REDUCTION OF β -KETOSULFOXIDES : A HIGHLY EFFICIENT ASYMMETRIC SYNTHESIS OF BOTH ENANTIOMERS OF METHYL CARBINOLS FROM THE CORRESPONDING ESTERS

GUY SOLLADIÉ^{*}, CHRISTINE GRECK, GILLES DEMAILLY AND ARLETTE SOLLADIÉ-CAVALLO

Laboratoire de Stéréochimie de l'Ecole Nationale Supérieure de Chimie (ERA 687), Université Louis Pasteur, 67008 STRASBOURG - France

Summary It is shown that reductions of β -ketosulfoxides of identical chirality (R) at sulfur, lead to reduction products of opposite stereochemistry according to the reducing agent used. The high enantiomeric excesses obtained (80 to 100%) provide a general route to both enantiomers of methylcarbinols from the corresponding esters.

Several studies during the last few years emphasized the versatility of the chiral sulfoxide group in asymmetric synthesis¹ The moderate extent of asymmetric induction in the addition of a carbanion α to a sulfoxide² to a carbonyl in comparison to the high enantiomeric excesses obtained^{3a,b} during aldol type condensation of α -sulfinglenolate anions suggested the importance of chelating factors

In this context, β -ketosulfoxides seem to be interesting models to study 1,3-asymmetric induction. Steric and chelation control of the asymmetric induction in a way similar to that occuring with α -alkoxyketones⁴ could be anticipated

However the litterature results showed that Grignard additions to β -ketosulfoxides⁵ and metal hydrides reductions⁶ were not as stereospecific as expected (40% ee and 68% ee respectively) Reduction of β -ketosulfoximines^{7,8} reported recently gave also relatively poor e e

We report in this communication a more complete study of the reduction of β -ketosulfoxides, which provides a general route to both enantiomers of methylcarbinols

 β -ketosulfoxides are readily available from esters (sheme 1) Diastereoisomeric ratios of the resulting β -hydroxysulfoxides were determined on crude products by 200 MHz ¹H-NMR The AB parts of the ABX systems in the two diastereomers <u>2</u> and <u>3</u> are (in every case a,b,c) noticeably non-equivalent allowing determination of their ratios One example is shown on scheme 2

We investigated a variety of reducing agents, and table I reports the corresponding results in the case of the β -ketosulfoxide <u>la</u> at -78°C The absolute configuration <u>2a</u> or <u>3a</u> of the major stereoisomer was assigned by chemical correlation with the known benzoate of (+) <u>S</u> 2-butanol (scheme 3)

Scheme 2. ¹HNMR (CDCl₃/TMS, Bruker WP-200) of the AB parts of diastereomeric mixtures $(\underline{2a} + \underline{3a})$ obtained from LiAlH₄ or DIBAL reductions.

These results show that it is actually possible to obtain, from the same chirality (<u>R</u>) at sulfur, reduction products of opposite stereochemistry according to the reducing agent used. Sodium, lithium, tetrabutylammonium borohydride as well as lithium aluminium hydride gave mainly the diastereoisomer <u>3a</u> <u>R</u> <u>R</u> (about 60% e e) which indicated that the cation is not playing an important role in the control of the stereochemistry. On the other hand diborane and diisobutylaluminium hydride (DIBAL) gave a completely reverse result with the main formation of the diastereoisomer <u>2a</u> <u>S</u> <u>R</u> (60% e e with DIBAL). Other reducing agents such as lithium tri-sec-butyl borohydride, zinc borohydride and borane-methylsulfide complex, showed a lower stereospecificity.

TABLE I

reducing agent	Solvant	<pre>% diastereoisomeric ratio 3(RR)/2 (SR)</pre>
NaBH ₄	Et O/THF	69/31
NaBH ₄	EtOH	80/20
L1BH4	Et O/THF	81/19
$(n-Bu)_4$ ^{NBH} 4	Et ₂ O/THF	85/15
L1AlH4	Et ₂ 0/THF	84/16
LiEt ₃ BH	THF	80/20
Lı(sec-Bu) ₃ BH	THF	66/34
$Zn(BH_4)_2$	Et ₂ 0/THF	66/34
$Zn(BH_4)_2$	EtOH	60/40
Me ₂ S, BH ₃	THF	53/47
B ₂ H ₆ , THF	ТНЬ	30/70
(1-Bu) AlH 2	THF	22/78

Reduction of β -ketosulfoxide la at -78°C

Finally as shown in Table II the enantiomeric excesses can be significantly increased by lowering temperature to -100° C Compound <u>la</u> was reduced to the diastereoisomer <u>3a R R</u> (86% e e) with lithium aluminium hydride while DIBAL lead to the other diastereoisomer <u>2a S R</u> (76% e e) In the same conditions <u>lb</u> having a phenyl ring α to the ketone was reduced with a slightly lower asymmetric induction. It is important to note that the longchain β -ketosulfoxide <u>lc</u> gave at -78°C, with both reagents, the highest enantiomeric excesses <u>80</u> and 100% e e

TABLE II

	Dia	stereolsomeric ra 3(RR)/2(SR)	at10	
Reducing Agent	R = Et	$\frac{lb}{R = Ph}$	lc R=n-C ₉ H ₁₉ δ	
	-100°C ^α	-100°C ^α	-78°C ^α	
L1A1H /Et 0/THF	93/7 ⁸	90/10 ⁸	90/10 ⁸	
DIBAL/THF	12/88	18/82	0/100	
^{α} reduction temperature ^{β} diastereoisomeric ratios were determined by proton NMR at 200 MHz. Yabsolute configuration was determined from the known optical rotations ¹⁰ of <u>2b</u> and <u>3b</u> . ^{δ} absolute configuration was determined by chemical correlation to the known ¹¹ alcohol <u>4c</u> , (-) <u>R</u>				

Reduction of β -ketosulfoxides <u>1</u>

Synthetic applications of this asymmetric reduction are under progress

BIBLIOGRAPHY

1)	G SOLLADIE, Synthesis 185 (1981)		
2)	N KUNIEDA, M KINOSHITA and J NOKAMI, Chem Letters 289 (1977)		
3)	a) C MIOSKOWSKI and G SOLLADIE, J Chem Soc Chem Comm 162 (1977)		
	b) C MIOSKOWSKI and G SOLLADIE, Tetrahedron Letters 36 , 227,(1980)		
4)	W C STILL and J H McDONALD, Tetrahedron Letters $\underline{21}$, 1031 (1980)		
	W C STILL and J A SCHNEIDER, Tetrahedron Letters 21 , 1035 (1980)		
5)	N KUNIEDA, J NOKAMI, M KINOSHITA, Chem Letters 369 (1974)		
6)	R ANNUNZIATA, M CINQUINI and F COZZI, J Chem Soc Perkin Trans I,		
	1687 (1979)		
7)	R ANNUNZIATA, M CINQUINI and F COZZI, J Chem Soc Perkin Trans I,		
	1109 (1981)		
8)	C R JOHNSON and C J STARK, J org Chem 47 , 1196, (1982)		
9)	J KENYON and R H PICKARD, J Chem Soc 115 (1915)		
10)	G I TSUCHIHASHI, S IRIUCHIJIMA and M ISHIBASHI, Tetrahedron Letters		
	4605 (1972)		
11)	R H PICKARD and J KENYON, J Chem Soc p 1923 (1913)		
(Received in France 13 July 1982)			