3,3'-DI-O-METHYLELLAGIC ACID 4-O-RHAMNOSIDE FROM THE ROOTS OF *PROSOPIS JULIFLORA*

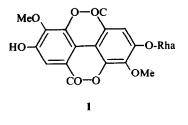
S. MALHOTRA and K. MISRA

Chemical Laboratories, University of Allahabad, Allahabad 211002, India

(Received 28 November 1980)

Key Word Index—Prosopis juliflora; Leguminosae; 3,3'-di-O-methylellagic acid 4-O-α-L-rhamnopyranoside; procyanidin.

Abstract—From the roots of *Prosopis juliflora* a new glycoside, 3,3'-di-O-methylellagic acid 4-O- α -L-rhamnopyranoside, and procyanidin have been characterized.


In a previous communication [1] we reported ellagic acid 4-O- α -L-rhamnosylgentiobioside from the pods of *Prosopis juliflora* DC. We now report the isolation and characterization of a new glycoside, 3,3'-di-Omethylellagic acid 4-O- α -L-rhamnopyranoside (1). Procyanidin was also isolated and identified by standard procedures [2].

1 was shown to be a non-reducing glycoside by a positive Molisch test and a negative aniline hydrogen phthalate test. A yellow colour with alkali and other diagnostic reactions [3], together with $v_{\text{max}}^{\text{KBr}}$ cm⁻¹ at 1730 for α,β -unsaturated lactone suggested it was an ellagic acid derivative. IR peaks at 3440 (-OH) and 1170 (-OMe)cm⁻¹ indicated that it could be a partial methyl ether of ellagic acid. This was further substantiated by its UV, $\lambda_{\text{max}}^{\text{EtOH}}$ at 271 nm; 3,3'-di-O-methyl ellagic acid has λ_{max} 275 nm [4]. On acid hydrolysis the glycoside gave an aglycone and

On acid hydrolysis the glycoside gave an aglycone and rhamnose, identified by paper co-chromatography and preparation of its osazone. The aglycone, $C_{16}H_{10}O_8$, mp 273°, $\lambda_{max}^{\rm BioH}$ 275 nm, analysed for two methoxyl groups. A bathochromic shift of 33 nm with sodium ethylate suggested the presence of at least one free phenolic hydroxyl either at the 3,3'- or the 4,4'-positions of the ellagic acid molecule. The absence of a bathochromic shift with sodium acetate indicated that positions 3,3' are substituted with two methoxyl groups [5]. The aglycone was therefore identified as 3,3'-di-O-methylellagic acid.

The glycoside 1 was methylated with diazomethane and the methyl ether on acid hydrolysis yielded an aglycone identified as 3,3'-4-tri-O-methylellagic acid by its mp 289° (lit. 288–289°) and its monoacetate mp 262° (lit. 264°) [6,7]. Therefore, the remaining hydroxyl at position 4 must be linked to the sugar.

Quantitative sugar estimation suggested the glycoside to be a monosaccharide. Consumption of 2 mol of periodate by the glycoside methyl ether and consequent liberation of 1 mol of formic acid confirmed the pyranose form of the sugar. The hydrolysis of the glycosides with takadiastase confirmed the α -nature of the glycosidic linkage. This led to the formulation of the compound as 3,3'-di-O-methylellagic acid 4-O- α -L-rhamnopyranoside (1). This is the first report of 1 in nature, although its 4-Oglucoside has been reported earlier [4].

EXPERIMENTAL

Plant material. Plant material was collected locally and identified by the Allahabad branch of the Botanical Survey of India.

Chromatography. R_f values are for ascending PC except for the sugar, the solvents being (a) *n*-BuOH-HOAc-H₂O (4:1:5); (b) 2% HOAc and (c) 10% HOAc using Whatman No. 1 chromatostrips.

Extraction. Air-dried and powdered roots (3 kg) were exhaustively extracted by reflux with Me₂CO $(5 \times 41.)$ The combined concd Me₂CO extracts (150 ml) were successively extracted with hexane, C₆H₆ and EtOAc and the remaining mother liquor macerated with Me₂CO. The first two fractions were rich in steroids and fatty constituents and were rejected. The EtOAc-soluble fraction was charged on a column of Si gel to give pure procyanidin. The Me₂CO-soluble fraction was purified to yield chromatographically homogeneous 1.

3,3'-Di-O-methylellagic acid 4-O- α -L-rhamnopyranoside (1). Mp 186° (d), R_f 0.19 and 0.45 in solvents (a) and (c) (spray: FeCl₃). Found: C, 54.99; H, 4.1; -OMe, 13.00; calc. for C₂₂H₂₀O₁₂: C, 55.47; H, 4.20, -OMe, 13.02 %. UV λ_{max}^{EIOH} nm: 271, +NaOEt: 304 IR; ν_{max}^{KBF} cm⁻¹: 3440 (-OH), 1730 (α, β -unsaturated lactone), 1180 (-OMe), 1625, 1560, 1535, 1470, 1450, 1360, 1340, 1200, 1020 and 940.

Acid hydrolysis. 1 (0.02 g) was refluxed with aq. H_2SO_4 (7%, 3 ml) for 2.5 hr, the soln cooled and extracted with Et_2O . The Et_2O extract was evapd and the residue crystallized from dry Me_2CO-Et_2O as pale yellow crystals, mp 272° (lit. 274°). Found: C, 57.98; H, 3.3; -OMe, 18.11; calc. for $C_{16}H_{10}O_8$: C, 58.18, H, 3.33; -OMe, 18.78%. UV λ_{max}^{Enden} nm: 275. The remaining H_2O layer was neutralized with BaCO₃, concd and chromatographed (PC), R_f 0.37 (solvent (a); spray: aniline hydrogen phthalate); phenylosazone, mp 190° (lit. 190°).

Quantitative acid hydrolysis. 1 (0.1 g) was refluxed with aq. H_2SO_4 (7%, 3 ml) for 2.5 hr. The soln was extracted with Et_2O containing traces of C_5H_5N , dried, concd and the solid isolated and weighed. The neutralized H_2O layer (BaCO₃) was made up to 25 ml and the sugar estimated by the colorimetric method of Folin and Wu. Found: dimethyl ether of ellagic acid, 68.10; reducing sugar, 33.91; calc. for $C_{22}H_{20}O_{12}$, dimethyl ellagic acid, 68.2 and reducing sugar, 37.8%.

Methylation and hydrolysis. 1 (0.1g) was methylated with CH_2N_2 by standard procedures and the methylated glycoside (0.05g) refluxed with aq. H_2SO_4 (7%, 3ml) to give a yellow ppt. which crystallized from Me_2CO-Et_2O as yellow prisms. Found: -OMe, 26.8; calc. for $C_{17}H_{12}O_8$: -OMe, 27.1%.

Methyl ether acetate. To the methylated aglycone obtained above, $Ac_2O(2 \text{ ml})$ and $C_5H_5N(0.3 \text{ ml})$ were added and kept at 20° for 48 hr. The methyl ether acetate was obtained as pale yellow crystals from dioxan-petrol.

Acknowledgement—One of the authors (S.M.) thanks the CSIR, New Delhi, India for financial support.

REFERENCES

- 1. Malhotra, S. and Misra, K. (1981) Phytochemistry 20 (in press).
- Geissman, T. A. (1962) Chemistry of Flavonoid Compounds, p. 276. Pergamon Press, New York.
- 3. Moore, B. P. (1964) Aust. J. Chem. 17, 901.
- 4. Row, L. R. and Rao, G. S. R. S. (1962) Tetrahedron 18, 357.
- Jurd, L., Palmer, K. J., Stilt, F. and Shoolery, J. N. (1959) J. Am. Chem. Soc. 81, 4627.
- 6. Seshadri, T. R. and Vasishta, K. (1965) Phytochemistry 4, 317.
- 7. Briggs, L. H., Cambie, R. C., Lowry, J. B. and Shealy, R. N. (1961) J. Chem. Soc. 642.

Phytochemistry, Vol. 20, No. 8, pp. 2044–2047, 1981. Printed in Great Britain. 0031-9422/81/082044-04 \$02.00/0 © 1981 Pergamon Press Ltd.

A NOVEL TYPE OF BICOUMARIN RHAMNOSIDE FROM LASIOSIPHON ERIOCEPHALUS*

PRABHA BHANDARI and R. P. RASTOGI

Central Drug Research Institute, Lucknow 226001, India

(Revised received 9 October 1980)

Key Word Index—Lasiosiphon eriocephalus; Thymelaeaceae; furanobicoumarin rhamnoside; eriocephaloside; ¹³C NMR.

Abstract—A new furanobicoumarin rhamnoside has been characterized from the whole plant extract of Lasiosiphon eriocephalus.

In a previous paper [1] the characterization of erioside, a new 6,8-dihydroxy-7-glucosyloxy-coumarin from the ethyl acetate-soluble fraction of an ethanolic extract of *Lasiosiphon eriocephalus* was described. Examination of another eluate from the chromatography of this fraction resulted in the isolation of a new bicoumarin glycoside, which we have named eriocephaloside (1).

Eriocephaloside (1), $C_{24}H_{18}O_{10}$, developed an intense yellow colour with alkali, fluoresced white in UV radiation and gave a positive Fiegel test which indicated it was a coumarin glycoside (IR: 3400 and 1750 cm⁻¹). On acid hydrolysis, it yielded rhamnose and an aglycone which was insoluble in common organic solvents. The aglycone yielded a monoacetate, $C_{20}H_{10}O_7$, the IR spectrum of which contained a strong absorption band at 1775 cm⁻¹ (Ar–OAc), which indicated that the site for Oglycosidation was the phenolic hydroxyl group. Its MS had M⁺ at m/z 362 and this readily lost $-\text{COCH}_2$ from the phenolic acetoxy function to generate a fragment ion m/z 320 (2) which lost CO (twice) to give ions 3 and 4. The fragmentation pattern was consistent with the presence of two coumarin units in the molecule.

1 was converted into a triacetate, $C_{30}H_{24}O_{13}$. In its high resolution MS printout most of the very weak peaks at m/z above 320 either did not register or did not compute in a way that made much sense but the lower peaks (see below) corroborated the deductions made in the preceding paragraph. The ¹H NMR spectrum of the acetate contained signals for three alcoholic acetoxy methyls at δ 2.08 (6 H) and 2.24 (3 H) and hence indicated the absence of a free phenolic OH group in the molecule. It also contained a three-proton doublet (J = 6 Hz) at δ 1.25 due to a rhamnosyl methyl, a multiplet at 3.96 due to H-

^{*} CDRI communication No. 2801.