Preparation and X-Ray Structure of 4-BrC₆H₄CNSC(Cl)N

Tristram Chivers*, Masood Parvez, Peter Zoricak

Department of Chemistry, The University of Calgary, Calgary, Alberta, Canada T2N 1N4

Z. Naturforsch. 52 b, 557-559 (1997); received September 5, 1996

Crystal Structure, 1,2,4-Thiadiazole, Intramolecular Cyclization

The title compound was obtained in 82% yield by the intramolecular cyclization of 4-BrC₆H₄C(NSCCl₃)[N(SiMe₃)₂] in CH₂Cl₂ at 23°C. It crystallizes in the triclinic system, space group P1, a = 7.957(3) Å, b = 10.864(5) Å, c = 5.625(1) Å, $\alpha = 95.94(3)^{\circ}$, $\beta = 97.79(2)^{\circ}$, $\gamma = 100.72(3)^{\circ}$, V = 469.2(3) Å³, and Z = 2. The bond lengths of the planar C₂N₂S ring indicate partial π -delocalization.

Introduction

A variety of synthetic approaches to the 1,2,4thiadiazole ring system is available [1]. For example, the cyclocondensation of carbamidines $RC(NH_2)(NH_2)^+Cl^-$ with Cl₃CSCl produces RCNSC(Cl)N [1]. In this note we report the synthesis and X-ray structure of 3-*p* -bromophenyl-5-chloro-1,2,4-thiadiazole (2), which was obtained by the spontaneous intramolecular cyclization of 4-BrC₆H₄C(NSCCl₃)[N(SiMe₃)₂] (1), according to eq. (1).

Results and Discussion

The monothiolated benzamidine **1** was prepared from 4-BrC₆H₄CN₂(SiMe₃)₃ [2,3] and CCl₃SCl (1:1 molar ratio) *cf.* synthesis of PhC(SCCl₃)[N(SiMe₃)₂] [4]. The ¹H NMR spectrum of **1** showed resonances for 4-BrC₆H₄ (an AA'XX' pattern centred at δ 8.80 and 7.56) and SiMe₃ groups (δ 0.30) in the intensity ratio 4:18. In addition, a second weak AA'XX' pattern (δ 8.15 and 7.65) attributed to **2** was evident. A solution of **1** in CH₂Cl₂ was kept for 72 h at 23 °C and, after subsequent work-up, the heterocycle **2** was obtained in 82% yield. A small amount of 4-BrC₆H₄C(NH)(NH₂), the hydrolysis product of **1**, was also isolated.

The structure of 2 was determined by X-ray crystallography (see Fig. 1). The pertinent bond lengths, bond angles and torsion angles are summarized in Table I. In common with other 1,2,4-



Fig. 1. ORTEP drawing and atomic numbering scheme for **2**.

thiadiazoles [5-10], the heterocyclic ring in **2** is essentially planar and the bond lengths indicate some π -delocalization. Thus the S-N distance of 1.650(6) Å is significantly shorter than the predicted single bond value of 1.73 Å [11] and the sequence of C-N bond lengths is 1.331(7), 1.380(8) and 1.302(7) Å (*cf.* single and double bond values of *ca.* 1.29 and 1.47 Å, respectively [12]). The 4-BrC₆H₄ substituent is coplanar with the heterocyclic ring and there are no significant intermolecular interactions.

The synthetic route represented by eq. (1) represents an alternative to the use of carbamidines [2] for the synthesis of 1,2,4-thiadiazoles containing a 5-Cl substituent that can be subsequently functionalized.

Experimental Section

Preparation of 4-BrC₆H₄CNSC(Cl)N (2)

A solution of Cl₃CSCl (0.60 g, 3.22 mmol) in 25 ml of CH₂Cl₂ was added dropwise to 4-BrC₆H₄CN₂(SiMe₃)₃, (1.37 g, 3.30 mmol) in 25 ml of CH₂Cl₂ at 23°C under an atmosphere of N₂. The reaction mixture was stirred for 72h and then solvent and Me₃SiCl were removed by vacuum transfer to give a viscous yellow oil containing a small amount of white powder. The oil was dissolved

0939–5075/97/0500–0557 \$ 06.00 © 1997 Verlag der Zeitschrift für Naturforschung. All rights reserved. K

^{*} Reprint requests to Tristram Chivers.

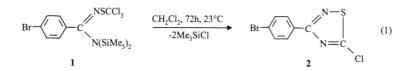


Table I. Selected bond lengths (Å) and bond angles (deg) for **2**.

Bond lengths		Bond angles		
S-N(2)	1.650(6)	N(2)-S-C(1) 91.8(3)	
S-C(1)	1.709(7)	C(1)-N(1)-C	C(2) = 107.9(5)	
N(1)-C(1)	1.302(7)	S-N(2)-C(2) 108.4(5)	
C(2)-N(1)	1.380(8)	Cl-C(1)-S	122.8(4)	
N(2)-C(2)	1.331(7)	Cl-C(1)-N(1) 123.5(5)	
Cl-C(1)	1.706(7)	S-C(1)-N(1) 113.6(5)	
C(2)-C(3)	1.467(8)	N(1)-C(2)-N	N(2) 118.3(6)	
	Tors	ion angles		
	~			
	Cl-C(1)-S-N	· · /		
	Cl-C(1)-N(1)	/ / /		
	S-N(2)-C(2))-N(1) 0.	0(7)	
	S-N(2)-C(2))-C(3) 179.	8(4)	
	S-C(1)-N(1))-C(2) -0.	6(6)	
	C(1)-S-N(2))-C(2) $-0.$	3(5)	

in CH₂Cl₂:diethyl ether and the insoluble white solid was removed by filtration. Solvent was removed from the filtrate. Slow evaporation of a diethyl ether solution of the residue gave pale yellow rectangular crystals of 4-BrC₆H₄CNSC(Cl)N (0.73 g, 82%). M.p. 85°C.

Analysis for $C_8H_4BrClN_2S$

Calcd C 34.87 H 1.46 N 10.17%, Found C 35.39 H 1.50 N 9.33%.

¹H NMR (in CDCl₃): δ 8.15 and 7.65 (4-BrC₆H₄, AA'XX' pattern). ¹³C NMR (in CDCl₃): δ 173.3 and 171.2 (NC(S)Cl and CN₂), 132.1, 130.8, 129.6 and 125.6 (C₆H₄). The white solid was identified as 4-BrC₆H₄C(NH)(NH₂) (0.10 g, 16%) by EI-MS (*m/z* = 198 and 200, M⁺).

X-ray analysis

The crystal structure of 2 was determined by using a Rigaku AFC6S diffractometer. Experimental details are summarized in Table II^{*}. The structure was solved by the heavy atom method [13] and expanded using Fourier techniques [14]. The non-hydrogen atoms were refined

Tabl	e II. Cryst	tal data for 4-1	BrC_6H_4CNS	SC(CI)N 2.

Formula	$C_8H_4N_2SBrCl$	
Fw.	275.55	
Crystal System	triclinic	
Space Group	P1 (No. 2)	
a [Å]	7.957(3)	
b [Å]	10.864(5)	
<i>c</i> [Å]	5.625(1)	
α [deg]	95.94(3)	
β [deg]	97.79(2)	
$\gamma [deg]$	100.72(3)	
$V[Å^3]$	469.2(3)	
Z	2	
$d_{calc} [g cm^{-3}]$	1.950	
Crystallogr. Dim. [mm]	$0.50 \times 0.40 \times 0.20$	
Cell detn, refls	25	
Cell detn, 2θ range, [deg]	18.50 - 29.97	
Radiation, MoK _{α} [Å]	$\lambda = 0.71069$	
Temperature [K]	170(1)	
Scan type	ω - $2\dot{ heta}$	
Scan rate [deg min ^{-1}]	16.0	
Scan width [deg]	$1.57 + 0.34 \tan \theta$	
$2\theta \max [deg]$	50.1	
$\mu [\mathrm{cm}^{-1}]$	48.48	
Absorption correction	empirical	
Absorption, range	0.32 - 1.00	
Total reflections	1797	
Unique reflections	1666	
Data with $I > 3\sigma(I)$	1149	
Parameters refined	118	
R	0.042	
R_w	0.041	
GOF	2.54	
Largest Δ/σ	0.00	
Final diff. map [e Å ^{-3}]	0.53, -1.22	
F(000)	268	

anisotropically. Hydrogen atoms were included at geometrically idealized positions. Scattering factors were taken from Cromer and Waber [15] and allowance was made for anomalous dispersion [16]. All calculations were performed using teXsan [17].

Acknowledgments

We thank the Natural Sciences and Engineering Research Council of Canada for financial support and Ignacio Vargas-Baca for recording the ¹³C NMR spectrum.

^{*}Further crystal structure data may be obtained from the Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen, by quoting the Registry No. CSD-406259.

- [1] T. L. Gilchrist, Heterocyclic Chemistry, p. 225, Pitman Publishing Ltd., London (1985).
- [2] R. T. Boeré, R. T. Oakley, R. W. Reed, J. Organomet. Chem. 331, 161 (1987).
- [3] T. Chivers, M. Parvez, I. Vargas-Baca, T. Ziegler, P. Zoricak, Inorg. Chem. 36, in press (1997).
- [4] V. Chandrasekhar, T. Chivers, S. S. Kumaravel, M. Parvez, M. N. S. Rao, Inorg. Chem. 30, 4125 (1991).
- [5] T. Kanai, Y. Kai, N. Sato, T. Naito, T. Yamiya, T. Nakamura, K. Ogura, Bull. Chem. Soc. Jpn. 66, 2335 (1993).
- [6] H. Senda, J. Maruha, Acta Crystallogr. C41, 1329 (1985).
- [7] H. W. Roesky, K. Keller, J. W. Bats, Angew. Chem.
 95, 904 (1983); Angew. Chem., Int. Ed. Engl. 22, 881 (1983).
- [8] F. Iwasaki, K. Akiba, Acta Crystallogr. B37, 180 (1981a).
- [9] F. Iwasaki, K. Akiba, Acta Crystallogr. B37, 185 (1981b).
- [10] K. Akiba, T. Tsuchiya, N. Inamoto, K. Onuma, N. Nagashima, A. Nakamura, Chem. Lett. 723 (1976).

- [11] L. Pauling, The Nature of the Chemical Bond, 3rd ed., Ithaca, Cornell Univ. Press (1960).
- [12] D. J. Cram, G. S. Hammond, Organic Chemistry, p. 112, McGraw-Hill Inc., N.Y. (1959).
- [13] SAP191: H.-F. Fan (1991). Structure Analysis Programs with Intelligent Control, Rigaku Corporation, Tokyo, Japan.
- [14] DIRDIF94: P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, R. de Gelder, R. Israel, J. M. M. Smits (1994). The DIRDIF-94 program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
- [15] D. T. Cromer and J. T. Waber, International tables for X-ray crystallography, Vol. IV, The Kynoch Press, Birmingham, England, Table 2.2A (1974).
- [16] D. C. Čreagh, W. J. McAuley, International tables for crystallography. Vol. C, edited by A. J. C. Wilson, Kluwer Academic Publishers, Boston 1992. Table 4.2.6.8, pp. 219-222.
- [17] *teXsan*: Crystal Structure Analysis Package, Molecular Structure Corporation (1985 and 1992).