SYNTHESES OF 1-O-ACYLALDOSE DERIVATIVES via THE CORRESPOND-1NG O-GLYCOSYLPSEUDOUREAS*

HIDEO TSUTSUMI AND YOSHIHARU ISHIDO

Department of Chemistry, Faculty of Science, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152 (Japan)

(Received June 2nd, 1982; accepted for publication, June 29th, 1982)

ABSTRACT

A series of 1-O-acylaldose derivatives was prepared in good yield through the reaction of 1,3-dialkyl-O-glycosylpseudoureas with carboxylic acids.

INTRODUCTION

1,2,3-Trialkylpseudoureas have been prepared² by treating an alcohol with a carbodiimide in the presence of copper(I) chloride [Cu(I)Cl]. On the other hand, the pseudoureas are well known to give the corresponding esters, ethers, and sulfides on reaction with carboxylic acids, phenols, and thiophenols, respectively³. Successive to a communication⁴ on the reaction of *O*-glycosylpseudoureas with a variety of nucleophiles, we reported⁵ the nucleophilic substitution reactions, with a series of phenols, of a pseudourea derivative, obtained from 2,3,4,6-tetra-*O*-benzyl- α -D-glucopyranose (1), bearing no protecting group to exert an anchimeric effect, and proved that the reaction proceeds through an SN2 mechanism, to give the corresponding phenyl β -D-glucopyranoside derivatives in good yields⁵. We now describe, in detail, the reaction of *O*-glycosylpseudoureas with carboxylic acids.

RESULTS AND DISCUSSION

Synthesis of 1-O-acyl-2,3,4,6-tetra-O-benzyl-D-glucopyranoses. — Treatment of 1 (2.0 mmol) with dicyclohexylcarbodiimide (2) (6.0 mmol) in the presence of copper(I) chloride (0.02 mmol) by fusion for 0.5 h at 80-85° gave the corresponding O-D-glucopyranosylpseudourea derivative (4), according to a method reported⁵. Compound 4 thus obtained was dissolved in 1,2-dimethoxyethane (DME), and treated with a carboxylic acid; the results thus obtained are summarized in Table I.

An equimolar reaction with benzoic acid (10) (Entry 3) gave the corresponding 1-benzoate (19) (62% yield), but reaction with 3 molar equivalents of 10 gave the product in 88% yield; the recovery of 1 decreased from 30 to 5% as the proportion

^{*}Partial Protection of Carbohydrate Derivatives, Part 11. For Part 10, see ref. 1.

TABLE I

Entry	Carboxylic	Reaction	1-0-Ac	cyl sugar deri	vative		Recovered
	acid (mmol)	time (h)		Yield (%)	α:β ^b	β anomer ^c	1 (%)
1	6 (6.0)	1	15	82	7:43	n.d. ^d	10
2	8 (6.0)	1	17	n.d.	1:4	15	n.d.
3	10 (2.0)	1	19	62	n.d.	53	30
4	10 (6.0)	1	19	88	3:22	70	5
5°	10 (6.0)	1	19	89	7:43	70	7
6	11 (2.2)	0.5	20	80	n.d.	n.d.	11
7	11 (6.0)	0.5	20	88	4:21	n.d.	6

reactions at 20–25° of carboxylic acids with O-(2,3,4,6-tetra-O-benzyl-d-glucopyranosyl)-pseudourea, resulting from the fusion of 1 with 2^a

^aA melt resulting from fusion of 1 (2.0 mmol) with 2 (6.0 mmol) in the presence of Cu(I)Cl (0.02 mmol) for 0.5 h at 80-85°, with stirring, was treated with a carboxylic acid (2.0-6.0 mmol) in DME under the conditions given in the Table. ^bThe ratios were calculated in terms of the area ratios of H-1 signals, due to the 1-O-acyl derivatives, in the ¹H-n.m.r. spectra. ^cThese yields are of the β anomers isolated by crystallization. ^aNot determined. ^ePrior to the reaction, the Cu(I)Cl was removed.

of 10 was increased. The stereoselectivity in the formation of the β anomer was, moreover, high ($\alpha:\beta = 3:17$). Copper(I) chloride was found scarcely to affect the reaction of 4 with 10 (Entry 5); removal of the catalyst after the formation reaction of 4 brought about no difference in the yield of 19, or in the ratio of the anomers.

The reaction with the strongly acidic *p*-nitrobenzoic acid (11) was effectively induced, despite use of an equimolar proportion and a short reaction-time (0.5 h), to give the corresponding 1-(*p*-nitrobenzoate) in 80% yield (Entry 6). Even the reaction with acetic acid (6) gave the corresponding 1-acetate (15) in good yield (Entry 1); this reaction was also induced smoothly in M aqueous acetic acid-dichloromethane at 0°, to give 15 (76% isolated yield; $\alpha:\beta = 7:43$), in addition to recovered 1 (24%). The reaction with N-benzoylglycine (8) (Entry 2) similarly gave the expected 1-O-(N-benzoylglycyl) derivative (17); however, it underwent undesirable decomposition during chromatography on silica gel, and thus was subjected to repeated recrystallization (to remove contaminant), giving only a 15% yield of the β anomer.

Subsequently, the reaction in chloroform was examined; 1 was treated with 2 (1.1 mol) in chloroform in the presence of a catalytic amount of copper(I) chloride for 2 days at room temperature, and the resulting solution was treated with 1.1 mol of a carboxylic acid for 1 h. The results thus obtained are summarized in Table II, together with those given by use of diisopropylcarbodiimide (3), instead of 2, for the reaction; the reactions of carboxylic acids 6-14 gave the corresponding 1-O-acyl derivatives 15-23 (67-89% yield).

Among these reactions, the yields of 20 and 21 were comparatively lower than those of the others (Entries 9 and 11), but were found to be improvable by

TABLE II

ę.
£
EN
80
ñ
ž
5
5
COUPL
8
CHE (
THE
AS
3
Ä
0
3
0Ľ
~
S
B
BY USE OF 2
~
W,
FOR
Ĕ
2
õ
WITH CARBOXYLIC ACIDS IN CHLORON
5
Z
8
8
8
¥
υ
Ē
2
õ
ē.
Å.
õ
Ħ
E
₹.
50
IOSES WITH O
ğ
4
2
ž
õ
-D-GLUC
1
Ģ
0-0-7
5
X
ENZYL
38
Ţ
RA-O-BI
-RA-
IET
Π.
÷
÷
a,
7
~
AC
3
Ŷ
-
QF.
<u> </u>
60
SZ
õ
NOIL
ACTION
NOIL

Entry	1	1-0-4	lcyl sug	tar deri	vative	Carbo- 1-O-Acyl sugar derivative Properties of β anomers				and a second					Properti	Properties of a	Recovered
	xylic acid	2	Yield (0/_)	$\alpha:\beta^{b}$	βc	M.P.ª	$[\alpha]_{D}^{22}$ (degrees)	vKBr max (cm ⁻¹)	¹ H-N.m.r. (H-1)	r. (H-1)	Molecular formula	Eleme (%)	ntal ar.	alyses	Elemental analyses ^e 1H-N.m.r. (H-1) (%)	s 1.r. (H-1)	1 (%)
		*	0			6	(c 1.0, CHCl ₃)	(c=0)	ŷ	J _{1,2} (Hz)		c S	Н	N	ô	$J_{1,2}^{J_{1,2}}(Hz)$	
1+	و	15 89	6	7:43	I	a.b.n	n.d.1	n.d.	5.63(d)	7.1					6.35(d)	3.3	æ
2†	٢	16 82	5	1:4	57	(m.*, syrup) 87.5–88.5(H)		1739	5.67(d)	7.0	C39H43O7	75.13	7.11		6.42(d)	2.8	13
31	80	17 n.	n.d.	19:81	21	133.5–134.5(M)	-5	1770	5.71(d)	6.2	C43H43NO8	73.58 73.58	6.21 6.21	2.04	6.40(d)	3.0	n.d.
41	6	18 87	٢	1:4	55	89.5-91(M)	+14	1760	5.84(d)	7.0	C44H45NO9	72.21	6.18		6.38(d)	2.4	6
5†	10	19 83		23:78	69	95-95.5(C)	-23	1742	5,91(dd)	5.5		17.7/)	0.20	(0)7	6.57(d)	3.0	14
6 3 ,Å	11	20 70	0	3:17	n.d.	111.° 96./-91.2(C), 97-98(H) 1111 5 96-98	157 - 157 - 157 -	1740	5.93(dd)	5.0 1.80					6.63(d) 3.0	3.0	6
75.4 85	11	20 85 21 67		29:71 4:21	4 4	(H)3.79-79	- 28	1749	5.89(d)	6.7	C41H39NO9				6.58(d)	2.8	8
§ 6	13	22 81		n.d.	58	107.5-109(M)	-12	1695	5.90(dd)	5.5	C41H40O8	(71.39 74.43	5.70 6.50	2.03)	n.d.	n.d.	6
101	14	23 78		37:63	39	87.5–88(M)	-19	1726	5.93(d)	0.7	C42H42O7	(76.57 76.57 (76.57	6.47 6.43		6.63(d)	3.0	11
*A sol was ad spectra Calcul	^a A solution of 1 (2.0 mmol), 2 ^t or 3 [§] (2.2 mmol was added, and the mixture was stirred for 1 h spectra. "These yields are of β anomers isolated Calculated, in parentheses. "Not determined. " 77° (5 1 0, CHCIA), "ABE 1172, cm-1 ($C-6$	1 (2.0 n the mi yields a parenth	ixture / ixture / are of / eses. f1	2t or 3 was stir. 8 anom Not det	s (2.2 red fo ers isc ermin	^a A solution of 1 (2.0 mmol), 2 ^t or 3 ^s (2.2 mmol), and Cu(I)Cl (0.02 mmol) in chloroform (2 mL) was stirred for 2 days at 20–25°, after which a carboxylic acid (2.2 mmol) was added, and the mixture was stirred for 1 h at 20–25°. These ratios were estimated in terms of the area-ratios of the H-1 signals, of the 1-0-acyl derivatives, in the ¹ H- spectra. These yields are of β anometers isolated crystalline. ^a C, H, and M (in parentheses) denote cyclohexane, hexane, and methanol, respectively. ^a Found, no parentheses, Calculated, in parentheses. Not determined. These coupling constants are of long-range coupling. ^a Properties of the corresponding a anomer: m.p. 126–127° (M), [a ¹³⁵ ₂ , and methanol, respectively. ^a Found, no parentheses, and methanol, respectively. ^a Found, no parentheses, and an advectively in parentheses. Also coupling constants are of long-range coupling. ^b Properties of the corresponding a anomer: m.p. 126–127° (M), [a ¹³⁵ ₂ , and a corresponding a momer.	mmol) in class tios were estimated in the model of the matrix of the matrix $M = M = M = M = M = M = M = M = M = M $	iloroform timated in trentheses) ong-range	(2 mL) we terms of 1 denote cy couplings	as stirred the area-r /clohexan s. <i>h</i> Proper	for 2 days at atios of the E le, hexane, an tries of the co	20–25°, 1-1 sign d metha rrespon	, after als, of mol, re ding a	which the 1-(spectiv anom(2 m1	a carbox O-acyl de vely. "Fot er: m.p.	ylic acid (rrivatives, und, no pi 126-127°	2.2 mmol) in the ¹ H- urentheses; (M), $[\alpha]_D^{22}$
	t vvv v)	1017117	, max											ļ			

were added.

addition of DME as the solvent prior to the reaction with the carboxylic acids (see Entry 10; from 70 to 85% yield). Incidentally, the anomer ratio in the mixtures of the 1-O-acyl derivatives 15–23 obtained was, by and large, 1:4, which is similar to those obtained in the phenyl glycoside synthesis.

Incidentally, 1-O-acylation of 1 performed traditionally gave an anomeric mixture composed mainly of α anomer or a 1:1 mixture of the anomers^{6,7}. Recently, however, the corresponding β anomers have been prepared from the reactions of 1-O-lithio derivatives, obtained by treatment of 1 with butyllithium in benzene, with an acyl chloride⁸, or of the tributyltin alkoxide of 1 with an acyl chloride⁹, although attention must always be paid to exclusion of moisture when these methods are used. In contrast, in the present instance, the whole procedure can be performed, in a one-flask operation, regardless of any moisture; this procedure is thus promising as a simple method for the preparation of 1-O-acyl- β -aldose derivatives.

The reaction mechanism involved may be assumed to be as follows: the resulting intermediary 1,3-dialkyl-O-(2,3,4,6-tetra-O-benzyl-D-glucopyranosyl)pseudoureas (4 and 5, respectively) have been proved to be mainly composed of the corresponding α anomers⁵. Moreover, all of the resulting 1-O-acyl derivatives contain a preponderance of the corresponding β anomers. Therefore, the reaction is assumed to proceed *via* the mechanism depicted in Scheme 1, which is similar to that proposed for the reaction of O-alkylpseudoureas with carboxylic acids.

Synthesis of 1-O-acyl-2,3:5,6-di-O-isopropylidene-D-mannofuranoses. — 1-O-Acylation of 2,3:5,6-di-O-isopropylidene- α -D-mannofuranose (24) was successively investigated in terms of the corresponding pseudourea. The resulting 1,3-diisopropyl-

Entry	Condition	Conditions for the 1st	st stage		Conditi	Conditions for the 2nd stage	nd stage	1-0-Y	I-O-Acyl derivative	tive			Yield(%)	Recovered
	24 (mmol)	3 (mmol)	Cu(I)Cl (mmol)	Time (days)	Carbo- xylic ac	Carbo- xylic acid (mmol)	Time (days)	Yield (%, « anomer	ield (%) of anomer	Yield (% ß anomer	Yield (%) of 3 anomer	α:β	of 31	24 (%)
1	2.0	4.4	0.02	15	6	4.4	2	25	25	26	41	19:31		10
7	2.0	4.4	0.02	15	10	4.4	7	27	27	28	73	23:77	-	10
3b	2.0	4.4	0.02	15	11	4.4	7	29	31	00	46	41:59	I	13
4	2.0	2.2	0.2	ŝ	9	2.2	7	25	ដ	26	55	29:71	ę	16
ŝ	2.0	2.2	0.2	S	10	2.2	7	27	16	28	63	1:4	-	11
9	2.0	2.2	0.2	ŝ	10	2.2	1/24	27	28	28	55	17:33		00
٩L	2.0	2.2	0.2	s.	11	2.2	6	29	13	00	60	9:41	ŝ	12

SYNTHESIS OF 1-O-ACYL-2,3:5,6-Di-O-ISOPROPYLIDENE-D-MANNOFURANOSES IN CHLOROFORM SOLUTION BY USE OF THE PSEUDOUREA PREPARED⁶ FROM 24 AND 3

TABLE III

^{α}All reactions in the 1st and 2nd stage were performed at 20–25°, except for the 2nd stage in Entry 6, which was conducted under reflux. ^bAfter the 1st-stage reaction of 24 with 3, DME was added to the resulting mixtures.

Com-	Com- M.p.ª	$[\alpha]_{D}^{22}$	v KBr max	¹ H-N.m.r. data	. data			Elemental analysis	alysis					
punod		(degrees) (cm^{-1}) $H-I$ (c, CHCl ₃) $(C=0)$	(C=0)	I-H		CMe2	Others	Molecular	1	(%)		Found (%)	(%)	
		•		Ŷ	J _{1,2} ð (Hz)	ø	ð, J (<i>Hz</i>)	formula	c	C H N	1	C H	Н	N
25	syrup	+76 (1.5)	(1.5) 1742	6.12(s)		1.33, 1.35,	1	C14H22O7	55.62 7.34	7.34		55.77 7.28	7.28	
26	74–75(H)	+52 (1.2)	1742	5.85(dd) 2.6	2.6 1.7	1.40, 1.47	2.17(s)	$\mathrm{C}_{14}\mathrm{H}_{22}\mathrm{O}_7$	55.62 7.34	7.34		55.68 7.19	7.19	
27	127-128(H)	+26 (1.6)	1722	6.38(s)	ر.۱.	1.38, 1.38, 1.38, 1.47		$C_{19}H_{24}O_7$	62.62	6.64		52.38	6.62	
28	syrup	+8 (2.0)	1725	6.13(d)	3.5	1.37, 1.40,		C ₁₉ H ₂₄ O ₇	62.62	6.54		62.38	6.66	
29	165-166(H)	+125 (2.5) 1732	1732	5.70(s)		1.4/, 1.4/ 1.38, 1.38, 1.40, 1.55		C ₁₉ H ₂₃ NO ₉ 55.74 5.66 3.42	55.74	5.66	3.42	55.68 5.65 3.40	5.65	3.40
30	121-121.5(B-H)	-74 (1.9) 1725	1725	6.15(d)	4.5	1.40, 1.34		C ₁₉ H ₂₃ NO ₉ 55.74 5.66 3.42 55.97 5.61 3.43	55.74	5.66	3.42	55.97	5.61	3.43
31°	103-104(B-C)	+20 (1.0) 1705	1705	6.07(d)		1.45, 1.47, 1.36, 1.37, 1.45, 1.45	[COC6H4NO2] 1.17(d), J 6.0 [CH(CH ₃)2]	C16H27NO7 55.64 7.88 4.06 55.54 7.80 3.90	55.64	7.88	4.06	55.54	7.80	3.90
	TI // manual fr				-			•		-	- -			

PROPERTIES OF 1-O-ACYL-2,3:5,6-DI-O-ISOPROPYLIDENE-D-MANNOFURANOSES

TABLE IV

80

^aB, C, and H (in parentheses) denote benzene, cyclohexane, and hexane, respectively. ^bThis coupling constant is of a long-range coupling. ^cThese data are for the β anomer of 31.

O-(2,3:5,6-di-O-isopropylidene-D-mannofuranosyl)pseudourea (32), prepared from 24 by treatment with 3 in the presence of a catalytic amount of Cu(I)Cl, was then treated with a variety of carboxylic acids; the results thus obtained, the conditions used, and the properties of all of the products are summarized in Tables III and IV.

The corresponding α and β anomers were separated by chromatography on a column of silica gel. Their ratios obtained by the use of **24** (2.0 mmol), **3** (4.4 mmol), and Cu(I)Cl (0.02 mmol) for the first-stage reaction, and of carboxylic acids (4.4 mmol) for the second-stage reaction, were from 2:3 to 1:4; the stereoselectivity was lower, compared with that observed in the reactions of **1** (Entries 1–3). As may be seen from Entries 4, 5, and 7, however, increase in the amount of Cu(I)Cl, up to 0.2 mmol, and decrease in that of **3**, down to 2.2 mmol, for the first-stage reaction, improved the stereoselectivity to 1:4. Performance of the second-stage reaction in chloroform under reflux, on the other hand, lowered the selectivity to $\alpha: \beta = 17:33$.

Confronted with these results, we were interested in examining the i.r. and 1 H-n.m.r. spectra of the reaction intermediate 32. The i.r. spectrum contained the

specific absorption band for the C = N double bond at 1650 cm⁻¹, regardless of the amount of 3 used (1.1 or 2.2 mol. equiv.). On the other hand, in the anomeric-proton region of the ¹H-n.m.r. spectrum were observed two singlet proton-signals, at δ 6.07 and 6.30, both of which could be assumed to arise from the geometrical isomers with respect to the double bond of the α anomers. The area ratios of these signals, however, varied, depending on the amount of 3 used, *i.e.*, ~1:6 and ~1:2 on using 2.2 and 1.1 mmol of 3, respectively, although correlation of the anomer ratio with those present in the resulting 1-acylates is difficult to assess.

1-O-(Isopropylcarbamoyl)-2,3:5,6-di-O-isopropylidene-D-mannofuranose (31) was isolated in low yield (see Entries 4 and 7).

It is thus concluded that carbodiimides are useful for the condensation of aldose derivatives having OH-1 free with carboxylic acids through use of one-flask procedures.

EXPERIMENTAL

General methods. — Melting points were determined with a Yanagimoto micro melting-point apparatus and are uncorrected. Optical rotations were measured with a Hitachi PO-B polarimeter. T.l.c. was performed on precoated plates (thickness 0.20 mm) of silica gel 60 F_{254} (Merck) with 9:1 benzene-acetone, and detection of spots was effected with sulfuric acid. Column chromatography was performed on Wakogel C-300 (Wako Pure Chemical Ind., Ltd.) and in a prepacked column, size B (Merck). Solvent proportions used for elution are given in volume per volume. Elemental analyses were made with a Perkin–Elmer 240-002 instrument. Dicyclohexylcarbodiimide (2) was purchased from Wako Pure Chemicals. I.r. spectra were recorded with a Hitachi 285 spectrometer. ¹H-N.m.r. spectra were recorded with a Varian T-60 instrument, for solutions in chloroform-*d* with tetramethylsilane as the internal standard.

2,3,4,6-Tetra-O-benzyl- α -D-glucopyranose (1). — The product (1), prepared according to the method reported by Glaudemans and Fletcher⁷, had m.p. 151–152° (methanol) [lit.⁷ m.p. 151–152° (methanol)].

Reactions of carboxylic acids with the pseudourea 4 resulting from the fusion of 1 with 2. — A mixture of 1 (1.080 g, 2.0 mmol) and 2 (1.240 g, 6.0 mmol) was fused for 0.5 h at 80-85° in the presence of Cu(I)Cl (2 mg, 0.02 mmol), with stirring. The resulting mixture was cooled to room temperature, mixed with DME (5 mL), and the solution treated with a carboxylic acid (6, 10, and 11, respectively; 2.0-6.0 mmol) for 1 h at 20-25°, except in the reaction in Entries 6 and 7 (0.5 h). After the reaction, the mixture was stirred with M oxalic acid in acetone (5 mL), with stirring, for 1 h, and insoluble 1,3-dicyclohexylurea was filtered off. The filtrate was mixed with chloroform (20 mL), washed successively with M aqueous sodium hydroxide solution (20 mL) and water (20 mL), dried (anhydrous sodium sulfate), and evaporated to a syrup which was chromatographed on a column of silica gel (25 g); elution with 1% of acetone in 1:1 (v/v) benzene-cyclohexane gave the corresponding 1acylates (15, 19, and 20, respectively), and the eluate having 4% of acetone in the solvent system gave recovered 1. The ratios of the anomers were estimated by ¹H-n.m.r. spectroscopy, after which, the corresponding β anomers were isolated by crystallization. In the case of Entry 5, the melt resulting from fusion of 1 with 2 in the presence of Cu(I)Cl was dissolved in chloroform (20 mL), and the solution was washed successively with M aqueous ammonia (20 mL) and water (20 mL), dried (anhydrous sodium sulfate), and evaporated to a syrup which was treated with benzoic acid (10) in DME.

For the reaction with N-benzoylglycine (8), the syrup obtained by the processing was first checked for its anomeric ratio, and then chromatographed on a column of silica gel (20 g), and the fractions containing 1-O-(N-benzoylglycyl)-2,3,4,6-tetra-O-benzyl-D-glucopyranose (17), obtained by elution with 1:12:12 (v/v) acetone-benzene-cyclohexane, were combined and evaporated. The crystalline residue was recrystallized five times from methanol, giving the β anomer. The results are summarized in Table I.

Reaction of aqueous acetic acid with the pseudourea prepared by fusion of 1 with 2. — The melt resulting from fusion of 1 with 2 as in the preceding experiment was dissolved in chloroform (5 mL), and the solution was stirred with M aqueous acetic acid solution (5 mL) for 2 h at 0°. The same processing as before gave 1-O-acetyl-2,3,4,6-tetra-O-benzyl-D-glucopyranose (15; 885 mg, 76% yield; $\alpha:\beta = 7:43$), as well as recovered 1 (260 mg, 24%).

Reactions of carboxylic acids with the pseudoureas 4 and 5, respectively, prepared from 1 and 2 in chloroform. — A solution of 1 (1.080 g, 2.0 mmol) and 2 (455 mg, 2.2 mmol) or 3 (280 mg, 2.2 mmol) in ethanol-free chloroform (2 mL) was stirred for 2 days at room temperature in the presence of Cu(I)Cl (2 mg, 0.02 mmol); then a carboxylic acid (6-14, respectively) was added, and the mixture was stirred for 1 h at room temperature. The precipitated urea derivative was filtered off, and the filtrate was evaporated to a syrup, which was then similarly chromatographed on a column of silica gel (20 g). Thus, the yields, and ratios of anomers, in the resultant mixtures, and the yields of β anomer isolated crystalline were obtained.

Owing to its low solubility in chloroform, the reaction of *p*-nitrobenzoic acid (11) was performed in a modified procedure as follows. To the solution of 5, prepared from 1 and 3, was added 11 (370 mg, 2.2 mmol), and the solution was stirred for 1 h at room temperature. Processing as already described, followed by chromatography, afforded the corresponding 1-(*p*-nitrobenzoate) (20; 1.175 g, 85% yield). The anomers of 20 were separated by flash column-chromatography on a LOBAR column (size B; 310×25 mm) of LiChroprep Si-60 (Merck) with 1:12:12 (v/v) acetone-benzene-cyclohexane under 2 atm., giving the β anomer (550 mg, 40%), a mixture of the anomers (450 mg, 33%), and the α anomer (140 mg, 10% yield). The results thus obtained, and some properties of the resulting anomers, are summarized in Table II.

2,3:5,6-Di-O-isopropylidene-α-D-mannofuranose (24). — Compound 24 was

prepared from D-mannose according to the method reported by Schmidt¹²; m.p. 122–123°; lit.¹³ m.p. 122–123°.

Reactions of carboxylic acids with the pseudourea 32 prepared from 24 and 3. — A solution of 24 (520 mg, 2.0 mmol) and 3 (560 mg, 4.4 mmol) in chloroform was stirred in the presence of Cu(I)Cl (2 mg, 0.02 mmol) for 15 days at room temperature, after which was added a carboxylic acid (6, 10, and 11, respectively; 4.4 mmol) and the mixture was stirred for 2 days at room temperature.

The reaction of 11 was performed after addition of DME (2 mL). After the reaction, a M solution of oxalic acid in acetone (3 mL) was added, and the mixture was stirred for 1 h at room temperature. The precipitated urea derivative was filtered off, and the filtrate was mixed with chloroform (20 mL), washed successively with M aqueous solution of sodium hydroxide (20 mL) and water (20 mL), dried (anhydrous sodium sulfate) and evaporated to a syrup which was chromatographed on a column of silica gel (30 g). Elution with chloroform afforded the corresponding α anomer (25, 27, and 29) and β anomer (26, 28, and 30), in turn, and elution with 1:99 methanol-chloroform afforded recovered 24.

Shortening of the reaction time for the preparation of the pseudourea from 15 to 5 days, and conducting the reaction with the carboxylic acid for 2 days at room temperature, or under reflux in chloroform for 1 h, followed by the same processing and chromatography as before, gave, in turn, 1-O-(isopropylcarbamoyl)-2,3:5,6-di-O-isopropylidene-D-mannofuranose (31), α anomer, and then the β anomer (and 24).

The results thus obtained are summarized in Table III, and the properties of the products are given in Table IV.

ACKNOWLEDGMENT

The authors thank Miss Mikiko Aoki, Laboratory of Elementary Analysis, Department of Chemistry, Tokyo Institute of Technology, for the elementary analyses.

REFERENCES

- 1 H. TSUTSUMI, K. OKAZAKI, M. ASAI, K. ITOH, K.-H. KUAN, AND Y. ISHIDO, Nippon Kagaku Kaishi, in press.
- 2 E. SCHMIDT AND F. MOOSMÜLLER, Justus Liebigs Ann. Chem., 597 (1955) 235-240.
- 3 L. J. MATHIAS, Synthesis, (1979) 561-576.
- 4 H. TSUTSUMI, Y. KAWAI, AND Y. ISHIDO, Chem. Lett., (1978) 629-632.
- 5 H. TSUTSUMI AND Y. ISHIDO, Carbohydr. Res., 88 (1981) 61-75.
- 6 P. W. AUSTIN, F. E. HARDY, J. G. BUCHANAN, AND J. BADDILEY, J. Chem. Soc., (1964) 2128-2137.
- 7 P. E. PFEFFER, G. G. MOORE, P. D. HOAGLAND, AND E. S. ROTHMAN, ACS Symp. Ser., 39 (1976) 155–178.
- 8 C. P. J. GLAUDEMANS AND H. G. FLETCHER, JR., Methods Carbohydr. Chem., 6 (1972) 373-376.
- 9 T. OGAWA, M. NOZAKI, AND M. MATSUI, Carbohydr. Res., 60 (1978) c7-c10.
- 10 E. VOWINKEL, Chem. Ber., 99 (1966) 1479-1484.
- 11 D. R. KNAPP AND S. KRUEGER, Anal. Lett., 8 (1975) 603-610.
- 12 O. T. SCHMIDT, Methods Carbohydr. Chem., 2 (1963) 319.
- 13 J. C. IRVINE AND A. F. SKINNER, J. Chem. Soc., (1926) 1089-1097.