# A DAMMARANE SAPONIN FROM NEOALSOMITRA INTEGRIFOLIOLA

CHIU MINGHUA, NIE RUILIN, HIROMICHI NAGASAWA,\* AKIRA ISOGAI,\* ZHOU JUN and AKINORI SUZUKI\*†

Kunming Institute of Botany, Sinica Academia, Kunming 650204, P.R. China; \*Department of Agricultural Chemistry, Faculty of Agriculture, The University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

(Received in revised form 17 December 1991)

Key Word Index—Neoalsomitra integrifoliola; Cucurbitaceae; dammarane saponin; ocotillone-type triterpene; neoalsoside A; neoalsogenin A.

**Abstract**—Neoalsoside A, a new dammarane saponin, was isolated from *Neoalsomitra integrifoliola* and characterized as  $12\beta$ ,  $23\beta$ , 25-trihydroxy-(20S)(24S)-epoxydammarane-3-O- $\alpha$ -L-rhamnosyl( $1 \rightarrow 2$ )- $\alpha$ -L-rhamnosyl( $1 \rightarrow 3$ )- $\beta$ -D-glucoside.

### INTRODUCTION

Neoalsomitra integrifoliola (Cong.) Hutch is a herb growing in southern China as well as in Southeast Asia. From rhizomes of this plant, we have isolated a major dammarane saponin in a high yield (over 3%). The present communication describes the structural elucidation of this saponin named neoalsoside A and its aglycone, neoalsogenin A. This study shows that N. integrifoliola is another plant source of ginsengsaponin.

#### **RESULTS AND DISCUSSION**

An ethanolic extract of dried rhizomes was separated as described in the Experimental, affording a new dammarane saponin neoalsoside A (1) in a high yield (over 3%). On acidic hydrolysis, saponin 1 gave glucose (Glc) and rhamnose (Rha) as sugar components (by TLC) and a new aglycone neoalsogenin A (2). Aglycone 2, needles (acetone), mp 215-218°,  $[\alpha]_D + 11.2°$  (pyridine),



†Author to whom correspondence should be addressed.

showed an  $[M+H]^+$  ion at m/z 493 in the FAB mass spectrum, and exhibited 30 carbons (Me- $\times$ 8, -CH<sub>2</sub>-×8,  $-\dot{C}H \times 4$ ,  $-O-\dot{C}H \times 4$ ,  $-O-\dot{C}-\times 2$ ,  $-\dot{C}-\times 4$ ) in  $^{13}$ C NMR, indicating a molecular formula of C<sub>30</sub>H<sub>52</sub>O<sub>5</sub>. The characteristics of  $^{13}$ C NMR data of 2 strongly suggest that it is an ocotillone-type triterpene [1-3], and the <sup>13</sup>C NMR signals of skeleton were easily assigned as in Table 1. The presence of  $3\beta$  and  $12\beta$  hydroxyl groups in 2 deduced from <sup>13</sup>CNMR signals at  $\delta$ 78.9 and 70.6, respectively, were further confirmed by 'HNMR signals at  $\delta 3.19 (dd, J = 12.0, 5.0 \text{ Hz}, \text{H}-3)$  and 3.54 (ddd, J = 12.0, Hz)12.0, 5.0 Hz, H-12), respectively. The CH<sub>2</sub> signal at 18.3 indicated the absence of oxygenation at C-6. The signal at 89.7 (C-24) suggested the presence of 20,24-epoxy ring and 24S configuration [1]. In the FAB mass spectrum of 2, the characteristic base peak at m/z 143 corresponding to the side chain containing a 20,24-epoxy group in ocotillone-type triterpene was not observed [1], but instead of this peak an intense peak was noticed at m/z159, suggesting the presence of a hydroxyl group in the side chain. The presence and  $\beta$ -orientation of the hydroxyl group at C-23 was estimated by the coupling constant (J = 8.1 Hz) between H-23 and H-24 and by those (J = 8.0, J = 8.0)0.0 Hz) between H-23 and H2-22. The stereochemistry of H-23 $\alpha$  and H-24 $\beta$  was confirmed by observing NOEs between H-23 and the protons of Me-21, Me-26 and Me-27. These NOEs agreed with the previous estimation about the configuration at C-24.

On the other hand, a strong support for the side chain structure was provided by the FAB mass spectrum of triacetate (3) of 2, in which two intense peaks at m/z 141 (base peak) and 201 (58%) are reasonably ascribed to the fragment ions,  $[C_{10}H_{17}O_4 - HOAc]^+$  and  $[C_{10}H_{17}O_4]^+$ , respectively, both being derived from the side chain. Thus, 2 is 3,12,23,25-tetrahydroxy-(20S),(24S)-epoxydammarane, neoalsogenin A.

Saponin 1, needles (acetone), mp 277-279°,  $[\alpha]_D - 30.5°$ (pyridine), has the molecular formula  $C_{48}H_{82}O_{18}$  by FAB mass spectroscopy (m/z 969,  $[M+Na]^+$ ) and <sup>13</sup>C NMR (DEPT). The attachment of the sugar chain at the C-3 position of 2 was evident by the downfield shift (9.91 ppm) of C-3 in 2 compared with C-3 in 1 [3, 4]. The <sup>13</sup>C and <sup>1</sup>H NMR spectra indicated the presence of two

| C<br>1 | 1<br>(CDCl <sub>3</sub> )<br>39.8 | 2<br>(C <sub>5</sub> D <sub>5</sub> N)<br>39.0 | C<br>21 | 1<br>(CDCl <sub>3</sub> )<br>27.8 | 2<br>(C <sub>5</sub> D <sub>5</sub> N)<br>26.5 | Sugar moiety<br>of 1 (C <sub>5</sub> D <sub>5</sub> N) |                   |
|--------|-----------------------------------|------------------------------------------------|---------|-----------------------------------|------------------------------------------------|--------------------------------------------------------|-------------------|
|        |                                   |                                                |         |                                   |                                                | Glc-1                                                  | 105.1             |
| 2      | 27.0                              | 27.4                                           | 22      | 42.3                              | 40.5                                           | 2                                                      | 78.1*             |
| 3      | 88.8                              | 78.9                                           | 23      | 71.0                              | 70.1                                           | 3                                                      | 87.5              |
| 4      | 40.1                              | 39.0                                           | 24      | 91.7                              | 89.7                                           | 4                                                      | 70.7 <sup>b</sup> |
| 5      | 56.8                              | 56.0                                           | 25      | 70.4                              | 70.8                                           | 5                                                      | 78.1*             |
| 5      | 18.5                              | 18.3                                           | 26      | 26.7                              | 25.7                                           | 6                                                      | 62.7              |
| 7      | 35.3                              | 34.8                                           | 27      | 29.9                              | <b>29</b> .7                                   | 2-Rha-1                                                | 102.3             |
| 3      | 39.8                              | 39.8                                           | 28      | 28.0                              | 28.0                                           | 2                                                      | 72.1°             |
| )      | 50.7                              | 50.3                                           | 29      | 16.9                              | 15.4                                           | 3                                                      | 72.6°             |
| 0      | 37.2                              | 37.2                                           | 30      | 18.3                              | 17.9                                           | 4                                                      | 72.7°             |
| 11     | 32.7                              | 31.6                                           |         |                                   |                                                | 5                                                      | 70.3 <sup>b</sup> |
| 2      | 70.9                              | 70.6                                           |         |                                   |                                                | 6                                                      | 18.6              |
| 3      | 49.1                              | 49.0                                           |         |                                   |                                                | 3-Rha-1                                                | 103.8             |
| 4      | 52.5                              | 52.2                                           |         |                                   |                                                | 2                                                      | 72.7°             |
| 5      | 32.6                              | 32.2                                           |         |                                   |                                                | 3                                                      | 72.6°             |
| 6      | 28.7                              | 28.5                                           |         |                                   |                                                | 4                                                      | 73.9              |
| 17     | 50.1                              | 49.3                                           |         |                                   |                                                | 5                                                      | 70.5 <sup>b</sup> |
| 8      | 16.8                              | 16.3                                           |         |                                   |                                                | 6                                                      | 18.7              |
| 9      | 15.7                              | 15.6                                           |         |                                   |                                                |                                                        |                   |
| 20     | 85.3                              | 85.5                                           |         |                                   |                                                |                                                        |                   |

Table 1. <sup>13</sup>C NMR chemical shifts

\*""Signals thus indicated may be reversed.

terminal  $\alpha$ -L-rhamnopyranosyl units and an inner  $\beta$ -Dglucopyranosyl unit (anomeric carbons:  $\delta$ 102.3, 103.8 and 105.1; anomeric protons:  $\delta$ 5.68 (br s), 5.45 (br s) and 4.58 (d, J = 7.8 Hz) and characteristic carbons:  $\delta$ 18.6 (Me), 18.7 (Me) and 62.7 (CH<sub>2</sub>). According to the chemical shifts [5], the <sup>13</sup>C NMR signals of inner  $\beta$ -glucosyl unit at  $\delta$ 82.6 and 78.1 suggested that the sugar moiety is 2,3-di-O- $\alpha$ -L-rhamnosyl- $\beta$ -O-glucopyranoside. All sugar carbon signals were identical to those of the sugar moieties of taccaoside [6]. Accordingly, the structure of 1 is 12 $\beta$ ,23 $\beta$ ,25-trihydroxy-(20S),(24S)-epoxydammarane 3-O- $\alpha$ -L-rhamnopyranosyl(1 $\rightarrow$ 2) [ $\alpha$ -L-rhamnopyranosyl (1 $\rightarrow$ 3)]- $\beta$ -D-glucopyranoside, neoalsoside A.

#### **EXPERIMENTAL**

Plant material. Rhizomes of N. integrifoliola (Cogn.) Hutch were collected in Xishuangbanna, South-Yunnan, China, and identified by Prof. Tao Guoda. A specimen is deposited in the Herbarium of the Kunming Institute of Botany.

Isolation of neoalsoside A (1). Air-dried powdered materials (450 g) were extracted with 95% EtOH under reflux. The extract was evapd to afford a syrup (40 g), which was dissolved in MeOH. After removing the insoluble materials by filtration, the filtrate was coned in vacuo to give a residue (32.4 g). The residue was subjected to CC on silica gel (75 g), which was eluted stepwise with CHCl<sub>3</sub>-MeOH solvent of increasing polarity. Conen of the 20% MeOH eluate gave a crude neoalsoside A, which was then passed through a reverse-phase column (RP-18, 40 g) to afford pure neoalsoside A (1) (ca 14 g).

Neoalsoside A (1).  $C_{48}H_{82}O_{18}$ , needles (acetone), mp 225-228°,  $[\alpha]_D = 30.5^\circ$  (pyridine). FAB-MS m/z (%): 969([M + Na]<sup>+</sup>, 30), 457(80), 391 (25), 307 (70), 120 (base peak, 100).

<sup>1</sup>H NMR:  $\delta$  (pyridine- $d_5$ ) 5.81 (1H, s, OH-12), 5.68 (1H, br s, Rha-1"), 5.45 (1H, br s, Rha-1"), 4.58 (1H, d, J = 7.8 Hz, Glc-1), 3.74 (1H, d, J = 8.1 Hz, H-24), 1.39, 1.35 (each 3H, d, J = 6.5 Hz, 2 × Rha-Me), 1.34, 1.32, 1.15 (each 3H, s, Me-21, Me-26, Me-27). <sup>13</sup>C NMR and DEPT: as shown in Table 1. <sup>1</sup>H-<sup>13</sup>C COSY spectrum was used in the assignment of <sup>1</sup>H and <sup>13</sup>C NMR signals.

Acidic hydrolysis of 1. A solution of 1 (100 mg) in 2 M HCl-50% dioxane (30 ml) was refluxed for 4 hr. The reaction mixture was diluted with water and extracted with CHCl<sub>3</sub>. The CHCl<sub>3</sub> layer was washed with water and dried over Na<sub>2</sub>SO<sub>4</sub>. Then, the CHCl<sub>3</sub> solution was filtered and the filtrate was evapd to dryness. The residue was passed through a RP-18 column to afford aglycone (2). Neoalsogenin (2), needles (acetone), mp 215-218,  $[\alpha]_{D}$  + 11.2 (pyridine). FAB-MS m/z (%): 493 ([M + H]<sup>+</sup>, 30), 391 (80), 159 (base peak, 100). <sup>1</sup>H NMR  $\delta$ (CDCl<sub>3</sub>): 5.55 (1H, s, OH-12), 4.55 (1H, br dd, J = 8.1, 8.0 Hz, H-23), 3.62 (1H, d, J = 8.1 Hz, H-24), 3.54 (1H, ddd, J = 12.0, 12.0, 5.0 Hz, H-12), 3.19 (1H, dd, J = 12.0, 5.0 Hz, H-3), 1.29, 1.26, 1.24 (each 3H, s, Me-21, Me-27, Me-26), 1.04, 0.98, 0.91, 0.90, 0.78 (each 3H, s, Me-28, Me-29, Me-30, Me-19, Me-18). <sup>13</sup>C NMR data: as shown in Table 1. <sup>1</sup>H-<sup>1</sup>H COSY and <sup>1</sup>H-<sup>13</sup>C COSY spectra were used in the <sup>1</sup>H and <sup>13</sup>C NMR signal assignments.

3,12,23-Triacetate (3). FAB-MS m/z (%): 619 ([M + H]<sup>+</sup>, 10), 559 ([M + H - HOAc]<sup>+</sup>, 25), 541 ([M + H - HOAc - H<sub>2</sub>O], 40), 499 ([M + H - HOAc × 2]<sup>+</sup>, 20), 481 ([M + H - HOAc × 2 - H<sub>2</sub>O], 45), 201 ([side chain (C<sub>10</sub>H<sub>17</sub>O<sub>4</sub>)]<sup>+</sup>, 58), 141 ([C<sub>10</sub>H<sub>17</sub>O<sub>4</sub> - HOAc]<sup>+</sup>, base peak).

Acknowledgements—The authors are grateful to Mr Jiro Nakayama for measuring NMR and FAB-MS, and for Dr Kazuo Furihata for measuring NOE. One of the authors (Chiu Minghua) thanks Yamanouchi Pharmaceutical Co., Ltd for financial support for his study in The University of Tokyo.

## REFERENCES

- 1. Tanaka, O. and Yahara, S. (1978) Phytochemistry 17, 1353.
- 2. Tanaka, O., Morita, T., Kasai, R., Kinouchi, J., Sanada, S.,
- Ida, Y. and Shoji, J. (1985) Chem. Pharm. Bull. 33, 2323.
- 3. Tanaka, O. (1985) Yakugaku Zasshi 105, 323.
- 4. Seo, O., Tomita, Y., Tori, K. and Yoshimura, Y. (1978) J. Am. Chem. Soc. 100, 3331.
- 5. Agrawal, P. K., Jain, D. C., Gupta, P. K. and Thakur, R. S. (1985) Phytochemistry 24, 2479.
- Zhou, J., Chen, C.-X., Liu, R.-M. and Yang, C.-R. (1983) Acta Botanica Sinica 25, 568.