12-KETO STEROIDAL GLYCOSIDES FROM THE CAUDEX OF YUCCA GLORIOSA*

KIMIKO NAKANO, YUKARI MIDZUTA, YUMIKO HARA, KŌTARŌ MURAKAMI, YOSHIHISA TAKAISHI and TOSHIAKI TOMIMATSU

Faculty of Pharmaceutical Sciences, Tokushima University, Shomachi 1-78, Tokushima 770, Japan

(Received 12 June 1990)

Key Word Index—Yucca gloriosa; Agavaceae; caudex; 12-keto steroidal saponins; mexogenin glycoside; gloriogenin glycosides; manogenin glycosides.

Abstract—Eight new steroidal glycosides, tentatively named YS-VI, -VII, -IX, -X, -XI, -XII and -XIII were isolated from the caudex of *Yucca gloriosa* along with P-1, YG-2 and YG-3 previously obtained from flowers. The structures of five of these compounds were elucidated as mexogenin $3-O-\beta$ -D-glucopyranosyl- $(1 \rightarrow 2)-\beta$ -D-glacopyranoside (YS-VI), gloriogenin $3-O-\beta$ -D-glucopyranosyl- $(1 \rightarrow 2)-[\beta$ -D-glucopyranosyl- $(1 \rightarrow 3)]-\beta$ -D-glucopyranoside (YS-VII) and $3-O-\beta$ -D-glucopyranosyl- $(1 \rightarrow 2)-[\beta$ -D-glucopyranosyl- $(1 \rightarrow 3)]-\beta$ -D-glacopyranoside (YS-VII), manogenin $3-O-\beta$ -lycotetraoside (YS-IX) and $3-O-\alpha$ -L-rhamnopyranosyl- β -lycotetraoside (YS-X), respectively, on the basis of chemical and spectral evidence.

INTRODUCTION

In the preceding papers of this series [1, 2], we reported the isolation and structure determination of nine steroidal saponins, tentatively named YG-1, -2, -3 and -4 (tigogenin and gitogenin glycosides from flowers), YS-I, -II, -III, -IV and -V (smilagenin and samogenin glycosides from caudex). Further investigation of caudex led to the isolation of eight additional saponins, named YS-VI, -VII, -VIII, -IX, -X, -XI, -XII and -XIII. This paper reports the structure elucidation of YS-VI (1), -VII (2), -VIII (3), -IX (4) and -X (5).

RESULTS AND DISCUSSION

The remaining material from fractions 4 and 5 obtained in the previous work [2] were rechromatographed as described in the Experimental to afford YS-VI (1), -VII (2), -VIII (3), -IX (4), -X (5), -XI, -XII and -XIII. Compounds 1–5 produced a yellow colour with H_2SO_4 on TLC. Their IR spectra showed the characteristic absorption bands for a (25*R*)-spiroketal side chain, strong absorptions at 1700–1720 cm⁻¹ (carbonyl on sixmembered ring) and 3200–3500 cm⁻¹ (hydroxyls).

Hydrolysis (2 M HCl-MeOH) of 2 and 3 gave the same sapogenin (6), $C_{27}H_{42}O_4$ ([M]⁺ at m/z 430.3061), mp 186–188°, $[\alpha]_D^{22}$ + 44.4° (CHCl₃). Its IR spectrum showed a broad band at 3500 cm⁻¹ for OH, a strong band at 1706 cm⁻¹ for a six-membered ring carbonyl and the characteristic bands for the spirostan ring system. The ORD curve of 6 showed a strong positive Cotton effect associated with the carbonyl group, which was similar to that of hecogenin [3]. The ¹H NMR spectrum of 6

showed signals ascribable to the C-18 and C-19 methyl groups at $\delta 1.04$ and 1.05 and the C-27 and C-21 methyls at 0.79 (d, J = 6.1 Hz) and 1.07 (d, J = 7.1 Hz). Using the Tori *et al.* [4] additivity rules for predicting the chemical shifts of methyl proton resonances in steroidal sapogenins, the observed values for compound **6** were found to be in best agreement with those calculated for $5\beta(25R)$ spirostan- 3β -ol-12-one. Moreover, the ¹³C NMR spectrum of **6** exhibited the signals of a 5β -steroidal sapogenin [5] (C-5: $\delta 36.6$; C-9: 41.8; C-19: 23.4), a carbonyl signal at $\delta 212.9$ and three signals in the carbinyl carbon region at 65.7 (CH), 67.0 (CH₂) and 79.8 (CH) which could be assigned to C-3, C-26 and C-16 by comparison with the corresponding signals of smilagenin and hecogenin [6].

^{*}Part 3 in the series 'The Constituents of Yucca gloriosa'. For Part 2 see ref. [2].

Thus, compound 6 was represented as $5\beta(25R)$ spirostan- 3β -ol-12-one and identified with gloriogenin by comparison with the published data [7, 8]. TLC analysis of the sugars obtained from the hydrolysate of 2 showed D-glucose, while 3 showed D-glucose and D-galactose. The FAB mass and ¹³C NMR spectra of 2 and 3 revealed the presence of three sugar units in each compound.

Methanolysis of the permethylate (2a) of 2, prepared by Hakomori's method [9] yielded 2,3,4,6-tetra-O-methyl-D-glucose and 4,6-di-O-methyl-D-glucose. From the methanolysate of the permethylate (3a) of 3 was obtained 2,3,4,6-tetra-O-methyl-D-glucose and 4,6-di-O-methyl-Dgalactose. The identities of the methylated sugars were established by comparison with the authentic samples [2]. Furthermore the comparison of the ^{13}C NMR signals of 2 and 3 (Table 1) with those of YS-III and -IV [2] showed them to have the same glycosidic linkages.

Thus, YS-VII and -VIII were characterized as $3-O-\beta$ -D-glucopyranosyl- $(1 \rightarrow 2)$ - $[\beta$ -D-glucopyranosyl- $(1 \rightarrow 3)$]- β -D-glucopyranosyl- $5\beta(25R)$ -spirostan- 3β -ol-12-one (2) and $3-O-\beta$ -D-glucopyranosyl- $(1 \rightarrow 2)$ - $[\beta$ -D-glucopyranosyl- $(1 \rightarrow 3)$]- β -D-galactopyranosyl- $5\beta(25R)$ -spirostan- 3β -ol-12-one (3), respectively.

Acid hydrolysis of 1 gave the aglycone (7), $C_{27}H_{42}O_5$ $([M]^+ \text{ at } m/z \ 446.3021), \text{ mp } 225-227^\circ \text{ (dec.)}, \ [\alpha]_D^{26}-16.5^\circ$ (MeOH) which was also considered to be a 12-keto steroid sapogenin from the IR, ORD and ¹³CNMR spectra. Acetylation of 7 gave the diacetate (7a), which showed the presence of a 2β - and 3β -acetoxy group $(\delta 1.98, 2.09, 3H \text{ each } s; 4.75 \text{ 1H}, ddd, J = 2.4, 4.6, 10.8 \text{ Hz};$ 5.32 1H, br d, J = 2.4 Hz) in the ¹H NMR spectrum. Irradiation of the broad doublet signal at δ 5.32 collapsed a double doublet at 4.75 into a double doublet (J = 4.6, 10.8 Hz). The 13 C NMR spectrum of compound 7 exhibited the signals of a 5β -steroidal sapogenin [5] with a carbonyl signal at δ 212.8 and four carbinyl carbon signals at 67.0 (CH₂), 67.3 (CH), 70.2 (CH) and 79.8 (CH), which could be assigned to C-26, C-3, C-2 and C-16 by comparison with the corresponding signals of samogenin [2] and 6 (gloriogenin). Thus, compound 7 was inferred to be $5\beta(25R)$ -spirostan- 2β , 3β -diol-12-one (mexogenin) and this was confirmed by comparison with the data of an authentic sample [10].

The aqueous hydrolysate of 1 showed the presence of D-glucose and D-galactose (TLC). The FAB mass and ¹³CNMR spectra of 1 suggested the presence of two sugar units. Methanolysis of the permethylate (1a) of 1 gave monomethylated mexogenin (7b) and two methylated sugars which were identified as methyl pyranosides of 2,3,4,6-tetra-O-methyl-D-glucose and 3,4,6-tri-O-methyl-D-galactose. In the ¹H NMR spectrum, the acetate (7c) of **7b** showed an acetoxyl signal at $\delta 2.11$, one methoxyl signal at 3.36 and one methine signal at 5.42 (br d, J = 2.4 Hz) ascribable to 3α -H, that is, hydrogen attached to the carbon bearing an acetoxyl group. Furthermore, the ¹³C NMR spectrum of 1 indicated that the C-3 signal of the aglycone was shifted downfield, while the C-2 and C-4 signals were shifted upfield, and the sugar moiety was the same as that of YS-V [2]. Based on the above data the structure of YS-VI has been established as $3-O-\beta$ -Dglucopyranosyl- $(1 \rightarrow 2)$ - β -D-galactopyranosyl- $5\beta(25R)$ spirostan- 2β , 3β -diol-12-one (1).

Acidic hydrolysis of 4 and 5 gave the same sapogenin (8), $C_{27}H_{42}O_5$ ([M]⁺ at m/z 446.3078), mp 243–244°, $[\alpha]_D^{22} - 10.7^\circ$ (MeOH) which was also considered to be a 12-keto steroid sapogenin from the IR, ORD and ¹³C NMR spectra. The ¹³C NMR spectrum of **8** exhibited the signals of a 5 α -steroidal sapogenin [5, 11] (C-5: δ 44.4; C-9: 55.3; C-19: 13.1), a carbonyl signal at δ 212.5 and four carbinyl carbon signals at 66.9 (CH₂), 72.8 (CH), 76.4 (CH) and 79.7 (CH), which could be assigned to C-26, C-2, C-3 and C-16 by comparison with the signals of gitogenin and **6**. Acetylation of **8** gave the diacetate (**8a**), the ¹H NMR spectrum of which showed the presence of a 2 α and 3 β -acetoxy group (6H, s, δ 2.02; 1H, m, 4.77; 1H, m, 5.03). Thus, compound **8** was inferred to be 5 α (25*R*)spirostan-2 α ,3 β -diol 12-one (manogenin) and this was confirmed by comparison with the data of an authentic sample [10].

The hydrolysate from 4 was examined by TLC to prove the occurrence of D-galactose, D-glucose and D-xylose, while the hydrolysate from 5 revealed L-rhamnose in addition. The FAB mass and ¹³CNMR spectra of 4 suggested the presence of four sugar units. The permethylate (4a) of 4 showed terminal permethylated -hexosyl, -pentosyl and -pentosyl dihexosyl cations at m/z219, 175 and 583, respectively, in the mass spectrum. In the ¹H NMR spectrum of 4a, four doublet signals with J =7-8 Hz at 4.35, 4.72, 4.91 and 5.04 ascribable to the anomeric protons were detected, indicating that all glycosidic linkages are β . Methanolysis of 4a afforded an aglycone derivative (8b) and four methylated sugars which were identified as methyl pyranosides of 2,3,4,6tetra-O-methyl-D-glucose, 2,3,4-tri-O-methyl-D-xylose, 2,3,6-tri-O-methyl-D-galactose and 4,6-di-O-methyl-Dglucose by TLC analysis. The above evidence suggested that the sugar moiety might be β -lycotetraose. Therefore, the ¹³C NMR spectrum of compound 4 was compared with that of Ps-1 [1]. The signals due to the sugar were coincident with those of β -lycotetraoside. In the ¹H NMR spectrum, the acetate (8c) of 8b showed an acetoxyl signal at $\delta 2.06$, one methoxyl signal at 3.36 and one methine signal at 4.67 (1H, m) ascribable to 3α -H attached to the carbon bearing an acetoxyl group. Consequently, the structure of YS-IX was assigned as $3-O-\beta$ -Dglucopyranosyl- $(1 \rightarrow 2)$ -[β -D-xylopyranosyl- $(1 \rightarrow 3)$]- β -Dglucopyranosyl- $(1 \rightarrow 4)$ - β -D-galactopyranosyl- 5α -(25R)spirostan 2α , 3β -diol-12-one (4).

The FAB mass spectrum of compound 5 showed a peak due to $[M + Na]^+$ at m/z 1233 indicating that 5 is a manogenin pentaglycoside constituted from three molecules of hexose and one molecule each of rhamnose and xylose. On enzymic hydrolysis with crude hesperidinase, 5 liberated a glycoside and rhamnose. The former was identical with 4 as judged by TLC. The ¹³C NMR spectrum of 5 was compared with that of YG-3 [1]. The signals due to the sugar moieties of both substances were identical and the signals of the aglycone were super-imposable on those of 4. Thus, YS-X was characterized as $3-O-\alpha$ -L-rhamnopyranosyl- $(1 \rightarrow 4)$ - β -D-xylopyranosyl- $(1 \rightarrow 4)$ - β -D-glucopyranosyl- $(1 \rightarrow 4)$ - β -D-glucopyranosyl-

EXPERIMENTAL

Mp: uncorr. ¹H and ¹³C NMR spectra were recorded on a 400 MHz spectrometer. Chemical shifts are given in δ (ppm) values referred to int. TMS, and assigned by using INEPT.

Isolation of saponins. Refer to the preceding paper [2], the remaining material from Frs 4 and 5 were separately rechromatographed over sulanized sulca gel 60 (Merck) and Sephadex LH-

с	7	YS-VI	6	YS-VII	YS-VIII	8	YS-IX	YS-X
1	39.1	40.2	30.3	30.4	30.5	45.9	44.9	44.9
2	70.2	66.8	28.3	26.7	26.4	72.8	70.7	70.3
3	67.3	81.6	65.7	76.4	77.3	76.4	83.9	83.9
4	33.5	31.8	34.2	30.6	30.5	37.0	33.9	33.9
5	35.9	36.1	36.6	36.2	35.9	45.0	44.4	44.4
6	26.2	26.1	26.5	26.4	26.4	28.0	27.8	27.8
1	26.5	26.5	27.0	26.7	26.7	31.7	31.5	31.6
0	34.8	34.7	34.8	34.7	34.7	33.8 55.6	33.7	33./
9 10	42.7	42.7	41.0	41.9	42.0	27.0	33.3	22.2
10	38.0	37.5	30.0	33.7	33.7	28.7	37.5	280
12	212.8	212.7	212.9	213.2	213.0	212.5	2124	2124
13	55 7	55.6	557	55.6	55 5	55.4	55 3	55 3
14	56.0	55.8	56.2	56.0	56.0	55.9	55.7	55.5
15	31.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8
16	79.8	79.4	79.8	79.8	79.7	79.7	79.4	79.3
17	54.3	54.3	54.3	54.3	54.3	54.3	54.3	54.3
18	16.1	16.0	16.1	16.0	16.0	16.1	16.1	16.1
19	23.4	23.1	23.4	23.1	23.1	13.1	12.8	12.8
20	43.0	42.9	42.7	42.6	42.6	42.6	42.6	42.6
21	14.0	13.9	13.9	13.9	13.8	13.1	13.8	13.8
22	109.3	109.3	109.3	109.3	109.2	109.3	109.3	109.3
23	31.5	31.5	31.5	31.4	31.4	31.4	31.4	31.4
24	29.2	29.2	29.2	29.2	29.2	29.2	29.2	29.2
25	30.6	30.5	30.3	30.5	30.5	30.5	30.5	30.5
26	67.0	67.0	67.0	66.9	66.9	66.9	66.9	66.9
27	17.3	17.3	17.3	17.3	17.3	17.3	17.3	17.3
Gal-1'		103.1		101.6	101.4		103.2	103.2
(Glc) 2'		81.6		79.7	77.6		73.4	73.8
3'		76.9		88.1	84.2		75.5	75.2
4		69.8		70.0	69.6		79.4	79.7
5		/7.0		/8.2	/0.1		/5.9	/5.0
0 Cla 1//		02.9		03.2	03.4		60.6	00.0
0ic-1 2″		75.2		104.2	105.0		104.0	103.2 91.1
2"		79.1		79.6	79.2		81.1 97.1	01.1 96.0
5 4″		71.8		78.0	78.5		70.3	70.2
5"		78.5		78.5	78.1		78.1	78.3
6"		62.0		62.3	62.3		62.7	62.7
Glc-1‴		0210		104.7	104.2		104.9	104.6
2‴				75.2	74.6		75.0	75.4
3‴				78.3	78.1		78.3	78.0
4‴				72.3	72.6		71.3	71.3
5‴				78.5	78.1		78.6	77.4
6‴				62.3	62.1		62.9	62.9
Xyl-1""							104.9	104.6
2''''							75.7	75.2
3‴‴							77.5	75.9
4''''							70.2	76.0
5''''							67.2	64.0
Rha-1'''''								99.7
2'''''								72.4
3'''''								72.4
4''''								74.8
5''''								69.8
6'''''								18.5

Table 1. ¹³C NMR data of compounds YS-VI, -VII, -VIII, -IX, -X, 6-8 (in pyridine-d₅)

20 with a mixt. of H_2O and MeOH to give YS-VI (52 mg), YS-VII (63 mg), YS-VIII (185 mg), YS-IX (122 mg) and YS-X (57 mg), -XI (58 mg), -XII (34 mg) and -XIII (27 mg), together with P-1, YG-2 and YG-3. YS-VI (1), needles, mp 245–247°,

 $[\alpha]_{D}^{26} - 13.8^{\circ}$ (MeOH; c 0.58), IR v_{max}^{KBr} cm⁻¹: 3200–3500 (OH), 1708, 980, 915, 900, 860 (915 < 900). FABMS m/z 793 [M + Na]⁺, 809 [M + K]⁺. YS-VII (2), needles, mp 260–261° (dec.), $[\alpha]_{D}^{24} - 13.6^{\circ}$ (CHCl₃-MeOH 1:1; c 1.0), IR v_{max}^{KBr} cm⁻¹: 3200–3500 (OH), 1705, 982, 920, 900, 863 (900 > 920). FABMS m/z 939 [M + Na]⁺, 955 [M + K]⁺. YS-VIII (3), needles, mp 279–281° (dec.), $[\alpha]_{D}^{26}$ = 5.33° (MeOH; *c* 0.75), IR $\nu_{\text{Mar}}^{\text{KB}}$ cm⁻¹: 3200–3500, 1718, 1650, 990, 920, 900, 870 (900 > 920). FABMS m/z 939 [M + Na]⁺. YS-IX (4), needles, mp 258–259° (dec.), $[\alpha]_{D}^{26}$ - 23.7° (MeOH; *c* 0.85), IR $\nu_{\text{Mar}}^{\text{KB}}$ cm⁻¹: 3200–3500, 1700, 980, 920, 900, 860 (900 > 920). FABMS m/z 1087 [M + Na]⁺. YS-X (5), amorphous powder, $[\alpha]_{D}^{26}$ = 3.8.0° (CHCl₃–MeOH 1:1; *c* 1.6). IR $\nu_{\text{Mar}}^{\text{KBr}}$ cm⁻¹: 3200–3500, 1700, 980, 920). FABMS m/z 1233 [M + Na]⁺, 1249 [M + K]⁺.

Acidic hydrolysis of compounds 1-5. Compounds 1 (10 mg), 2 (5 mg), 3 (15 mg), 4 (10 mg) and 5 (6 mg) were hydrolysed with 2 M HCl-MeOH for 2 hr. The usual work-up afforded the aglycone 6 (8 mg), needles, mp 186–188°, $[\alpha]_{D}^{22} + 44.4^{\circ}$ (CHCl₃; c 0.27), HRMS m/z 430.3061 ([M]⁺, calcd for C₂₇H₄₂O₄: 430.3081), IR v ^{KBr}_{max} cm⁻¹: 3500, 2851, 1706, 983, 923, 900, 866 (900 > 923), ORD (MeOH; c 0.1) λ_{ext} 306 nm ([ϕ] + 2715), 266 (-3211), ¹H NMR (CDCl₃): 0.79 (3H, d, J = 6.1 Hz), 1.04, 1.05 (3H each, s), 1.07 (3H, d, J = 7.1 Hz), 3.29–3.48 (2H, m, 26-H₂), 4.10 (1H, br s, $W_{1/2} = 7$ Hz, 3-H), 4.36 (1H, m, 16-H), 7 (4 mg) needles, mp 225–227° (dec.), $[\alpha]_{\rm p}^{26}$ – 16.5° (MeOH; c 0.2), HRMS m/z 446.3021 ([M]⁺, calcd for C₂₇H₄₂O₅ 446.3010), IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3500, 2870, 1702, 984, 922, 901, 864 (901 > 922), ORD (MeOH; c 0.2) λ_{ext} 306 nm ([ϕ] + 1422), 269 (-2407), ¹H NMR $(CDCl_3)$: 0.79 (3H, d, J = 6.4 Hz), 1.04 (3H, s), 1.06 (3H, d, J = 6.9 Hz), 1.07 (3H, s), 3.35–3.49 (2H, m, 26-H₂), 3.67 (1H, m, 2-H), 3.99 (1H, br s, 3-H), 4.33 (1H, m, 16-H) and 8 (5 mg), needles, mp 243–244°, $[\alpha]_{D}^{22}$ – 10.7° (MeOH; c 0.28), HRMS m/z 446.3078 $([M]^+, calcd for C_{27}H_{42}O_5 446.3032), IR v_{max}^{KBr} cm^{-1}: 3500, 2861,$ 1707, 983, 923, 902, 864 (902 > 923), ORD (MeOH; $c \ 0.04$) λ_{ext} 310 nm ($[\phi]$ + 1890), 261 (-3720). From the hydrolysates of 2 and 5, the aglycones 6 and 8, respectively, were identified by TLC. The sugar components were examined by TLC (CHCl₃-MeOH-H₂O, 14:6:1, 2; R_f 0.34 glucose, 1 and 3; R_f 0.31 galactose and 0.34 glucose, 4; R_f 0.31 galactose, 0.34 glucose and 0.52 xylose, 5; R_f 0.31 galactose, 0.34 glucose, 0.52 xylose and 0.57 rhamnose).

Acetylation of compounds 7 and 8. Acetates 7a and 8a were prepared from 7 and 8 with Ac₂O and pyridine and purified on CC (hexane-EtOAc, 3:1). ¹H NMR (CDCl₃) 7a: δ 0.79 (3H, d, J =6.3 Hz), 1.03 (3H, s), 1.07 (3H, d, J = 6.9 Hz), 1.12 (3H, s), 1.98, 2.09 (3H each, s, OAc × 2), 3.35 (1H, 26-Ha), 3.49 (1H, 26-He), 4.35 (1H, m, 16-H), 4.75 (1H, ddd, J = 2.4, 4.6, 10.8 Hz, 2-H), 5.32 (1H, br d, J = 2.4 Hz, 3-H). 8a: δ 0.78 (3H, d, J = 6.3 Hz), 1.00, 1.04 (3H each, s), 1.06 (3H, d, J = 7.1 Hz), 2.02 (6H, s, OAc × 2), 3.4 (2H, m, 26-H₂), 4.33 (1H, m, 16-H), 4.77 (1H, m, 3-H), 5.03 (1H, m, 2-H).

Methylation of compounds 1–4. Compounds 1 (20 mg), 2 (10 mg) 3 (20 mg) and 4 (30 mg) were permethylated with NaH and MeI by Hakomori's method. The products were purified by CC (hexane-Me₂CO, 5:1) to afford permethylates 1a (4 mg), amorphous powder, ¹H NMR (CDCl₃): 4.22, 4.74 (each 1H, d, J = 7.8 Hz), 2a (5.2 mg), amorphous powder, $[\alpha]_D^{28} - 3.2^{\circ}$ (CHCl₃; c 0.62), ¹H NMR (CDCl₃): 4.28 (1H, d, J = 7.6 Hz), 4.93, 4.96 (1H each, d, J = 7.8 Hz), 3a (17.3 mg), amorphous powder, $[\alpha]_D^{23}$ + 18.5° (CHCl₃; c 0.8), ¹H NMR (CDCl₃): 4.25, 4.81 (1H each, d, J = 7.6 Hz), 4.81 (1H, d, J = 7.8 Hz), MS m/z 413, 219, 187, 4a (13.8 mg), amorphous powder, $[\alpha]_D^{23} + 20.3^{\circ}$ (CHCl₃: c 0.69, ¹H NMR (CDCl₃): $\delta 4.35$ (1H, d, J = 7.8 Hz), 4.72 (1H, d, J = 7.3 Hz), 4.91 (1H, d, J = 7.4 Hz), 5.04 (1H, d, J = 7.6 Hz), MS m/z 583, 443, 391, 219, 187, 175. Methanolysis of compounds 1a and 4a. Compounds 1a (5 mg), 2a (5 mg), 3a (8 mg) and 4a (13.8 mg) were separately refluxed with 2 M HCI-MeOH. The neutralized (KOH-MeOH) and the concd hydrolysates were examined by TLC and identified with the aid of authentic samples as methyl 2,3,4,6-tetra-Omethyl-D-glucopyranoside and methyl 3,4,6-tri-O-methyl-D-glucopyranoside from 1a, methyl 2,3,4,6-tetra-O-methyl-D-glucopyranoside and methyl 4,6-di-O-methyl-D-glucopyranoside from 2a, methyl 2,3,4,6-tetra-O-methyl-D-glucopyranoside and methyl 4,6-di-O-methyl-D-glacopyranoside from 3a and methyl 2,3,4,6-tetra-O-methyl-D-glucopyranoside, methyl 2,3,4-tri-Omethyl-D-xylopyranoside, methyl 2,3,6-tri-O-methyl-D-galactopyranoside and methyl 4,6-di-O-methyl-D-glucopyranoside from 4a.

The methanolysates of **1a** and **4a** were subjected to CC over silica gel (hexane-Me₂CO, 10:1) to afford mexogenin monomethyl ether (**7b**, 2 mg) and manogenin monomethyl ether (**8b**, 7 mg). **7b** and **8b** were acetylated with Ac₂O-pyridine (each 1 ml) in the usual manner to give the corresponding monoacetate (**7c**, 1.5 mg and **8c**, 4.5 mg). ¹H NMR (CDCl₃) **7c**; $\delta 0.80$, 1.02 (3H each, d, J = 6.3 Hz), 1.12, 1.16 (3H each, s), 2.11 (3H, s, OAc), 3.36 (3H, s, OMe), 3.25-3.47 (2H, m, 26-H₂), 3.51 (1H, m, 2-H), 4.35 (1H, m, 16-H), 5.42 (1H, br d, J = 2.4 Hz, 3-H), **8c**; 0.78 (3H, d, J= 6.3 Hz), 0.94, 1.05 (3H each, s), 1.06 (3H, d, J = 7.5 Hz), 2.06 (3H, s, OAc), 3.36 (3H, s, OMe), 3.30–3.50 (3H, m, 26-H₂ and 2-H), 4.34 (1H, m, 16-H), 4.67 (1H, m, 3-H).

Enzymic hydrolysis of 5. Compound 5 (5 mg) was dissolved in MeOH (0.2 ml), HOAc-NaOAc buffer (pH 4.5, 0.5 ml), crude hesperidinase (3 mg) added, and the mixt. incubated at 37° overnight. The reaction mixt. was evapd to dryness in vacuo, the residue examined by TLC and identified as 4 and rhamnose.

REFERENCES

- Nakano, K., Matsuda, E., Tsurumi, K., Yamasaki, T., Murakami, K., Takaishi, Y. and Tomimatsu, T. (1988) *Phytochemistry* 27, 3235.
- Nakano, K., Yamasaki, T., Imamura, Y., Murakami, K., Takaishi, Y. and Tomimatsu, T. (1989) *Phytochemistry* 28, 1215.
- 3. Djerassi, C. and Ehrlich, R. (1956) J. Am. Chem. Soc. 78, 440.
- Tori, K. and Aono, K. (1964) Ann. Rept. Shionogi Res. Lab. 14, 136.
- 5. Tori, K., Seo, S., Terui, Y., Nishikawa, J. and Yasuda, F. (1981) Tetrahedron Letters 22, 2405.
- Pant, G., Sati, O. P., Miyahara, K. and Kawasaki, T. (1986) *Phytochemistry* 25, 1491.
- 7. Blunden, G. Y., Jewers, K. and Burbage, M. B. (1974) Phytochemistry 13, 2025.
- 8. Gonzalez, A. G., Barreira, F., Gonzalez, H., Salazar, J. A. and Lopez, E. S. (1972) An. Quim. 309.
- 9. Hakomori, S. (1964) J. Biol. Chem. 55, 205.
- Djerassi, C. and Fishman, J. (1955) J. Am. Chem. Soc. 77, 4291.
- 11. Eggert, H. and Djerassi, C. (1975) Tetrahedron Letters 3635.
- Marker, R. E., Wagner, R. B., Ulshafer, P. R., Wittbecker, E. L., Goldsmith, D. P. J. and Ruof, C. H. (1943) J. Am. Chem. Soc. 65, 1199.
- 13. Stohs, S. J. and Obrist, J. J. (1975) Phytochemistry 14, 239.