8% inhibition of cholesterol synthesis. Activity testing continues.

### **Experimental Section**<sup>6</sup>

7-Amino-3-(1,5-dimethylhexyl)dodecahydro-3a,6-dimethyl-1*H*-benz[e]indene-6-methylamine (II).—To a stirred solution of 4.00 g ( $9.52 \times 10^{-3}$  mole) of I<sup>2</sup> in 35 ml of CHCl<sub>3</sub> was slowly added 12 ml of concd H<sub>2</sub>SO<sub>4</sub>. To this was added very slowly 1.855 g ( $2.86 \times 10^{-2}$  mole) of NaN<sub>3</sub> so that the temp of the solution did not exceed 45°. After the addition was complete, the mixture was warmed at 40–45° for 15 min. The mixture was then cooled to 0–5° and concd NH<sub>4</sub>OH was slowly added to neutralize the acid. The resulting mixture was extracted 4 times with CHCl<sub>5</sub>. The extracts were evapd on a steam bath to give 3.00 g (86.5%) of the erude product. A sample of the highly hygroscopic product was recrystd using decolorizing charcoal in CHCl<sub>3</sub>; mp 73–75°; [ $\alpha$ ]<sup>28</sup>D + 10° (CHCl<sub>3</sub>).

7-Amino-3-(1,5-dimethylhexyl)dodecahydro-3a,6-dimethyl-1H-benz[e]indene-6-methylamine Dihydrochloride (IIa).—II(1 g, 2.77 × 10<sup>-3</sup> mole) was dissolved in 15 ml of dry C<sub>6</sub>H<sub>6</sub>. HCl gas was bubbled through the soln for 5 min. The white gelatinous mass was filtered and washed with C<sub>6</sub>H<sub>6</sub>. The solvent was removed to give 1.05 g (87.6%) of the desired product. A sample was purified rigorously by dissolving some of the product in a minimum volume of hot H<sub>2</sub>O, cooling the soln, and adding concd HCl. The resulting ppt was filtered, washed with dry C<sub>6</sub>H<sub>6</sub>, N. neut equiv.

A series of derivatives of 7-amino-3-(1,5-dimethylhexyl)dodecahydro-3a,6-dimethyl-1*H*-benz[*e*]indene-6-methylamine (II) were prepared and characterized to confirm the functionality of the diamine. Among the derivatives prepared were the  $\alpha$ -naphthylurea, the benzenesulfonamide, and the *p*-chlorobenzamide.

 $\alpha$ -Naphthylurea.—II (0.2 g, 5.52  $\times 10^{-4}$  mole) was placed in a 25-ml flask and stoppered with a serum cap.  $\alpha$ -Naphthylisocyanate (0.2 ml, 2.10  $\times 10^{-2}$  moles) was added to the diamine by injecting the sample through the serum cap with a syringe. The solution was heated at 40–50° in a H<sub>2</sub>O bath for 30 min. Absolute EtOH was added and the ppt filtered to give 0.300 g (77.6%) of product. A sample was recrystd from abs EtOH; mp 234–235.5°. Anal. (C<sub>46</sub>H<sub>60</sub>N<sub>4</sub>O<sub>2</sub>) C, H, N.

**Benzenesulfonamide.**—II (0.3 g,  $8.28 \times 10^{-4}$  mole) 10 ml of 10% aq NaOH and 0.50 ml (3.92  $\times 10^{-3}$  mole) of PhSO<sub>2</sub>Cl were shaken vigorously, cooled, and aq HCl was added. The ppt was filtered, washed with ligroin, dried, and recrystd from EtOH to give 0.30 g (87%) of the product; mp 92–93.5°. Anat. (C<sub>36</sub>H<sub>54</sub>N<sub>2</sub>S<sub>2</sub>O<sub>4</sub>) C, H, N. S.

*p*-Chlorobenzamide.—To a soln of 0.50 g  $(1.38 \times 10^{-3} \text{ mole})$  of II in 5 ml of dry  $C_5H_5N$  and 10 ml of dry  $C_6H_6$  was added a slight excess (0.60 ml, 4.75  $\times 10^{-3}$  mole) of *p*-ClC<sub>6</sub>H<sub>4</sub>COCl. The resulting mixture was heated on a H<sub>2</sub>O bath at 60–70° for 30 min, poured into 100 ml of H<sub>2</sub>O, the C<sub>6</sub>H<sub>6</sub> layer was separated and the aq layer washed with 10 ml of C<sub>6</sub>H<sub>6</sub>. The combined C<sub>6</sub>H<sub>6</sub> extracts were washed with H<sub>2</sub>O and 5% aq Na<sub>2</sub>CO<sub>3</sub> soln and dried (MgSO<sub>4</sub>). The C<sub>6</sub>H<sub>6</sub> soln was evapd to a small volume (3–4 ml), and hexane (20 ml) was stirred into the soln. This mixture was cooled. The solid substituted benzamide was filtered and washed with hexane. Recrystallization was effected from cyclohexane-hexane. The yield was 0.30 g (34%) mp 88–89°. Anal. (C<sub>38</sub>H<sub>52</sub>-Cl<sub>2</sub>N<sub>3</sub>O<sub>2</sub>) C, H, Cl, N.

[7-Amino-3-(1,5-dimethylhexyl)dodecahydro-3a,6-dimethyl-1*H*-benz[*e*]indene-6-methylamine]bis(ethylenediamine)cobalt-(3+) Trichloride (III).—To a mixture of 1.00 g (3.51  $\times$ 10<sup>-3</sup> mole) of *eis*-dichlorobisethylenediamine Co<sup>3+</sup> chloride in 6 ml of MeOH was added a soln of 1.27 g (3.51  $\times$  10<sup>-3</sup> mole) of 11 in 10 ml of dry C<sub>8</sub>H<sub>6</sub>. The mixture was stirred for 48 hr, filtered, and recrystd from H<sub>2</sub>O-EtOH to yield 2.18 g (96%) of III: mp 240-242° dec;  $\lambda_{max}$  468 mµ; [ $\alpha$ ]<sup>28</sup>D +2° (H<sub>2</sub>O). Cryoscopic particle number: Calcd, 4.00. Found, 4.06, 3.97. Anal. (C<sub>28</sub>H<sub>62</sub>Cl<sub>3</sub>CoN<sub>6</sub>) C, H, Cl, Co, N. Acknowledgments.—We are indebted to the National Science Foundation for support of this work under Traineeship Grant GE-7878, and we are indebted to Dr. K. L. Loening of the Chemical Abstracts Service for naming compounds II and III for us. Activity testing was done by Ayerst Laboratories.

# Synthesis and Myotrophic–Androgenic Activity of 17β-Hydroxy-5α-androst-8(14)-en-3-one Derivatives<sup>1</sup>

MANFRED E. WOLFF AND HONG-HSI CHANG

Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, California 94122

### Received May 21, 1970

In a previous study,<sup>2</sup> we described results which led us to suggest that the enhancement of mytropohicandrogenic activity by the 7 $\alpha$ -methyl group<sup>3</sup> in steroids is due to flattening of the molecule towards the  $\beta$  face. An examination of molecular models revealed that a  $\Delta^{8(14)}$  double bond would cause a similar effect, and the preparation of a number of 5 $\alpha$ -androst-8-(14)-ene derivatives (5–7) was undertaken on this basis. The compounds were prepared from  $3\beta$ ,17 $\beta$ -dihydroxyandrost-8(14)-ene<sup>4</sup> (1) by the methods described in the Experimental Section.



The data from the pharmacological testing<sup>5</sup> are displayed in Table I. Since it appears likely that the active androgen is actually  $5\alpha$ -dihydrotestosterone,  $5\alpha$ -H- $\Delta^{8(14)}$  steroids were used in the present work. The enhancing effect of the  $7\alpha$ -methyl substituent in the  $5\alpha$ -H system was established by testing 8 and 9 which had been obtained in our previous study.<sup>2</sup> Both of these compounds were found to be far more active

(1) This investigation was supported in part by a Public Health Service Research Grant (AM-05016) from the National Institute of Arthritis and Metabolic Diseases, U. S. Public Health Service.

(2) M. E. Wolff, G. Zanati, G. Shanmugasundaram, S. Gupte, and G. Aadahl, J. Med. Chem., 13, 53 (1970).

(3) This enhancement has been reported, inter alia by (a) A. Segaloff. Steroids, **1**, 299 (1963), and J. A. Campbell, S. C. Lyster, G. W. Duncan, and J. C. Babcock, *ibid.*, **1**, 317 (1963), for testosterone derivatives; (b) G. Anner, J. Kalvoda, and P. Wieland, *Chimia*, **20**, 434 (1966), for 19-nortestosterone derivatives; and by (c) H. Kaneko, K. Nakamura, Y. Yamato, and M. Karokawa, *Chem. Pharm. Bull.* (*Tokyo*), **17**, 11 (1969), for  $7\alpha$ -akylthio and  $7\alpha$ -arylthio derivatives.

(4) R. Antonucci, S. Bernstein, D. Giancola, and K. Sax, J. Org. Chem., **16**, 1891 (1951).

(5) Pharmacological tests were performed at the Endocrine Laboratories. Madison, Wis., using essentially the method of L. G. Hershberger, E. G. Shipley, and R. K. Meyer, *Proc. Soc. Exp. Biol. Med.*, **83**, 175 (1953).

<sup>(6)</sup> Melting points were taken on a hot stage and are corrected. Infrared spectra were taken in KBr wafers on a Beckmann IR-12 spectrophotometer. Optical rotations were determined using a Rudolph polarimeter. Where analyses are indicated only by the symbols of the elements or functions, analytical data were within  $\pm 0.3\%$  of the calculated values for those elements or functions.

| $N_{\ell}$ | )T | ÐS. |
|------------|----|-----|
|------------|----|-----|

|                           | Andr             | ogenic-Myotrophic Ass | 11              |            |       |
|---------------------------|------------------|-----------------------|-----------------|------------|-------|
|                           |                  | Wt. mg <sup>a</sup>   |                 | Body wt, g |       |
| Compound (total dose, mg) | Ventral prostate | Seminal vesicle       | Levator ani     | Initial    | Final |
| Castrate control          | $16.9 \pm 1.07$  | $12.0 \pm 0.49$       | $23.8 \pm 2.05$ | 54         | 92    |
| Testosterone(0.3)         | $25.6 \pm 2.47$  | $15.1\pm0.76$         | $31.4 \pm 2.50$ | 55         | 96    |
| p                         | <0.05            | < 0.05                | <0.10-0.05      |            |       |
| Testosterone(0,6)         | $30.7 \pm 3.50$  | $17.2 \pm 1.32$       | $35.4 \pm 1.71$ | 55         | 94    |
| p                         | < 0.02           | < 0.05                | < 0.01          |            |       |
| Testosterone              | $55.5 \pm 6.66$  | $21.2 \pm 1.25$       | $34.8 \pm 1.44$ | 55         | 99    |
| propionate(0.3)           |                  |                       |                 |            |       |
| p                         | <0.01            | <0.01                 | < 0.02          |            |       |
| 5 (3.0)                   | $38.0 \pm 8.62$  | $12.5 \pm 0.94$       | $29.2 \pm 2.65$ | 54         | - 91  |
| p                         | ca 0.05          | NS'                   | NS              |            |       |
| 6 (3,0)                   | $39.5 \pm 6.38$  | $13.1 \pm 0.56$       | $29.8 \pm 3.31$ | 54         | 92    |
| p                         | < 0.05           | NS                    | NS              |            |       |
| 7(3,0)                    | $39.0 \pm 3.88$  | $14.4 \pm 0.59$       | $27.6 \pm 2.05$ | 54         | 93    |
| p                         | <0.01            | < 0.05                | NS              |            |       |
| 8(0,3)                    | $73.3 \pm 4.64$  | $26.5 \pm 0.84$       | $33.7\pm1.93$   | 54         | 98    |
| Þ                         | <0,001           | <0.001                | < 0.05          |            |       |
| 9(0,3)                    | $111.8 \pm 9.37$ | $35.4 \pm 2.84$       | $41.4\pm2.08$   | 54         | 95    |
| p                         | <0.001           | <0.01                 | <0.01           |            |       |
| a Marine I                | N / dante and    |                       |                 |            |       |

TABLE 1

<sup>*a*</sup> Mean  $\pm$  standard error. <sup>*b*</sup> Not significant

than testosterone (Table I). On the other hand, the  $\Delta^{8(14)}$  compounds were only weakly active; in no case was potency higher than 0.2 of the corresponding testosterone activity observed. This could mean that the hypothesis of enhancement due to flattening toward the  $\beta$  face is incorrect. Alternatively, the presence of the double bond, or the absence of the  $8\beta$ - or  $14\alpha$ -H may be responsible for the low order of activity.

#### Experimental Section<sup>6</sup>

5 $\alpha$ -Androsta-8(14)-3,17-dione (2). -A solution of 2 g of 1<sup>4</sup> in 200 ml of Me<sub>2</sub>CO was oxidized with Jones reagent at room temp. *i*-PrOH was added to destroy the excess Jones reagent, ice water was added, and the Me<sub>2</sub>CO was removed under reduced pressure. The pptd powder was filtered to afford 1.8 g of product, mp 144–148°, which was recrystd from MeOH–H<sub>2</sub>O to give a sample: mp 145–149°; nmr 0.93 (19 H<sub>3</sub>), 1.10 (18 H<sub>3</sub>),  $[\alpha]^{20}$ D +347° (c, 1, CHCl<sub>3</sub>). Anal. (C<sub>19</sub>H<sub>26</sub>O<sub>2</sub>) C, H.

**3,3-Dimethoxy-5** $\alpha$ -androst-8(14)-en-17-one (3).—A solution of 1.5 g of 2 and 1.5 g of SeO<sub>2</sub> in 60 ml of MeOH was heated at 50° for 15 min. It was cooled to room temp and a solution of 2.5 g of KOH in 20 ml of MeOH was added to make the solution alkaline. It was poured into ice water, and the pptd powder was filtered to afford 1.5 g of crude product, mp 103–104°. It was recrystd from MeOH containing 1 drop of methanolic KOH to give 3: mp 106–108°; mm 0.70 (19 H<sub>3</sub>), 1.07 (18 H<sub>3</sub>),  $[\alpha]^{20}$ D +222° (c, 1% CHCl<sub>3</sub>). Anal. Calcd for C<sub>21</sub>H<sub>32</sub>O<sub>3</sub>: C, 75.86; H, 9.70. Found: C, 75.10; H, 9.28.

17β-Hydroxy-5α-androst-8(14)-en-3-one (5).—To a solution of 1.2 g of **3** in 40 ml of MeOH was added slowly a solution of 1.2 g of NaBH<sub>4</sub> in 20 ml of MeOH. Ice water was added and the pptd powder was filtered to afford 1.0 g of crude **4**, mp 184 -187°. A solution of 1.0 g of this **4** in 5 ml of HOAc was warmed on a steam bath for 10 min and H<sub>2</sub>O was added dropwise. The solution was cooled and the pptd powder was filtered to afford 0.7 g of **5**, mp 180-183°. It was recrystd from MeOH-H<sub>2</sub>O to give material, mp 182-183°,  $[\alpha]^{2p}D + 65^{\circ}$  (c,  $1^{C}_{C}$  CHCl<sub>3</sub>). Anal. (C<sub>19</sub>H<sub>28</sub>O<sub>2</sub>) C, H.

 $17\beta\text{-Hydroxy-}5\alpha\text{-androst-}8(14)\text{-en-}3\text{-one}$  Acetate (6).—A solution of 0.1 g of 5 in 1 ml of  $C_5H_5N$  was added to 0.1 ml of  $Ac_2O$  and the mixture was kept at room temp for 24 hr. Ice water

was added and the pptd powder was filtered to afford 0.95 g of product, mp 145–147°, raised to mp 148–149° after recrystallization from MeOH,  $[\alpha]^{20}D + 41^{\circ}$  (c, 1% CHCl<sub>3</sub>). Anal. (C<sub>21</sub>H<sub>30</sub>O<sub>3</sub>) C, H.

17β-Hydroxy-5α-androst-8(14)-en-3-one Propionate (7).– To a solution of 0.1 g of 5 in 1 ml of C<sub>5</sub>H<sub>5</sub>N was added 0.1 ml of (C<sub>2</sub>H<sub>5</sub>CO)<sub>2</sub>O and the mixture was kept at room temp for 24 hr. Ice water was added and the pptd powder was filtered to afford 0.105 g of product, mp 158-163°. It was recrystd from MeOH– H<sub>2</sub>O to give material: mp 160–162°; nmr 0.90 (19 H<sub>3</sub>), 0.98 (18 H<sub>3</sub>),  $[\alpha]^{20}$ D +38° (c, 1°, CHCl<sub>3</sub>). Anal. (C<sub>22</sub>H<sub>32</sub>O<sub>3</sub>) C, H.

## Imidazole Derivatives.

## **Histidine Decarboxylase Inhibitors**

LEO R. SWETT AND TOBIAS O. YELLIN<sup>1</sup>

Experimental Therapy Division, Abbott Laboratories, North Chicago, Illinois

#### Received March 13, 1970

Histamine has been implicated in a number of physiological processes,<sup>2,3</sup> among them, the regulation of the microcirculation,<sup>4</sup> gastric secretion,<sup>5</sup> growth and repair processes,<sup>6</sup> and certain hormone actions.<sup>7</sup> Some clinical conditions in which histamine plays a role are anaphylaxis and allergy, wound healing, inflamation, and mastocytosis. The discovery of an inducible, specific histidine decarboxylase (HD) in mammalian tissues and the development of sensitive assays<sup>8</sup> has opened up new approaches to the understanding of the physiological and pathological role of histamine. In recent years, interest in histidine decarboxylase for the treatment of disorders

- (3) D. M. Shepherd and D. Mackay, Progr. Med. Chem., 5, 199 (1967).
- (4) R. W. Schayer, Progr. Allergy, 7, 187 (1963).
  (5) J. E. Fischer and S. H. Snyder, Fed. Proc., Fed. Amer. Soc. Exp. Biol., 24, 1334 (1965).
  - (6) G. Kahlson, Perspect. Biol. Med., 5, 179 (1962).
  - (7) C. M. Szego, Fed. Proc., Fed. Amer. Soc. Exp. Biol., 24, 1343 (1965).
  - (8) R. W. Schayer, Methods Biochem. Anal., 16, 273 (1968).

<sup>(6)</sup> Melting points were determined with a Thomas-Hoover apparatus emipped with a corrected thermometer. Microanalyses were performed by the Microanalytical Department, University of California, Berkeley, C'alif. Nur spectra were obtained at a field strength of 60 MHz on samples in CDCls solution on a Varian A 60A instrument using TMS as internal standard. Optical rotations were obtained in a 0.5-dm tube with a Rudolph photoelectric polarimeter. Where analyses are indicated only by symbols of the elements or functions, analytical results obtained for those elements or functions were within  $\pm 0.4\%$  of the theoretical values.

<sup>(1)</sup> To whom inquiries should be directed.

<sup>(2)</sup> W. W. Douglas in the "Pharmacological Basis of Therapeutics." L. S. Goodman and A. Gilman, Ed., Macmillan Co., New York, N. Y., 1965, pp 615-627.