One-Pot Synthesis of 1-Substituted Cyclopropanols from Carboxylic Acid Chlorides

José Barluenga,* José L. Fernandez-Simon, José M. Concellon, Miguel Yus

Departamento de Química Organometálica, Facultad de Química, Universidad de Oviedo, E-33071 Oviedo, Spain

The *in situ* generated chloromethyl-lithium reacts at -78° C to -30° C with different acid chlorides (2:1 molar ratio) to afford, after lithiation with lithium powder, 1-substituted cyclopropanols.

Cyclopropanols¹ are interesting molecules in organic synthesis due mainly to their ability to be transformed into homoenolate derivatives.² Recently, we have reported a new method to prepare 1-substituted cyclopropanols starting from α, α' -dichloroacetone.³ In the present communication we report a new route for these compounds using commercially available carboxylic acid chlorides.

When different carboxylic acid chlorides 1 were successively allowed to react with *in situ* generated chloromethyllithium (from chloroiodomethane and methyllithium; 4 1: 2 molar ratio) in the presence of lithium bromide at $-78\,^{\circ}$ C, and an excess of lithium powder (1:5 molar ratio) at temperature ranging between -78 and $-30\,^{\circ}$ C, the corresponding 1-substituted cyclopropanols 2 were isolated (Tables 1 and 2). It is necessary to keep the temperature below $-30\,^{\circ}$ C in order to avoid the formation of ethylketones³ as by-products.

The mechanism of the reaction involves in the first step the lithium alcoholate 3, which undergoes lithiation to give the monolithiated species 4; the latter then suffers an spontaneous γ -elimination yielding after acid hydrolysis the cyclopropanols 2.

Table 1. 1-Substituted Cyclopropanols 2 Prepared

Prod- uct	R	Yield (%)a	b.p. (°C)/ mbar ^b	Molecular Formula ^c or Lit. b.p. (°C)/mbar
2a	<i>c</i> -C ₃ H ₅	45 ^d	56-59/20	C ₆ H ₁₀ O (98.1)
2b	n-C ₃ H ₇	37	42 - 44/20	42-43/203
2c	c-C ₄ H ₇	65	65~67/20	$C_7H_{12}O$ (112.2)
2d	n-C₄H₀	42	63-65/20	64-66/203
2e	$C_2H_5OCH_2$	50	58-60/20	$C_6H_{12}O_2$ (116.2)
2f	C_6H_5	80^{d}	103-105/20	$102-104/20^3$
2g	c-C ₆ H ₁₁	40	91-93/20	C ₉ H ₁₆ O (140.2)
2h	4 -CH $_3$ OC $_6$ H $_4$	63	90-100, 0,13°	75-78/0.76

- ^a Isolated yield based on the starting compound 1.
- b Distillation interval.
- Satisfactory microanalyses obtained: ± 0.3 , H ± 0.2 .
- d Hexamethylphosphoric triamide (HMPT) was added to the reaction mixture (1/HMPT: 1/2 molar ratio).
- e Bath temperature.

Table 2. Spectral Data of 1-Substituted Cyclopropanols 2

Product	IR (Film) ^a v (cm ⁻¹)	1 H-NMR (CCl ₄ , TMS + D ₂ O capillary) ^h δ (ppm)	13 C-NMR (CCl ₄ + D ₂ O capillary) ^b δ (ppm)	MS^{c} m/c (rel. int. %)
2a	3420 (OH; 3080, 3010	0.1-0.8 (m, 8 H, ring CH ₂); 0.9-4.1 (m, 1 H, CH); 2.6 (s, 1 H, OH)	2.4 (cyclopropyl CH ₂); 11.1 (cyclopropanol CH ₂); 16.2 (CH); 55.7 (C—O)	98 (M ⁺ , 1), 69 (54); 56 (25); 55 (67); 43 (36); 42 (34); 41 (100); 39 (86)
2h	(CH ring) ^d 3350 (OH); 3080 (CH ring)	0.2-0.7 (2m, 4H, ring CH ₂); 0.8-1.1 (m, 3H, CH ₃); 1.3-1.6 (m, 4H, CH ₂ CH ₂); 1.6-1.8 (m, 1H, OH) ^e	18.9 (CH ₂ -CH ₃); 18.9 (CH ₂ -CH ₃); 42.0 (CH ₂ -COH); 54.2 (C-O)	(34), 41 (100), 39 (80) 100 (M+, 19); 83 (16); 72 (57); 71 (77); 70 (21); 57 (99); 55 (100); 53 (26); 43 (87); 42 (19); 41 (40); 39 (30)
2c	3350 (OH); 3080 (CH ring)	0.3–0.6 (2m, 4H, cyclopropyl CH ₂ ; 1.5–2.2 (m, 8H, OH, cyclobutyl CH ₂ and CH)	10.3 (cyclopropyl CH ₂); 17.4, 24.1; (cyclobutyl CH ₂); 41.4 (CH); 56.0 (C—O)	112 (M ⁺ , 0.4); 84 (70); 83 (100); 55 (50)
2d	3350 (OH); 3080 (CH ring)	0.4-0.7 (2 m, 4H, ring CH ₂); 0.8-1.1 (m, 3 H, CH ₃); 1.2-1.8 [m, 7 H, OH and (CH ₂) ₃]	12.5 (ring CH ₂ ; 13.0 (CH ₃); 22.5, 27.9, 37.8 [(CH ₂) ₃]; 54.3 (C=O)	114 (M ⁺ , 12); 85 (46); 72 (52); 70 (46); 57 (100); 55 (95); 43 (30); 41 (30)
2e	3380 (OH); 3080 (CH ring)	0.3–0.8 (2 m, 4H, ring CH ₂); 1.2 (t, 3H, $J = 9$ Hz, CH ₃); 2.9 (s. 1H, OH); 3.4 (s. 2H, O – CH ₂); 3.5 (q. 2H, $J = 9$ Hz, CH ₂ – CH ₃)	11.2 (ring CH ₂); 14.9 (CH ₃); 53.9 (C-O); 66.4, 76.8 (2xCH ₂ -O)	115 (M * -1); 88 (70); 73 (23); 72 (44); 71 (16); 70 (37); 60 (100); 59 (18); 57 (22); 55 (19); 43 (41); 42 (53); 41 (20); 31 (24)
2f	3340 (OH); 3080 (CH ring); 3060, 3020, 1600, 1490, 750, 690 (HC=C)	0.8–1.2 (2m, 4H, ring CH ₂); 1.5 (s, 1H, OH); 6.8–7.2 (m, 5H _{arom})	17.4 (ring CH ₂); 55.5 (C-O); 124.1, 125.5, 127.7, 144.4 (C _{arom})	134 (M ⁺ , 24); 133 (100); 115 (16); 105 (65); 77 (51); 51 (17)
2g	3340 (OH); 3070 (CH ring)	0.3-0.6 (2 m, 4H, ring CH ₂); 0.6-0.8 (m, 1H, OH); 0.8-1.7 (2 m, 11H, cyclohexyl CH ₂ and CH)	11.7 (cyclopropyl CH ₂); 26.5, 26.7, 28.9 (cyclohexyl CH ₂); 34.3 (CH); 58.2 (C—O)	140 (M ⁻¹ , 17); 111 (32); 83 (100); 57 (18); 55 (62); 41 (22); 39 (18)
2h	3420 (OH); 3070 (CH ring); 3010, 1600 1510 (HC=C) ^d	0.7–1.2 (2 m, 4H, ring CH ₂); 2.0–2.2 (m, 1H, OH); 3.6 (s, 3H, O –CH ₃); 6.6–7.2 (m, 4H _{arom})	16.9 (ring CH ₂); 54.6 (CH ₃ -O); 55.4 (C-O); 113.4, 125.8, 136.8, 149.8 (C _{arom})	164 (M ⁺ , 13); 135 (100); 92 (13); 77 (14)

- ^a Recorded on a Perkin-Elmer 298 infrared spectrometer.
- ^b Recorded on a Varian FT-80A spectrometer.
- * Recorded on a HP-5987A spectrometer.
- d In CCl₄.
- ^e In CCl₄ + TMS_{capillary}; Recorded on a Varian EM-390 spectrometer.

Thus, in the case of $R = n \cdot C_3 H_7$, when the reaction mixture was hydrolyzed before the lithiation step, the expected dichloromethyl carbinol **5b** was isolated.

1-Substituted Cyclopropanols 2; General Procedure:

To a stirred solution of chloroiodomethane (3.88 g, 22 mmol), the carboxylic acid chloride (10 mmol) and lithium bromide (1.91 g, 22 mmol) in tetrahydrofuran (40 ml), 5 is added an ether solution of methyllithium (22 mmol) in 20 min, at $-78\,^{\circ}\text{C}$ (bath temperature) under argon. Stirring is continued for 2 h at the same temperature and then lithium powder (0.62 g, 90 mmol) is added to the mixture and it is stirred for 7 h, allowing to rise the temperature till $-30\,^{\circ}\text{C}$. The mixture

is then successively hydrolyzed with water (15 ml) and aqueous hydrochloric acid (10 ml), extracted with ether (3×15 ml), the organic layer dried with sodium sulfate, and evaporated (20 mbar). The residue is distilled *in vacuo* to afford the cyclopropanol **2** (Tables 1 and 2).

1-Chloro-2-(chloromethyl)-2-pentanol (5b):

To a stirred solution of chloroiodomethane (3.88 g. 22 mmol), n-butyryl chloride (1b; 1.06 g. 10 mmol), and lithium bromide (1.91 g. 22 mmol) in tetrahydrofuran (40 ml), is added an ether solution of methyllithium (22 mmol) in 20 min, at $-78\,^{\circ}\text{C}$ (bath temperature) under argon. Stirring is continued for 2 h at the same temperature and then the mixture is successively hydrolyzed with water (15 ml) and aqueous hydrochloric acid (10 ml), extracted with ether (3 × 15 ml), the organic layer is dried with sodium sulfate, and evaporated (20 mbar). The residue is distilled *in vacuo*; yield 0.74 g (43 %); b. p. 79–83 °C/20 mbar (Lit., 3 b. p. 80–84 °C/20 mbar)

IR (Film): $v = 3400 \text{ cm}^{-1}$ (OH).

'H-NMR (CCl₄ + D₂O capillary): $\delta = 0.8 \cdot 1.1$ (deformed t, 3 H, CH₃); 1.3–1.6 (m, 4 H, CH₃CH₂CH₂); 3.1 (br s, 1 H, OH); 3.5 ppm (s, 4 H, 2 × CH₂Cl).

¹³C-NMR (Neat + D₂O capillary): $\delta = 15.3$, 17.1, 38.5 (CH₃CH₂CH₂); 49.4 (CH₂Cl); 74.1 ppm (C-O).

- (1) For a review, see: Gibson, D.H., De Puy, C.H. Chem. Rev. 1974, 74, 605.
- (2) For reviews, see: Weystiuk, N.H. *Tetrahedron* **1983**, 39, 205. Hoppe, D. Argew. Chem. 1984, 96, 930; Angew. Chem. Int. Ed. Eng. **1984**, 23, 932. Stowell, J.C. Chem. Rev. 1984, 84, 409.
- (3) Barluenga, J., Flórez, J., Yus, M. Synthesis 1983, 647.
 (4) Matteson, D.S., Sadhu, K.M. Tetrahedron Lett. 1986, 795.
- (5) In the case of comounds 2a and 2f hexamethylphosphoric triamide (3.94 g, 22 mrnol) was added to the reaction mixture.
- (6) Brown, H.C., Rao, C.G., Ravindranathan, M. J. Am. Chem. Soc. 1977, 99, 7663.