1.5295, d²⁰_b 1.1604. Found: C, 50.69; H, 5.04; P, 10.15%. Calculated for C₁₂H₁₄NO₃PS: C, 50.88; H, 4.94; P, 10.95%. ³¹P NMR spectrum (δ, ppm): 51. PMR spectrum in CCl₄ (δ, ppm, J, Hz): 1.37 t (CH₃C, 3H, ${}^{3}J_{HH} = 7.0$), 2.42 s (CH₃CO, 3H), 6.4 d (${}^{2}J_{HP} = 5.0$), and 6.5 d (${}^{2}J_{HP} = 5.0$) 8.0) (CHP, 1H).

Reaction of (I) with meta-Fluorobenzaldehyde. A sample of 6.2 g aldehyde was added to 8.8 g (I) in the presence of a catalytic amount of $BF_3 \cdot Et_20$ upon cooling to 0-5°C. Distillation gave 10.5 g (70%) 0-ethyl-(1-acetoxy-meta-fluorophenylmethyl)cyanothiophosphonate (IIc) with bp 139-140°C (0.06 mm), n_D²⁰ 1.5185, d₄²⁰ 1.2475. Found: C, 47.62; H, 3.51; P, 10.08%. Calculated for $C_{12}H_{10}NO_3PSF$: C, 47.84; H, 3.32; P, 10.29%. ³¹P NMR spectrum (δ , ppm): 50. PMR spectrum in CCl₄ (δ , ppm, J, Hz): 1.8 t (³J_{HH} = 7.0, CH₃C, 3H), 2.66 s (CH₃CO, 3H), 6.60 d (²J_{HP} = 4.0) and 6.63 d (²J_{HP} = 8.0) (CHP, 1H).

LITERATURE CITED

- 1. A. N. Pudovik, G. V. Romanov, and V. N. Nazmutdinova, Izv. Akad. Nauk SSSR, Ser. Khim., No. 2, 453 (1981).
- 2. A. N. Pudovik, G. V. Romanov, and V. N. Nazmutdinova, Zh. Obshch. Khim., 52, No. 5, 1029 (1982).
- 3. A. N. Pudovik, G. V. Romanov, and V. N. Nazmutdinova, Izv. Akad. Nauk SSSR, Ser. Khim., No. 8, 1184 (1982).
- 4. A. N. Pudovik, G. V. Romanov, and V. N. Nazmutdinova, Izv. Akad. Nauk SSSR, Ser. Khim., No. 4, 939 (1982).
- 5. V. A. Al'fonsov, D. A. Pudovik, É. S. Batyeva, and A. N. Pudovik, Zh. Obshch. Khim., 58, No. 8, 1740 (1988).

REACTION OF FLUORINE-CONTAINING 1,4,2-OXAZAPHOSPHOLINE

WITH OH-NUCLEOPHILES

O. V. Korenchenko, A. Yu. Aksinenko, V. B. Sokolov, and I. V. Martynov

UDC 542.91:547.1'118'161

1,4,2-Oxazaphospholine (I) decomposes upon the action of OH-nucleophiles with the formation of phosphonate esters (II).

The synthesis and properties of 1,4,2-oxazaphospholines with a pentacoordinated P^{V} phosphorus atom have been studied rather extensively [1-3]. On the other hand, the information on the synthesis of 1, 4, 2-oxazaphospholanes with a tetracoordinated P^V atom is extremely limited and there are no data on their reactivity. In this regard, we undertook a study of the reaction of 1,4,2-oxazaphospholine (I) [4] with OH-nucleophiles, which opens, in our opinion, broad synthetic possibilities for the introduction of fluorine-containing a-aminoalkylphosphoryl fragments into OH-containing molecules.

The ring in (I) is virtually quantitatively opened by water and alcohols at the P-O bond with the formation of the corresponding phosphonic acid and its esters (IIa)-(IIg).

> $Me \xrightarrow{O} CF_{3} OEt + ROH \xrightarrow{Me} OCF_{3} O$ $H \xrightarrow{\parallel} P \xrightarrow{P} CF_{3} CF_{3}$ (IIa-g) R = H(a), Me(b), Et(c), n-Pr(d), n-Bu(e), n-Am(f), n-Hex(g).

Institute of Physiologically Active Compounds, Academy of Sciences of the USSR, Chernogolovka. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 1, pp. 239-240, January, 1991. Original article submitted June 25, 1990.

TABLE 1.	Yields,	s, Properties	and	Elemental Analysis	unalysis	Data	for (I)	(IIa)-(IIg)				
	Yield,	Bp, °C (p, mm	20		Found	d, %		Chemical		Calcul	Calculated, %	
Compound	*	(gH	^{(I} ⁿ	U	H	z	۹.	PTNIIIOT	υ	H	z	đ
([1]a) ([1]b) ([1]b) ([1]b) ([1]b) ([1]b) ([1]b) ([1]b)	38386629	$\begin{array}{c} -5 \\ 95 \\ -96 \\ -1 \\ 90 \\ -91 \\ 0 \\ 0 \\ 0 \\ 108 \\ -109 \\ 0 \\ 0 \\ 0 \\ 108 \\ -118 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	1,4044 1,4140 1,4140 1,4103 1,4103 1,4120 1,4130	26.49 29.40 31.32 33.32 35.76 37.32 37.32 37.32	3,03 3,48 4,64 5,21 5,21 7,21	4,48 4,49 4,19 3,69 3,69 3,59	9,53 9,58 8,97 8,40 7,85 8,02 7,7	C,H ₁₀ F ₆ NO,P C ₆ H ₁₂ F ₆ NO,P C ₆ H ₁₄ F ₆ NO,P C ₁₀ H ₁₆ F ₆ NO,P C ₁₀ H ₁₆ F ₆ NO,P C ₁₂ H ₁₆ F ₆ NO,P C ₁₂ H ₂₇ F ₆ NO,P	26,51 29,01 31,31 35,40 35,40 37,22 37,22	3,18 3,65 4,09 5,21 5,23	4,42 4,42 3,90 3,75 3,49 3,42 3,42	9.77 9.35 8.95 8.35 8,00 7.72
-87	48-50°C.									-	5	-
;	ade vin	With Spectra of (114)	PMR	PMR (ô, ppm,	J,* Hz)				**	*		
Compound		EtoC(0)		R	ROP			** IIN	(intensity)	ity)		6P
(II a)		(31	10,85 s (1H)					6,40 d	11,0	11,00 s	4	41,60
(911)		4,229 (2H) 1,30 t (3H)	3,90d (3H, ^{зЈ_{РН}=18)}	н = 18)				6,30 đ	9,38 q., 1	13,23 q	77	44,30
(IIc)		4,18q (2H) 1,30 t (3H)	1,26 t (3H), 4,14 m (2H)	14 m (2H)				6,44d	9,54 q.	13,06q	45	43,10
(IKI)		- e	0,98 t (3H), 1,74 m (2H), 4,22 m (2H)	74 m (2H),	4,22 m (2H	0		6.17 d	9,80 q	13,97 q	42	42,86
(IIe.)		- C	0,91 t (3H), 1,44 m (2H), 1,70 m (2H), 4,22 m (2H)	44 m (2H),	1,70 m (2H	l), 4,22 m ()	2H)	6,30 đ	9,78 q	13,97 q	42	42,77
(11f)		4,22 9 (2H) 1,30 t (3H)	0,91 t (3H), 1,	1,36 m (4H), 1,72 m (2H),	1,72 m (2H	(), 4,21 m (2H)	2H)	6,26 d	9,80 g	13,90 q	37	42,83
(IIB)		3,214 . (2H) 1,30 t (3H) 1,20 m (2H)	0,92 t (3H), 1,36 m (6H), 1,72 m (2H), 4,20 m (2H)	36m (6H),	1,72 m (2H	(), 4,20 m (;	2H)	6,25 đ	9,70 9,1 (1:	13,90 q : 1)	42	42,86

*1.90 d (3H, CH₃P, ²J_{FH} = 16). **³J_{FH} = 9. ***⁴J_{FF} = 9.

The composition and structures of (IIa)-(IIg) were supported by elemental analysis and $^1\rm H,~^{19}F,$ and $^{31}\rm P$ NMR spectroscopy.

The PMR spectra of (II) show characteristic doublets for the methyl group bound to the phosphorus atom at 1.90 ppm with ${}^{2}J_{PH} = 16$ Hz and doublets for the NH protons at 6.2-6.4 ppm with ${}^{3}J_{PH} = 9$ Hz. The ${}^{19}F$ NMR spectra of (IIb)-(IIg) show two quartets (at 8-9 and 13-14 ppm with ${}^{4}J_{FF} = 9$ Hz) due to lack of equivalence of the trifluoromethyl groups. The phosphorus atom signals in the ${}^{31}P$ NMR spectra of (II) are found at 41-44 ppm, which indicates the phosphine structure of (II) [5].

EXPERIMENTAL

The ¹H, ¹⁹F, and ³¹P NMR spectra were taken on a Bruker CXP 200 spectrometer in CDCl₃. <u>Reaction of 1,4,2-Oxazaphospholine with OH-Nucleophiles</u>. A sample of 0.01 mole water or corresponding alcohol was added dropwise to a solution of 0.01 mole (I) in 10 ml ether at 20°C. The solvent was evaporated after 24 h. Products (IIa) and (IIc) were dried in vacuum, while (IIb) and (IId)-(IIg) were distilled.

The yields, properties, elemental analyses, and NMR spectral data for (IIa)-(IIg) are given in Tables 1 and 2.

LITERATURE CITED

1. J. Albanbauer, K. Burger, E. Burgis, et al., Liebigs Ann. Chem., No. 1, 36 (1976).

2. K. Burger, R. Ottlinger, H. Goth, and J. Firl, Chem. Ber., <u>115</u>, No. 12, 2494 (1982).

3. K. Burger, J. Albanbauer, and F. Manz, Chem. Ber., <u>107</u>, No. 10, 1823 (1974).

- 4. V. B. Sokolov, O. V. Korenchenko, A. Yu. Aksinenko, and I. V. Martynov, Izv. Akad. Nauk SSSR, Ser. Khim., No. 5, 1213 (1989).
- 5. I. V. Martynov, A. Yu. Aksinenko, A. N. Chekhlov, and V. B. Sokolov, Zh. Obshch. Khim., <u>59</u>, No. 4, 809 (1989).

SYNTHESIS OF 5-AZAADENINE DERIVATIVES

FROM N-(1,2,4-TRIAZOL-5-YL)AMIDINES

V. A. Dorokhov, A. R. Amamchyan, V. S. Bogdanov, and B. I. Ugrak UDC 542.91:547.792.1:547.857.7

A method is proposed for the synthesis of N-substituted 5-azaadenines. The condensation of N-(1,2,4-triazol-5-yl) amidines with trichloroacetonitrile gives trichloromethyl derivatives of 1,2,4-triazolo[1,5-a]-1,3,5-triazines, which are converted by the action of primary or secondary amines into N-alkylamino- or N,N-dialkylamino-1,2,4-triazolo-[1,5-a]-1,3,5-triazines (5-azaadenines).

N-(1,2,4-Triazol-5-yl)amidines (TA), which we described in a previous work [1], are used as reagents in heterocyclic synthesis [2]. Thus, the reaction of TA with ethyl orthoformate is a simple, convenient method for obtaining the 5-azapurine system. Fusion of a triazine ring to a triazole ring may apparently be achieved by reactions of TA with other one-carbon synthones. In the present work, TA were used as starting compounds for the synthesis of 5-azaadenines substituted at the exocyclic nitrogen atom.

Free bases of TA obtained in situ from TA hydrochlorides (Ia) and (Ib) react with CCl₃CN to give the corresponding trichloromethyl derivatives of 1,2,4-triazolo[1,5-a]-1,3,5-triazines (IIa) and (IIb) in 58-78% yield.

N. D. Zelinskii Institute of Organic Chemistry, Academy of Sciences of the USSR, Moscow. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 1, pp. 241-243, January, 1991. Original article submitted July 9, 1990.