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Abstract: A series of 3-acetoacetylcoumarin derivatives were synthesized via the
reaction of substituted 2-hydroxybenzaldehydes and 4-hydroxy-6-methyl-2H-
pyran-2-one in ionic liquid. This method has the advantages of good yields,
milder reaction conditions, easier workup, no catalyst, and environmentally
benign procedure.

Keywords: 3-Acetoacetylcoumarin, 2-hydroxybenzaldehyde, 4-hydroxy-6-
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Coumarin and its derivatives are natural compounds and are important
chemicals in perfume, cosmetic, and pharmaceutical industrial
production.[1] Some coumarin derivatives have been reported to exhibit
biological properties, such as anti-oxidant, anti-inflammatory, antialler-
gic, hepatoprotective, antiviral, anticarcinogenic, and anticoagulant
properties.[2–10] They have attracted considerable interest in recent years
because of these diverse pharmacological properties.[11] 3-Acetoacetyl-
coumarin derivatives are generally prepared by the reaction of
2-hydroxybenzaldehydes and 4-hydroxy-6-methyl-2H-pyran-2-one in an
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organic solvent (e.g., ethanol or toluene) in the presence of a base like
triethylamine[12] and potassium fluoride (KF)–alumina[13] or catalyzed
by ammonium acetate.[14]

Room-temperature ionic liquids, especially those based on 1-alkyl-3-
methylimidazolium cations, have shown great promise as an attractive
alterative to conventional organic solvents, and more attention has been
currently focused on organic reactions promoted by ionic liquids.[15] They
are nonvolatile, recyclable, nonexplosive, easily operable, and thermally
robust.[16] There are many reports concerning the applications of ionic
liquids in organic reactions, such as Friedel–Crafts reactions,[17] Diels–
Alder reactions,[18] Heck reactions,[19] Pechmann condensations,[20]

Biginelli reactions,[21] Beckmann rearrangements,[22] and other reac-
tions.[23] As part of our current studies on the development of new routes
to heterocyclic system in ionic liquids,[24] we now report an efficient and
clean synthetic route to 3-acetoacetylcoumarin derivatives in ionic liquid
[bmim]Br.

To get 3-acetoacetylcoumarin derivatives 3, we reported a facile
method consisting of substituted 2-hydroxybenzaldehyde 1 and
4-hydroxy-6-methyl-2H-pyran-2-one 2 in an ionic liquid [bmim]Br at
90�C for a few hours (Scheme 1).

It is well-known that choosing an appropriate solvent and reaction
temperature is crucially important for an efficient organic synthesis. To
search for the optimal reaction conditions, the reaction of salicylaldehyde
1a and 4-hydroxy-6-methyl-2H-pyran-2-one 2 was examined using
different solvents and different reaction temperatures. The corresponding
results are summarized in Table 1.

It is shown in Table 1 that the ionic liquid [bmim]Br as solvent at
90�C resulted in the best yield and shortest reaction time. Therefore,
[bmim]Br was chosen as the solvent for this reaction.

Under these optimized reaction conditions, a series of 3-acetoacetyl-
coumarin derivatives 3 were synthesized. The results are summarized
in Table 2.

The structure of 3a was based on the spectroscopic data and
high-resolution mass spectra (HRMS). It should be noted that the
infrared (IR) spectra exhibited broad bands at 3441 cm�1 (OH) and

Scheme 1. The synthetic route for the 3-acetoacetylcoumarin derivatives 3.
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1730 cm�1 (C¼O), and the NMR spectra (in solvent CDCl3) showed the
absence of the methylene (CH2) group and instead a singlet at 15.80 ppm
(OH) and a singlet at 6.97 ppm (CH). We can see clearly that it was an
enol form, not a keto tautomerism, perhaps the large-conjugative-
system-stable enol moiety. The structures are the same as in our previous
results.[13]

On the basis of the structure of 3, the following mechanistic pathway
leading to the parent heterocycle 3a can be formulated. It starts with the
Knoevenagel condensation of pyranone 2 with salicylaldehyde (1a) in
ionic liquid to give 3-salicylidenepyrane-2,4-dione 4. This compound

Table 1. Solvent and reaction temperature optimization for the synthesis of 3a

Entry Solvent
Reaction

temperature (�C)
Time
(h)

Yield
(%)

1 [bmim]Br 90 4 98
2 [bmim]BF4 90 8 54
3 [bmim]PF6 90 8 60
4 [bmim]Br Rt 30 56
5 [bmim]Br 40 21 65
6 [bmim]Br 60 12 73
7 [bmim]Br 80 8 85
8 CH3COCH3 Reflux 29 28
9 CH3CN Reflux 25 33
10 EtOH Reflux 18 71
11 CHCl3 Reflux 30 23
12 DMF 100 7 81

Table 2. Synthesis of 3-acetoacetylcoumarin derivatives 3 in [bmim]Br at 90�C

Entry Product R1 R2 R3 Time (h) Yield (%)

1 3a H H H 4 98
2 3b Br H Br 4 99
3 3c H H Cl 4.5 85
4 3d H H Br 4 92
5 3e Cl H Cl 3 90
6 3f CH3O H H 4 88
7 3g (CH3)3C H (CH3)3C 3 56
8 3h H CH3O H 3 80
9 3i H H CH3O 2.5 93
10 3j H H CH3 3 86
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was already described as produced from the same components and
sodium amide in liquid ammonia.[25] The functional pyrone unit in 4

undergoes a ring-opening reaction mediated by a nucleophic attack of
the phenolic group onto the lactone carbonyl, yielding 3-acetoacetylcou-
marin (3a). A plausible mechanism for the formation of 3a is outlined in
Scheme 2.

In conclusion, with good yields and mild conditions, we think that
the present work provides a useful method for the preparation of 3-acet-
oacetylcoumarin derivatives. Compared with other methods, this new
method has the advantages of easier workup, milder reaction conditions,
better yields, no catalyst, and a more environmentally benign procedure.

EXPERIMENTAL

Melting points were determined in open capillaries and are uncorrected.
IR spectra were recorded on a Tensor 27 spectrometer in KBr with
absorptions in centimeters�1. 1H NMR was measured on an Inova
400-MHz spectrometer in CDCl3 with tetramethylsilane (TMS) as inter-
nal standard. High-resolution mass spectra (HRMS) were obtained using
a time-of-flight mass spectrometry (TOF-MS) instrument.

General Procedure for the Preparation of 3-Acetoacetylcoumarin

Derivatives (3)

A dry 50mL flask was charged with substituted 2-hydroxybenzaldehyde
1 (1mmol), 4-hydroxy-6-methyl-2H-pyran-2-one 2 (1mmol), and 2mL

[Bmim]Br. The mixture was stirred at 90�C for 2.5–4.5 h, and the sticky

Scheme 2. The mechanistic pathway leading to the 3-acetoacetylcoumarin.
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liquor was poured into water. Then solid material was filtered off and
washed with water, and the crude product was purified by recrystalliza-
tion from ethanol to give pure 3.

SPECTRAL DATA

3-Acetoacetylcoumarin (3a)

Mp: 144–145 �C (lit.[14] 148–150�C); IR (KBr) v: 3441, 3131, 3063, 1730,
1608, 1585, 1455, 1362, 1262, 1301, 1186, 1108, 820, 761 cm�1; 1H NMR
(CDCl3) d: 2.24 (3H, s, CH3), 6.97 (1H, s, CH), 7.25–7.32 (2H, m,
ArH), 7.54–7.59 (2H, m, ArH), 8.59 (1H, s, CH), 15.80 (1H, s, OH).
HRMS calcd. for C13H10O4, m=z: 230.0579 (Mþ); found, m=z:
230.0580.

6,8-Dibromo-3-acetoacetylcoumarin (3b)

Mp: 186–187�C (lit.[13] 188–189�C); IR (KBr) v: 3457, 3121, 3065, 1757,
1619, 1575, 1450, 1363, 1208, 1187, 864, 826, 772 cm�1; 1H NMR
(CDCl3) d: 2.23 (3H, s, CH3), 6.93 (1H, s, CH), 7.66 (1H, d, J¼ 2.0Hz,
ArH), 7.90 (1H, d, J¼ 2.0Hz, ArH), 8.45 (1H, s, CH), 15.67 (1H, s,
OH). HRMS calcd. for C13H8

79Br2O4, m=z: 385.8789 (Mþ); found,
m=z: 385.8787.

6-Chloro-3-acetoacetylcoumarin (3c)

Mp: 197–198�C (lit.[13] 197–199�C); IR (KBr) v: 3437, 3064, 1737, 1613,
1578, 1480 cm�1; 1H NMR (CDCl3) d: 2.24 (3H, s, CH3), 7.01 (1H, s,
CH), 7.32 (1H, d, J¼ 8.88, ArH), 7.56–7.59 (1H, m, ArH), 7.62 (1H, d,
J¼ 2.0, ArH), 8.57 (1H, s, CH), 15.78 (1H, s, OH). HRMS calcd. for
C13H9

37ClO4, m=z: 266.0160 (Mþ); found, m=z: 266.0165.

6-Bromo-3-acetoacetylcoumarin (3d)

Mp: 209–211�C (lit.[13] 211–212�C); IR (KBr) v: 3437, 3064, 1736, 1611,
1583, 1551, 1403, 1280, 1257, 1184, 1110, 1017, 885, 822, 781 cm�1; 1H
NMR (CDCl3) d: 2.25 (3H, s, CH3), 6.97 (1H, s, CH), 7.23 (1H, d,
J¼ 8.8Hz, ArH), 7.68 (1H, dd, J1¼ 8.8Hz, J2¼ 2.4Hz, ArH), 7.74

3504 D.-Q. Shi, Y. Zhou, and S.-F. Rong

D
ow

nl
oa

de
d 

by
 [

Fo
nd

re
n 

L
ib

ra
ry

, R
ic

e 
U

ni
ve

rs
ity

 ]
 a

t 0
1:

28
 1

2 
M

ay
 2

01
3 



(1H, d, J¼ 2.4Hz, ArH), 8.53 (1H, s, CH), 15.75 (1H, s, OH). HRMS
calcd. for C13H9

79BrO4, m=z: 307.9684 (Mþ); found, m=z: 307.9693.

6,8-Dichloro-3-acetoacetylcoumarin (3e)

Mp: 198–200�C (lit.[13] 200–202�C); IR (KBr) v: 3457, 3116, 3066, 1747,
1614, 1576, 1417, 1365, 1274, 1225, 1183, 1097, 1011, 886, 830, 777,
736, 704 cm�1; 1H NMR (CDCl3) d: 2.25 (3H, s, CH3), 6.69 (1H, s,
CH), 7.50 (1H, s, ArH), 7.62 (1H, s, ArH), 8.50 (1H, s, CH), 15.70
(1H, s, OH). HRMS calcd. for C13H8

35Cl2O4, m=z: 297.9800 (Mþ);
found, m=z: 297.9791.

8-Methoxy-3-acetoacetylcoumarin (3f)

Mp: 170–172�C (lit.[14] 172–173�C); IR (KBr) v: 3446, 2941, 2844, 1725,
1605, 1575, 1474, 1441, 1278, 1185, 1124, 1098, 820, 789, 733 cm�1;
1H NMR (CDCl3) d: 2.21 (3H, s, CH3), 3.93 (3H, s, OCH3), 6.99 (1H,
s, CH), 7.12–7.17 (2H, m, ArH), 7.20–7.25 (1H, m, ArH), 8.58 (1H, s,
CH), 15.79 (1H, s, OH). HRMS calcd. for C14H12O5, m=z: 260.0685
(Mþ); found, m=z: 260.0695.

6,8-Di-tert-butyl-3-acetoacetylcoumarin (3g)

Mp: 163–165�C. IR (KBr) v: 3444, 3123, 3070, 1724, 1619, 1581, 1441,
1396, 1363, 1332, 1283, 1252, 1188, 1107, 1012, 893, 835, 792, 711 cm�1;
1H NMR (CDCl3) d: 1.31 [9H, s, (CH3)3C], 1.47 [9H, s, (CH3)3C], 2.22
(3H, s, CH3), 6.99 (1H, s, CH), 7.39 (1H, d, J¼ 2.0Hz, ArH), 7.62 (1H,
d, J¼ 2.0Hz, ArH), 8.59 (1H, s, CH), 15.83 (1H, s, OH). HRMS calcd.
for C21H26O4, m=z: 342.1831 (Mþ); found, m=z: 342.1831.

7-Methoxy-3-acetoacetylcoumarin (3h)

Mp: 176–177�C (lit.[13] 175–177�C); IR (KBr) v: 3447, 2937, 1728, 1609,
1506, 1558, 1426, 1362, 1274, 1224, 1181, 1122, 1022, 843, 810,
772 cm�1; 1H NMR (CDCl3) d: 2.18 (3H, s, CH3), 3.83 (3H, s, OCH3),
6.76 (1H, d, J¼ 2.4Hz, ArH), 6.83 (1H, dd, J1¼ 8.8Hz, J2¼ 2.4Hz,
ArH), 6.91 (1H, s, CH), 7.46 (1H, d, J¼ 8.8Hz, ArH), 8.53 (1H, s,
CH), 15.92 (1H, s, OH). HRMS calcd. for C14H12O5, m=z: 260.0685
(Mþ); found, m=z: 260.0694.
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6-Methoxy-3-acetoacetylcoumarin (3i)

Mp: 170–171�C; IR (KBr) v: 3446, 3123, 1732, 1603, 1567, 1494, 1456,
1419, 1361, 1293, 1269, 1184, 1108, 1031, 959, 856, 827, 808 cm�1; 1H
NMR (CDCl3) d: 2.24 (3H, s, CH3), 3.84 (3H, s, OCH3), 7.01 (2H, s,
CHþArH), 7.19 (1H, dd, J1¼ 8.8Hz, J2¼ 2.4Hz, ArH), 7.27 (1H, d,
J¼ 8.8Hz, ArH), 8.58 (1H, s, CH), 15.82 (1H, s, OH). HRMS calcd.
for C14H12O5, m=z: 260.0685 (Mþ); found, m=z: 260.0695.

6-Methyl-3-acetoacetylcoumarin (3j)

Mp: 176–178�C (lit.[13] 179–180�C); IR (KBr) v: 3441, 2925, 1733, 1615,
1570, 1489, 1419, 1293, 1261, 1221, 1180, 1137, 1014, 957, 809 cm�1;
1H NMR (CDCl3) d: 2.21 (3H, s, CH3), 2.37 (3H, s, CH3), 7.03 (1H, s,
CH), 7.26–7.28 (1H, m, ArH), 7.43–7.47 (2H, m, ArH), 8.61 (1H, s,
CH), 15.83 (1H, s, OH). HRMS calcd. for C14H12O4, m=z: 244.0736
(Mþ); found, m=z: 244.0746.
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