \\ (2) \\ (2) \end{array} \right. \left. \begin{array}{c} 2 \\ (2) \\ (2) \end{array} \right. \left. \begin{array}{c} 2 \\ (2) \\ (2) \end{array} \right. \left. \begin{array}{c} 2 \\ (2) \\ (2) \end{array} \right. \left. \begin{array}{c} 2 \\ (2) \\ (2) \end{array} \right. \left. \begin{array}{c} 2 \\ (2) \\ (2) \end{array} \right. \left. \begin{array}{c} 2 \\ (2) \\ (2) \end{array} \right. \left. \begin{array}{c} 2 \\ (2) \\ (2) \end{array} \right. \left. \begin{array}{c} 2 \\ (2) \\ (2) \end{array} \right. \left. \begin{array}{c} 2 \\ (2) \\ (2) \end{array} \right. \left. \begin{array}{c} 2 \\ (2) \\ (2) \end{array} \right. \left. \begin{array}{c} 2 \\ (2) \\ (2) \end{array} \right. \left. \begin{array}{c} 2 \\ (2) \\ (2) \end{array} \right. \left. \begin{array}{c} 2 \\ (2) \end{array} \right. \left. \begin{array}{c} 2 \\ (2) \\ (2) \end{array} \right. \left. \begin{array}{c} 2 \\ (2) \end{array} \right. \left. \left. \begin{array}{c} 2 \\ (2) \end{array} \right. \left. \begin{array}{c} 2 \\ (2) \end{array} \right. \left. \left. \begin{array}{c} 2 \\ (2) \end{array} \right. \left. \begin{array}{c} 2 \\ (2) \end{array} \right. \left. \left. \begin{array}{c} 2 \\ (2) \end{array} \right. \right. \left. \left. \begin{array}{c} 2 \\ (2) \end{array} \right. \left. \left. \begin{array}{c} 2 \end{array} \right. \right. \left. \left. \begin{array}{c} 2 \\ (2) \end{array} \right. \left. \left. \begin{array}{c} 2 \end{array} \right. \left. \left. 2 \end{array} \right. \left. \left. \begin{array}{c} 2 \end{array} \right. \left. \left. \begin{array}{c} 2 \end{array} \right. \left. \left. \begin{array}{c} 2 \end{array} \right. \left. \left. 2 \end{array}$ | 4,8 a 6 a b 1 (2) b 1 (2) b 2 |                                                                |
|                       | [M-CH <sub>3</sub> ]+<br>Mol. wt. |          | 524<br>540,6                                                                   | 475<br>486,7                                                                                                                                                                                                                              | $\frac{617}{634,0}$                                                                                                         | 375<br>391,2                                                | 523<br>539,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 372.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{1}{521,1}$                                              |
|                       |                                   | OH/CI    | 26,00<br>26,23                                                                 | 14,30<br>14,60                                                                                                                                                                                                                            | 10.53<br>11,18                                                                                                              | 8.61<br>9,06                                                | 6,37<br>6,57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4,28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{2,90}{3,26}$                                            |
|                       | ed,%                              | si       | 29,77                                                                          | <u>34,56</u><br><u>34,69</u>                                                                                                                                                                                                              | 35,21<br>35,44                                                                                                              | 35,90<br>35,90                                              | 36,18<br>36,44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 37,21<br>37,68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37,41<br>37,73                                                 |
|                       | Found<br>Calculate                | н        | 5,47<br>5,59                                                                   | 6,17<br>6,22                                                                                                                                                                                                                              | 6,59                                                                                                                        | 6,85<br>6,96                                                | 7, <u>15</u><br>7,29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7,63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7,74                                                           |
|                       |                                   | υ        | $\frac{22,11}{22,21}$                                                          | 24,61<br>24,73                                                                                                                                                                                                                            | 26,37<br>26,52                                                                                                              | <u>27,63</u>                                                | 28,61<br>28,94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 29,00<br>29,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{30,11}{29,97}$                                          |
|                       | Empirical formula                 |          | C <sub>10</sub> H <sub>30</sub> Si <sub>6</sub> O <sub>5</sub> Cl <sub>4</sub> | C <sub>10</sub> H <sub>30</sub> Si <sub>6</sub> O <sub>6</sub> Cl <sub>2</sub>                                                                                                                                                            | C14H42SisOsCl2                                                                                                              | C9H27Si5O5Cl                                                | C13H39S17O7CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C <sub>6</sub> H <sub>2</sub> sSi <sub>5</sub> O <sub>6</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C <sub>13</sub> H <sub>40</sub> Si <sub>7</sub> O <sub>8</sub> |
| TTOAY / LELLASTIVANCS | n25<br>D                          |          | 1,4009                                                                         | 1,4085                                                                                                                                                                                                                                    | 1,4070                                                                                                                      | 1,4040                                                      | 1,4050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,4076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,4091                                                         |
|                       | bp, *C<br>(p, torr)               |          | 131 - 133<br>(3 - 4)                                                           | 90-93<br>(3-4)                                                                                                                                                                                                                            | 156-158<br>(5-6)                                                                                                            | 225-230                                                     | 108-110<br>(2-3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 74–75<br>(2–3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 104 - 105<br>(2-3)                                             |
|                       | Yield, %                          |          | 70,0                                                                           | 43,7                                                                                                                                                                                                                                      | 55,55                                                                                                                       | 92,0                                                        | 75,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 74,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 84,5                                                           |
| ротушесиутэ           | punoumo                           | Compound | (Ia)                                                                           | (IIa)                                                                                                                                                                                                                                     | (411)                                                                                                                       | (IIc)                                                       | (IId)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (IIe)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (11f)                                                          |

of compounds of structure (II) [2,4,4,6,6,8,8-heptamethyl-2-(2,2,4-trimethyl-4,4-dichlorodisiloxy)tetrasiloxane and 2,4,4,6,6,8,8-heptamethyl-2-(2,2,4,4,6,6,8-heptamethyl-8,8-dichlorotetrasiloxy)tetrasiloxane] is the presence of two absorption bands for  $v_{as}$  of the Si-O bond at 1040-1050 and 1090 cm<sup>-1</sup>.

The chemical shifts (CS) of the PMR spectra of compounds with structures (I) and (II) are shown in Table 1. The spectra of the methyl protons of the cyclic moiety of the compounds of structure (II) are of a general nature. As a result of the symmetry of the molecule (the plane of symmetry is perpendicular to the plane of the ring and passes through  $\mathrm{Si}^2$  and  $\mathrm{Si}^6$ ), fragments  $\mathrm{Si}_4\mathrm{Me}_2$  and  $\mathrm{Si}_8\mathrm{Me}_2$  are enantiotopic.



 $\mathbf{R} = O(\mathrm{Me_2SiO})_n \mathrm{SiMeCl_2}; (\mathrm{OMe_2Si})_n \mathrm{OH}; (\mathrm{OMe_2Si})_n \mathrm{Cl}; n = 1, 3.$ 

They contain two pairs of enantiotopic methyl groups (MG) Me<sup>4a</sup>, Me<sup>8a</sup>, and Me<sup>4b</sup>, Me<sup>8b</sup>, which differ in their spatial relationship to the substituent R (as a result of inadequate data, it was not possible to assign the signals to cis- or trans-methyl groups), and accordingly give rise to two signals. The Mg at Si<sup>6</sup> is invariant to symmetry operations, and also corresponds to two signals. The CS of the protons of the two MG at Si<sup>4</sup>(Si<sup>8</sup>) and Si<sup>6</sup> are different, and are spin-coupled to the protons of the geminal MG ( ${}^{4}J_{\text{HCSiCH}} = 0.4 \text{ Hz}$ ). The signals for these MG are quartets. The signal for the protons of the MG at Si<sup>2</sup> is a singlet, since no adjacent proton-containing group is present. Hence, the cyclic moiety of the molecule gives rise to a singlet for Me<sup>2</sup> and quartets for Me<sup>4a</sup>,<sup>8a</sup>, Me<sup>4b</sup>,<sup>8b</sup>, Me<sup>6a</sup>, and Me<sup>6b</sup>, with integral intensities 1:2:2:1:1. The signals for the linear region of the molecule (II) are singlets, since the MG in SiMe<sub>2</sub> are symmetrical relative to the plane of symmetry of the molecule. Assignment of the SiMe<sub>2</sub> signals for the linear portion of compounds (IIa, b) and (IId) was made allowing for the influence of the Cl atoms. The protons of the MG adjacent to the Cl atom experience a greater low-field shift.

The functional methylcyclohexa(hepta, and octa)siloxanes were synthesized by the condensation of 1,1,9,9-tetrachlorooctamethylpentasiloxane or 1,1,11,11-tetrachlorodecamethylhexasiloxane with dimethylsilane or DHMDS. The compounds isolated were identified from their PMR, IR, and mass spectra and their elemental analyses as 2,6- and 2,8-dichloromethylcyclohexa(hepta, and octa)siloxanes of structure (III).

It is noteworthy that in the previously published IR spectra of dichloromethylcyclotetra(penta-, and hexa)siloxanes [1], and those of the newly-obtained dichloromethylcyclohepta(and octa)siloxanes, only one absorption band is present in the  $v_{as}$  Si-O region, this being shifted from 1110 cm<sup>-1</sup> in 2,6-dichloro-2,4,4,6,8,8-hexamethylcyclotetrasiloxane to 1070 cm<sup>-1</sup> in 2,8-dichloro2,4,4,6,6,8,10,10,12,12,14,14,16,16-tetradecamethylcyclooctasiloxane beginning with dichlorodecamethylcycloheptasiloxane a shoulder appears at 1100-1110 cm<sup>-1</sup>. A similar shift of the Si-O absorption has been observed previously in methylcyclosiloxanes [2].

The CS of compounds of structure (III) have been reported [3]. The PMR spectra showed that the fractions isolated consisted of compounds of structure (III) only, no structural isomers of these compounds containing MeSiCl<sub>2</sub> groups having been formed.

The PMR spectra of the model compounds synthesized (IIa, b) and (IIIa, c) enabled the products of the reactions of 1,1,5,5-tetrachlorotrisiloxane and 1,1,9,9-tetrachlorooctamethyl-pentasiloxane with DHMTS to be identified. It was shown that compounds of structure (II) were formed [compounds (IIa, b)]. The molar proportions of these compounds lay between 0.08 and 0.15, this proportion increasing as the chain length of the initial  $\alpha, \alpha, \omega, \omega$ -tetrachloro-dimethylsiloxane increased.

Hydrolysis of the dichloromethylcyclohexa(hepta, octa)siloxanes affords the respective dihydroxy-compounds, shown in Table 2 [compounds (IIId-f)].

Hence, the condensation of  $\alpha, \alpha, \omega, \omega$ -tetrachlorodimethylsiloxane with DHMTS involves two separate intramolecular cyclizations, resulting in the formation of the dichloromethylcyclosiloxanes and their structural isomers heptamethyl(dichloropolymethylsiloxy)cyclotetrasiloxanes, the separation of which by conventional methods is difficult. Our results show, how-

|                                                                        | [M-CH <sub>3</sub> ]+<br>Mol. wt. |       | 469<br>485,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 543<br>559,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 617<br>634,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 448,9                                                        | 523,0                   | 597,19                                                                                                                               |
|------------------------------------------------------------------------|-----------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| cal Constants of Functional Methylcyclohexa(hepta-, and octa)siloxanes |                                   | CI/OH | <u>13,89</u><br>14,60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11,85<br>12,66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{10,34}{11,18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7,36                                                           | 6,01<br>6,50            | 5,40<br>5,96                                                                                                                         |
|                                                                        | Found<br>Calculated , %           | Si    | <u>33,35</u><br><u>34,70</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{35,01}{35,11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35,40<br>35,44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>37,01</u><br>37,55                                          | $\frac{37,20}{37,59}$   | 37,89<br>37,63                                                                                                                       |
|                                                                        |                                   | Н     | 6,08<br>6,22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6,35<br>6,48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6,83<br>6,67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7,15                                                           | 7,32                    | 7,56                                                                                                                                 |
|                                                                        |                                   | σ     | 25,30<br>24,72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\frac{25,57}{25,74}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27,30<br>26,52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{27,10}{26,75}$                                          | 28,39<br>27,56          | $\frac{28,46}{28,16}$                                                                                                                |
|                                                                        | Empirical for-<br>mula            |       | C <sub>10</sub> H <sub>30</sub> Si <sub>6</sub> O <sub>6</sub> Cl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C <sub>17</sub> H <sub>36</sub> Si7O <sub>7</sub> Cl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C <sub>14</sub> H <sub>42</sub> SisOsCl2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C <sub>10</sub> H <sub>32</sub> Si <sub>6</sub> O <sub>8</sub> | C12H38Si7O9             | $C_{l4}H_{44}Si_8O_{10}$                                                                                                             |
|                                                                        | $n_D^{25}$                        |       | 1,4103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,4112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,4114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                | 1,4128                  | 1,4119                                                                                                                               |
|                                                                        | bp. *C<br>(p. torr)               |       | 66-67<br>(3.10 <sup>-2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 115-117<br>(5-6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $110-112 \\ (0,5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 105-107<br>(2.10 <sup>-3</sup> )                               | 110-112 (1)             | 127-130<br>(0,5)                                                                                                                     |
|                                                                        | Yield, 70                         |       | 26,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 66,2                                                           | 55,7                    | 66,5                                                                                                                                 |
| TABLE 2. Physicochemi                                                  | Compound                          |       | $Me \underbrace{12}_{h} \underbrace{12}_{h} \underbrace{12}_{h} \underbrace{12}_{h} \underbrace{12}_{h} \underbrace{12}_{h} \underbrace{11}_{h} \underbrace$ | Me Cl All | $\operatorname{Cl}_{16}^{2} \underbrace{\begin{smallmatrix} 4 & 6 \\ & Cl \\ & Me \\ 16 \\ 14 \\ & 12 \\ & 10 \\ & 10 \\ & 10 \\ & 11 \\ Cl \\ & Me \\ & (111 \\ Cl \\ & 11 \\ & Cl \\ & Me \\ & (111 \\ Cl \\ & He \\ & (111 \\ Cl \\ $ | $HO = \frac{2}{10} \frac{6}{8} OH$ $Me = 0$ $Me = 0$ $Me = 0$  | HO 1 OH OH OH OH OH MAG | HO $2 \stackrel{5}{\longrightarrow} \stackrel{6}{\longrightarrow} _{10}$ B OH<br>Me $10 \stackrel{10}{\longrightarrow} _{14}$ (111f) |

ever, that dichloromethylcyclosiloxanes of varying ring sizes can be obtained by reacting  $\alpha, \alpha, \omega, \omega$ -tetrachloropolydimethylsiloxanes with dimethylsilanediol or DHMDS. In this case, intramolecular cyclization to give the structural isomers (pentamethyl(dichloropolymethyl-siloxy)cyclotrisiloxanes) does not occur.

## EXPERIMENTAL

PMR spectra were obtained in  $CDCl_3 + CCl_4$  solution on a Bruker-WP-200SY NMR Fourier spectrometer, and IR spectra on a UR-20 spectrophotometer. Mass spectra were recorded on an AEI-MS-30 instrument (England), with the DS-50 data treatment system. The ionizing electron energy was 70 eV, emission current 100 mA, temperature of direct introduction system 30°C.

<u>1,1,11,11-Tetrachlorodecamethylhexasiloxane (Ia)</u>. To a solution of 119 g (0.80 mole) of MeSiCl<sub>3</sub> in 250 ml of dry ether was added with stirring and cooling at  $-5^{\circ}$ C over 4 h 42 g (0.122 mole) of 1,7-dihydroxyoctamethyltetrasiloxane and 22.8 g (0.244 mole) of aniline in 250 ml of dry ether. The precipitated aniline hydrochloride was filtered off, and the solvent removed. Distillation of the product (67 g) gave 50.7 g (70.0%) of (Ia). The physicochemical constants and the CS for the PMR spectrum are not shown in Table 1.

1,1,9,9-Tetrachlorooctamethylpentasiloxane (Ib) was obtained similarly, and its physicochemical constants have been reported previously [1].

<u>Reaction of (Ib) with DHMTS.</u> To 100 ml of dry ether were added simultaneously with stirring and cooling at  $-5^{\circ}$ C 58.2 g (0.125 mole) of (Ib) in 250 ml of dry ether and 30 g (0.125 mole) of DHMTS and 23.3 g (0.250 mole) of aniline in 250 ml of dry ether. After a few days, the solid was filtered off, and the solvent removed. Fractionation of the product (75.6 g) gave: 11 g (13.9%) of (Ib), bp 80-83°C ( $4\cdot10^{-2}$  torr), 19 g (24.4%) of a product bp 120-123°C ( $3\cdot10^{-3}$  torr), which from its PMR spectrum was a mixture of 2,10-dichlorotetradecamethylcyclooctasiloxane and (IIb) in a ratio of 1:2 respectively, mass spectrum (m/z): 617 [ $M - CH_3$ ]<sup>+</sup>, 563 [M - C1 - HC1]<sup>+</sup>, 471 [563 - Me<sub>2</sub>SiO<sub>2</sub>]<sup>+</sup>, 415 [563 - Me<sub>2</sub>SiO<sub>2</sub>]<sup>+</sup>, 401 [415 - CH<sub>2</sub>]<sup>+</sup>, 327 [401 - Me<sub>2</sub>SiO]<sup>+</sup>, 241 [Me<sub>6</sub>Si<sub>3</sub>O<sub>2</sub>C1]<sup>+</sup>, 167 [Me<sub>4</sub>Si<sub>2</sub>OC1]<sup>+</sup>, 147 [Me<sub>5</sub>Si<sub>2</sub>O]<sup>+</sup>, 73 [Me<sub>3</sub>Si]<sup>+</sup>; and 9.4 g (11.9%) of (IVb), bp 140-142°C (1·10<sup>-2</sup> torr), np<sup>20</sup> 1.4058. Found, %: C 30.30; H 7.61; Si 37.91. [ $M - CH_3$ ]<sup>+</sup> = 785. C<sub>20</sub>H<sub>60</sub>Si<sub>11</sub>O<sub>12</sub>. Calculated, %: C 30.00; H 7.50; Si 38.50. Mol. wt. 801.6.

<u>2,8-Dichloro2,4,4,6,6,8,10,10,12,12,14,14,16,16-tetradecamethylcyclooctasiloxane (IIIc).</u> To 150 ml of dry ether was added simultaneously with stirring at ~20°C 44.5 g (0.082 mole) of (Ia) in 250 ml of dry ether and 13.8 g (0.082 mole) of DHMDS and 15.4 g (0.165 mole) of aniline in 250 ml of dry ether. After two hours, the solid was filtered off and the solvent removed. Fractional distillation of the product (51.3 g) gave 7.8 g (15.1%) of (IIIc). For the physicochemical constants, see Table 2, and for the chemical shifts of the methyl protons, see [3].

Compounds (IIIa, b) were obtained similarly by the reaction of (Ib) with dimethylsilanediol, and (Ib) with DHMDS.

<u>Hydrolysis of (IIIc)</u>. To 0.16 g (9 mmole) of water and 0.84 g (9 mmole) of aniline in 10 ml of ether was added 2.4 g (3.8 mmole) of (IIIc) in 15 ml of ether, with stirring at  $\sim$ 20°C. After two hours, the solid was filtered off and the ether removed. Fractionation of the product (2.25 g) gave 1.5 g (66.5%) of (IIIf). For physicochemical constants, see Table 2.

Compounds (IIId) and (IIIe) were obtained similarly.

2,4,4,6,6,8,8-heptamethyl-2-(2,2,4-trimethyl-4,4-dichlorodisiloxy)cyclotetrasiloxane (IIa). To 31 g (0.24 mole) of  $Me_2SiCl_2$  in 100 ml of dry ether was added 18.2 g (0.061 mole) of hydroxyheptamethylcyclotetrasiloxane and 5.7 g of aniline in 200 ml of dry ether. On the following day, the solid was filtered off, and the ether removed. Fractionation of the product (26 g) gave 22.1 g (92.0%) of (IIc) (physicochemical constants given in Table 1). Compound (IId) was obtained similarly, by reacting heptamethyl(hydroxy)cyclotetrasiloxane with 1,5-dichlorohexamethylsiloxane. To 1.08 g of water (0.06 mole) and 6.5 g (0.07 mole) of aniline in 250 ml of ether was added with stirring over 1 h at 20-22°C 20.8 g (0.053 mole) of (IIc). The solid was filtered off, the ether solution washed with water, and the ether evaporated. Fractionation of the product (19.6 g) gave 14.8 g (74.8%) of (IIe). Physico-chemical constants and CS of the methyl protons given in Table 1.

Compound (IIf) was obtained similarly.

To 37.4 g (0.25 mole) of  $\text{MeSiCl}_3$  in 200 ml of dry ether was added with stirring at 20-22°C 18.3 g (0.049 mole) of (IIe) and 4.5 g (0.049 mole) of aniline in 100 ml of dry ether. After a few hours, the solid was filtered off, and the solvent and excess  $\text{Me}_2\text{SiCl}_2$  distilled off. Fractionation of the product (19.6 g) gave 10.4 g (43.7%) of (IIa). (IIb) was obtained similarly. The physicochemical constants and the CS for the PMR spectra for (IIa, b) are given in Table 1.

#### CONCLUSIONS

1. Condensation of  $\alpha, \alpha, \omega, \omega$ -tetrachlorodimethylsiloxane with 1,5-dihydroxyhexamethyltrisiloxane involves two intramolecular cyclizations, resulting in the formation of dichloromethylcyclosiloxanes and heptamethyl(dichloropolymethylsiloxy)cyclotetrasiloxanes, their structural isomers. The proportion of heptamethyl(dichloropolymethylsiloxy)cyclotetrasilox-anes increases as the length of the  $\alpha, \alpha, \omega, \omega$ -tetrachlorodimethylsiloxanes increases.

2. Difunctional methylcyclohexa(hepta-, and octa)siloxanes are obtained by condensing  $\alpha, \alpha, \omega, \omega$ -tetrachlorodimethylsiloxanes with dimethylsilanediol and 1,3-dihydroxytetramethyl-disiloxane.

#### LITERATURE CITED

- 1. N. N. Makarova, I. M. Petrova, Yu. K. Godovskii, B. D. Lavrukhin, and A. A. Zhdanov, Dokl. Akad. Nauk SSSR, 269, 1369 (1983).
- 2. R. E. Richards and H. W. Thompson, J. Chem. Soc., <u>1</u>, 124 (1949).
- 3. B. D. Lavrukhin, N. N. Makarova, and A. A. Zhdanov, Izv. Akad. Nauk SSSR, Ser. Khim., 559 (1986).

# REACTION OF $[Pt(CO)_2]_n$ WITH TRIARYLPHOSPHINES

N. K. Eremenko, S. S. Kurasov,

E. G. Mednikov, and S. P. Gubin

We have previously obtained tetra- and pentanuclear clusters of Pt by reacting controlled amounts of triethylphosphine with a solution of platinum dicarbonyl in acetone [1], and we observed that the amount of  $NH_3$  introduced into the system affected the selectivity of the reaction. We here report an extension of this method of synthesis to trianylphosphines  $PAr_3$ , and progress has been made towards an understanding of the mechanism of the reaction of  $[Pt(CO)_2]_n$  solutions with tertiary phosphines.

UDC 542.91:546:925:547.558.1

## EXPERIMENTAL

All operations were carried out under CO or  $N_2$ . The platinum dicarbonyl solutions were obtained as described in [1]. In order to study the IR spectra of the solutions, the original aqueous-ethanolic solutions of platinum dicarbonyl containing  $NH_3$  were treated with the required amount of trioctylbenzylammonium chloride, followed by extraction with dichloromethane. The extract was washed with water, dried over MgSO<sub>4</sub>, the dichloromethane removed under reduced pressure, and the dry residue dissolved in tetrahydrofuran (THF).

<u>Preparation of  $Pt_5(CO)_6(PAr_3)_4$ </u>. To an aqueous-acetone solution of  $[Pt(CO)_2]_n$  was added  $PAr_3(Pt/PAr_3 \text{ ratio} = 1:1)$ , and the mixture was kept for one day under CO. The acetone was then distilled off under reduced pressure, and the residue recrystallized from a mixture of benzene and ethanol. The compound was purified by chromatography on a silica gel column, eluent benzene.

<u>Preparation of  $Pt_3(CO)_3(PAr_3)_4$ .</u> To an aqueous-ethanolic solution of  $[Pt(CO)_2]_n$  was added a solution of  $PAr_3$  (molar ratio  $Pt/PAr_3 = 1:1.33$ ), and the mixture stirred in air for 0.5 h. The solid which separated was then filtered off and recrystallized from a mixture of acetone and ethanol.

Institute of Coal, Siberian Section, Academy of Sciences of the USSR, Kemerovo. N. S. Kurnakov Institute for General and Inorganic Chemistry, Academy of Sciences of the USSR, Moscow. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 3, pp. 659-662, March, 1986. Original article submitted September 21, 1984.