April 1982 Communications 301

ium ylid and its facile reaction with $\alpha.\beta$ -unsaturated carbonyl compounds to yield cyclopropanes. To our knowledge, this is the first report of cyclopropanation of an activated double bond with an ammonium ylid, except for a sole reference on the formation of tribenzoylcyclopropane as one of the products from the reaction of phenacylpyridinium methylid with phenacyl bromide^{4,5}.

The ylid 3 was generated by stirring a suspension of the readily available cyanomethyltrimethylammonium iodide6 (2) and sodium hydride in dry tetrahydrofuran. When this ylid was reacted in situ with chalcone 4a, work-up and column chromatography of the reaction mixture yielded the mixture of the cis- and trans-cyclopropane 5a in 10% and 51% yield, respectively. The stereoisomeric cyclopropanes 5b, c were similarly obtained by the reaction of respective chalcones 4b, c with 3. The reaction of chalcone 4d with 3 gave only trans-5d in 34% yield, while cis-5d could not be isolated from the reaction mixture. Similarly, the reaction of ethyl cinnamate (4e) with 3 gave only trans-5e in 65% yield, while ethyl acrylate (4f) yielded the mixture of cis- and trans-5f in 21% yield. Reaction of 3 with 2-cyclohexen-1-one did not give any identifiable product. Similarly, reactions of 3 with acrylamide, cinnamanilide, cinnamaldehyde, and nitrostyrene yielded only polymeric mixtures.

4,5	R ¹	R ²
а		~
b	○ -	- (>-сı
С	н₃со-⟨⟩	_
d		-
e	_	OC ₂ H ₅
f	н	OC ₂ H ₅

Cyanotrimethylammonium Methylid, Formation and Reaction with α,β -Unsaturated Carbonyl Compounds: Novel Cyclopropanation with an Ammonium Ylid

S. S. BHATTACHARJEE, H. ILA*, H. JUNJAPPA*

Department of Chemistry, North-Eastern Hill University, Shillong-793 003, Meghalaya, India

The nitrogen ylids, unlike their sulfur and phosphorus counterparts, behave more like classical carbanions in their chemical reactivity¹. Their reactions with activated double bonds yield only Michael-type adducts rather than cyclopropane ring formation. Similarly with aldehydes and ketones, they are known to give only the corresponding aldol-type compounds. Much of the earlier work on nitrogen ylids was confined to the more stable immonium and cycloimmonium ylids and their synthetic applications². There are only a few reports of stable ammonium ylids and their synthetic applications have virtually not been investigated³. We report here the preparation of cyanotrimethylammonium methylid, a novel ammon-

A Michael-type addition of the ylid carbon atom to the C=C bond of 4a-f followed by ring closure with elimination of trimethylamine should account for cyclopropane formation. An alternative mechanism through decomposition of 3 to a cyanocarbene intermediate followed by its addition to the double bond is ruled out, since 3 does not add to unactivated double bonds such as those of cyclohexene or stilbene and no trace of 1,2,3-tricyanocyclopropane was obtained in any of the reactions.

The stereochemistry of **5a-e** was assigned by comparison of the N.M.R. chemical shifts and vicinal coupling constants with those of the known *cis*- and *trans*-**5a**⁷.

Table. 1,2-Disubstituted-3-cyanocyclopropanes 5a-f

Product	Reaction time	Yield [%]	m.p. [°C] or b.p. [°C]/torr	Molecular formula or Lit. data	LR. (nujol) v [cm - 1]	'H-N.M.R. (CDCl ₃) δ [ppm]	M.S. m/e (M +)
cis-5a	14 h	10	123-124°	123-124° ⁷	2240 (CN); 1675 (CO)	2.30 (t, 1H, J=7 Hz); 3.45 (d, 2H, J=7 Hz); 7.0-7.8 (m, 8 H _{arom}); 8.05 (m, 2 H _{arom})	247
trans-5a	14 h	51	109~110°	109~110° [?]	2240 (CN); 1672 (CO)	2.62 (dd, 1 H, J = 8.5 and 4.5 Hz); 3.01 (dd, 1 H, J = 8.5 and 6.0 Hz); 3.61 (dd, 1 H, J = 6.0 and 4.5 Hz); 7.0-7.8 (m, 8 H _{arom}); 8.05 (m, 2 H _{arom})	247
cis-5b	16 h	32	133-134°	C ₁₇ H ₁₂ CINO (281.7)	2240 (CN); 1670 (CO)	2.36 (t, 1H, J=7 Hz); 3.36 (d, 2H, J=7 Hz); 6.8-7.7 (m, 8 H _{arom}); 8.0 (m, 2H _{arom})	281.5
trans-5b	16 h	54	123124°	C ₁₇ H ₁₂ CFNO (281.7)	2236 (CN); 1672 (CO)	2.75 (dd, 1 H, $J=9$ and 4.5 Hz); 3.02 (dd, $J=9$ and 6.0 Hz); 3.58 (dd, $J=6$ and 4.5 Hz); 6.9-7.7 (m, 7 H _{arom}); 8.1 (m, 2 H _{arom})	281.5
cis-5c	15 h	13	106~108°	C ₁₈ H ₁₅ NO ₂ (277.3)	2238 (CN); 1668 (CO)	2.26 (t, 1H, J=7 Hz); 3.32 (d, 2H, J=7 Hz); 3.76 (t, 3H, CH ₃ O); 7.01 (dd, 4H _{arom}); 7.6 (m, 3H _{arom}); 8.0 (m, 2H _{arom})	277
trans-5c	15 1	42	92 - 93°	C ₁₈ H ₁₅ NO ₂ (277.3)	2240 (CN); 1670 (CO)	2.60 (dd, 1 H, J =8.5 and 4.5 Hz); 2.92 (dd, 1 H, J =8.5 and 6 Hz); 3.50 (dd, 1 H, J =6 and 4.5 Hz); 3.72 (s, 3 H, CH ₃ O); 7.04 (dd, 4 H _{arom}); 7.5 (m, 3 H _{arom}); 8.0 (m, 2 H _{arom})	277
trans-5d	16 in	34	102°	C ₁₈ H ₁₃ NO ₃ (291.3)	2240 (CN); 1665 (CO)	2.60 (dd, 1H, $J=9$ and 4.5 Hz); 2.95 (dd, 1H, $J=9$ and 6 Hz); 3.52 (dd, $J=6$ and 4.5 Hz); 5.93 (s, 2H, O—CH ₂ —O); 6.80 (s, 3 H _{arom}); 7.2-7.65 (m, 3 H _{arom}); 8.02 (dd, 2 H _{arom})	291
trans-5e	12 h	65	Yellow viscous liquid	C ₁₈ H ₁₃ NO ₂ (215.2)	2240 (CN); 1730 (CO) ^b	1.30 (t, 3H, CH_3CH_2); 2.40 (dd, 1H, $J=8.5$ and 6 Hz), 2.73 (t, 1H, $J=6$ Hz); 2.98 (dd, $J=8.5$ and 6 Hz); 4.24 (q, 2H, CH_3CH_2O); 7.40 (br s, $5H_{arom}$)	215
cis/ trans- 5f	12 %	21	80-85°/3	80-82°/3 (trans); 80-87°/3 (cis) ⁸	2240 (CN); 1738 (CO) ^b	1.1–1.8 (m, 5 H, CH ₃ CH ₂ and two cyclopropyl protons); 1.8–2.55 (m, 2 H, cyclopropyl proton); 4.18 (q, 2 H, CH ₃ CH ₂ O)	139

^a Satisfactory nicroanalyses obtained: C ± 0.44 , H ± 0.44 , N ± 0.42 .

Cyanomethyltri nethylammonium Iodide (2):

Prepared by the reported procedure from N,N-dimethylaminoacetonitrile (1) and nethyl iodide in dry ether at room temperature; yield: 90%; m.p. 210°C (dec) (Ref. 6, m.p. 210°C).

cis- and trans-1-Cyano-2,3-disubstituted Cyclopropanes 5a-f; General Procedure:

A suspension c `sodium hydride (0.025 mol, 50% suspension) and cyanomethyltrimet tylammonium iodide (2; 0.02 mol) in dry tetrahydrofuran (25 ml) is stirred at room temperature for 1.5 h till the evolution of hydrogen is complete. A solution of 4a-f (0.02 mol) in dry tetrahydrofuran (25 m) is slowly added to the reaction mixture during 15 min with stirring ar d the temperature is slowly raised to 40-50°C, till the evolution of tr methylamine starts. The reaction mixture is stirred at 40-45 °C for the stated time (Table) and the reaction is monitored by frequently checking the evolution of trimethylamine. When the evolution of trimeth/lamine is complete, the mixture is worked up by removing the sol¹ ent under reduced pressure, diluting with water (10-15 ml), neutralizing with dilute acetic acid, and extracting with ether $(3 \times 100 \text{ ml})$. The ether layer is dried with sodium sulfate, evaporated, and the residue is passed through a silica gel column; elution with benzene and hexat e (1:1) gives first the trans-isomers of 5a-c, while further elution wi h benzene and hexane (4:1) yields the cis-isomers of 5a-c.

In the case of 4d, only trans-5d was obtained on elution with benzene/hexane mixture (3:1) and no trace of cis-5d could be isolated.

Column chromatography of the reaction mixture obtained from 4e

and 3, first yielded unreacted ethyl cinnamate (5%) on elution with benzene/hexane (1:1), while further elution with benzene/hexane (4:1) yielded *trans-5e*.

Column chromatography of the reaction mixture obtained from the reaction of 4f and 3 gives a crude mixture of cis-5f and trans-5f, which on distillation (Vigreux column, 3 in) under reduced pressure gives a mixture of pure cis- and trans-5f; b.p. 80-83 °C/3 torr.

One of us (S. B.) thanks V. G. C. New Delhi for Junior Research Fellowship.

Received: August 25, 1981 (Revised form: November 6, 1981)

^b I.R. of neat | quid.

A. W. Johnson, Ylid Chemistry, Academic Press, New York, 1966, Chapter 7, p. 251.

² I. Zugrávescu, M. Petrovanu, N-Ylid Chemistry, English translation by C. Stoicescu, McGraw-Hill, New York, 1976.

- ³ Trimethylammonium dicyanomethylid has been reported to be a stable compound and has m.p. 154°C; see Ref.², p. 10.
- ⁴ C. A. Henrick, E. Ritchie, W. C. Taylor, Aust. J. Chem. 20, 2441 (1967).
- S Cyclopropane ring formation through trimerization of carbenes derived from decomposition of cycloimmonium ylids are reported; see Ref.², p. 207.
- ⁶ A. Lespagnol, J. Cheymol, E. Cuingnet, M. Debaert, M. Adolphe, C. Adolphe, Congr. Sci. Pharm. 1959, 194; C. A. 56, 5830 (1962).
- ⁷ L. S. Melvin, Jr., B. M. Trost, Sulfur Ylids, Emerging Synthetic Intermediates, Organic Chemistry Monographs, Volume 31, Academic Press, New York, 1975, p. 101.
 - We are thankful to Prof. Barry M. Trost for sending us physical data, I.R. and N.M.R. spectral data for compounds cis-5a and trans-5a; see also, J. Adams, L. Hoffman, Jr., B. M. Trost, J. Org. Chem. 35, 1600 (1970).
- ⁸ G. B. Payne, J. Org. Chem. 32, 3351 (1967).

0039-7881/82/0432-0303 \$ 03.00

© 1982 Georg Thieme Verlag · Stuttgart · New York