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 With a view to discovering new electron donors for low-

dimensionally metallic materials, the title compounds were prepared 

via the corresponding 1,8-dichalcogen-bridged naphthalenes. Their 

donor characters were examined by cyclic voltammetry, as compared 

with those of the reference compounds.

 The discovery of tetrathiafulvalene (TTF), forming charge-transfer salts 

with low-dimensionally metallic properties, has stirred considerable interest in 

searching new electron donors which exhibit similar conductivity. l) The hitherto 

unknown binaphtho[1,8-de]-1,3-dithiin-2-ylidene 1 belongs to the same tetrathia-

ethylene class, but differs structurally from TTF type regarding the fused hetero-

cyclic member. From another viewpoint, it may be regarded as an extended type 

with ethylene conjugation of 1,8-dichalcogen-bridged naphthalene, which has been 

noticeable as a novel class of donor. 2-4) In this context, it is very instructive 

to examine the properties of 1 as a potential donor. In addition, its selenium 

analogue 2 looks further promising in expectation of enhanced electron transfer 
due to introduction of the more polarizable chalcogen. We now report the 

syntheses and electrochemical properties of 1 and 2.

 The synthetic route of 1 is shown in Scheme 1. Almost all symmetrical TTF 

derivatives are generally prepared by coupling of two identical heterocyclic 

moieties, usually 1,3-dithiole-2-thione or 1,3-dithiolium ion. 5) Compound 1 is 

expected to be similarly accessible from desulfurized coupling of naphtho[1,8-de]-

l,3-dithiin-2-thione 6. Nakayama et al. already reported the formation of the 

precursor 6 as a minor product on photolysis of naphtho[1,8-de]-1,2,3-thiadiazine 
in carbon disulfide. 6) We have developed an alternative access via naphtho-

[l,8-cd]-l,2-dithiole 4, which is of choice on large-scale preparation. The 
intermediate 4 was previously prepared by some methods, i.e., a direct thermal 
reaction of naphthalene and sulfur, 7) multistage reactions starting with diazo-
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 Scheme 1. 

tization of 1-aminonaphthalene-8-sulfonic acid, 8) and a reaction of 1,8-dilithio-

naphthalene with sulfur. 2) Sandmann's and other groups recently reported direct 

substitution of unactivated aryl halides involving peri-disubstituted arenes with 

metal dichalcogenide in a dipolar aprotic solvent. 4,9) In a similar manner, 

sodium was allowed to react with elemental sulfur at 110 C in hexamethylphosphoric 

triamide to form sodium disulfide, which was in situ treated with 1,8-dichloro-

naphthalene 310) at 150 C, giving 4 in 46% yield. 11) Reduction of 4 with sodium 

borohydride at RT in tetrahydrofuran-ethanol gave quantitatively naphthalene-1,8-

dithiol 5,12) which was subsequently treated with N,N'-thiocarbonyldiimidazole at 

-15 C to afford 6 in 94% yield.13) All attempts to convert 6 into the target 

molecule 1 using phosphorus reagents such as triethyl phosphite, trimethyl phos-

phite, and triphenyl phosphine were unsuccessful. The exclusive product from 

heating,6 at 110 C in triethyl phosphite was assigned to diethyl naphtho[1,8-de]-

1,3-dithiin-2-yl phosphonate 7 (92% yield), 14) while the other phosphorus reagents 

led to unidentified products. The formation of 7 is most likely rationalized by 
a mechanism as shown in Scheme 2.

 Scheme 2. 

Compound 7 offers an additional approach to 1, because it may be an appro-

priate reagent for a Wittig modification developed by Wadsworth and Emmons.l5) 

Thus 7 was treated with lithium diisopropylamide at-78 C in tetrahydrofuran to
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generate a phosphonate carbanion, which, however, did not react with thione 6. 

As the real counterpart, naphtho[1,8-de]-1,3-dithiin-2-one 8 was prepared in 97% 

yield from a reaction of dithiol 5 and N,N'-carbonyldiimidazole in a similar 

manner as described for the synthesis of 6.16) Finally, treatment of the above 

phosphonate carbanion with 8 gave binaphtho[1,8-de]-1,3-dithiin-2-ylidene 1 in 

92% yield. 17) 

The synthesis of the selenium analogue 2 was carried out in a similar, but 

shorter route as shown in Scheme 3. Thus a reaction of 3 with sodium diselenide 

in hexamethylphosphoric triamide at 100 C gave naphtho[1,8-cd]-1,2-diselenole 9 

in 69% yield. 18) The reduction of 9 with lithium aluminium hydride at RT in N 

tetrahydrofuran, followed by treatment with thiophosgene produced naphtho[1,8-de]-

1,3-diselenin-2-thione 10 in 45% yield. 19) In contrast to the sulfur case, a 

reaction of 10 with trimethyl phosphite in refluxed benzene gave directly the 

desired binaphtho[1,8-de]-1,3-diselenin-2-ylidene 2 in 66% yield.20)

Scheme 3.

The structures of 1 and 2 were characterized by spectroscopic and elemental 

analyses. Both 1H-NMR spectra showed aromatic signals consistent with 1,8-

symmetrically disubstituted naphthalene. In addition, both MS spectra showed 

satisfactory molecular ion peaks involving isotopic peaks due to sulfur or 

selenium. 

 The cyclic voltammetry of 1 exhibited a reversible redoxwave, whose half-

wave wave oxidation potential was situated at 1.14 V vs. a Ag/AgCl reference electrode 

in benzonitrile (0.1 M Bu 4NClO4, Pt electrode, 100 mV-s-1 scan rate). In 

contrast, the cyclic voltammetry of naphtho[1,8-de]-1,3-dithiin 1121) and naphtho-

[1,8-de]-2-isopropylidene-l,3-dithiin 1222) showed irreversible oxidations with 

somewhat higher peak potentials. Thus the easier oxidation for 1 and the higher 

stability of the resulting radical cation may be attributed to extended conjuga-

tion of it-electrons through the central olefin. On the other hand, the cyclic 

voltammetry of 2 again showed an irreversible oxidation, though its peak poten-

tial was the almost same as that of 1. The 

introduction of selenium does not serve to 

enhance the donor character of 2 and rather 

prompts the resulting radical cation to de-

compose owing to labile C-Se bond relative 

to C-S bond.
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