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Robust Kalman filtering for continuous-time systems with
norm-bounded nonlinear uncertainties
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In this paper we study the problem of robust Kalman filtering for a class of uncertain linear
continuous-time systems. The system under consideration is subjected to time-varying,
norm-bounded, nonlinear parameter uncertainties in state and measurement equations.
Stability of the above system is analyzed. A state estimator is designed such that the
covariance of the estimation error is guaranteed to be within a certain bound for all
admissible uncertainties, which is in terms of solutions of two algebraic Riccati equations.
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1. Introduction

1.1 A motivation example, BOT

The basic problem in target motion analysis (TMA) is in estimating the trajectory of an
object (or target), i.e. the objects position and velocity at some instant of time, from noise
corrupted sensor data. Bearings-only TMA, or bearings-only tracking (BOT) deals with
the specific case when the measurement is the angle that the line passing through the
moving observer (or receiver) platform and the object makes with some fixed reference
axis (Nardone, 1984).

A general setup for BOT is depicted in Fig. 1. The coordinates of the observer and
source positions are given as (xo(t), yo(t)) and (xs(t), ys(t)), respectively. The respective
velocities are denoted by (xo, yo) and (xs,ys). Note that the time variable t has been
dropped in Fig. 1 for simplicity.

The source is assumed to be moving at a constant velocity along a fixed rectilinear
path. So it has the dynamical equations

The dynamics of the observer is given by

yo(t) = uy(t)
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364 P. SHI AND C. Y. KAYA

(xs ,ys) : source (target) position

9 : bearing angle

(xo,yo) : observer (receiver) position

FIG. 1. The bearings-only tracking.

where ux(t) and uy(t) are the coordinates of the control input.
The bearing angle 6(t) can be expressed as

xs(t)-xo(t)

Define the state vector x(t) e R4 as x(t) = (xs(t) — xo(t),ys(t) — yo(t),xs(t) -
xo(.t), ys(t) ~ yo{t)), the control input u(t) e R2 as u(t) = (ux(t), uy(t)), and the output
y(t) e R as y(t) = 6{t). Let the dynamical (or process) noise on the system be denoted
by w(t), and the measurement noise by v(t). Then the state-space representation of the
system is given by

(1.1)

where

A =

0
0
0
0

1
0
0
0

0
0
0
0

0
0
1
0

r>
, D =

0
1
0
0

0
0
0
1

and h(x(t)) = tan l

WO/

In many cases the process noise w(t) is ignored. If, however, w(t) is not ignored then
the usual assumption about both of the noise terms w(t) and v(t) is that they are zero-
mean, normally distributed and independent. Note that the System (1.1) is nonlinear due
to of the output function, or the measurement. In real applications, the measurements
are taken at discrete time values, therefore System (1.1) is discretized. Furthermore, a
so-called pseudo-linearization of the equations is carried out, which basically models
the nonlinearity of the output as noise, additional to that of the measurement (Nardone,
1984). However, for analytical reasons, the continuous-time model is also considered in the
literature. For example, Levine & Marino (1992) investigates the observability properties
of the continuous-time model of the system. Grossman (1991) designs an extended Kalman
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ROBUST KALMAN FILTERING 365

filter using a hybrid coordinate system. While the observer is assumed to be stationary in
these two examples (i.e. u(t) = 0) Helferty & Mudgett (1993) deal with the problem
of choosing an appropriate u(t) so as to optimize the trajectory of the observer and thus
minimize the error in the estimation of the position of the source. Le Cadre & Laurent-
Michel (1997) carry out a similar analysis using the discretized system equations.

System (1.1) motivated the development of a state estimator which is given in the
following sections. The class of systems considered in the design of the estimator is
allowed to be more general than the form given in (2.1). Application of the estimator to
System (1.1) and further relevant analysis are intended for future work.

1.2 Recent advancements in Kalman filtering

Kalman filtering is one of the most popular estimation approaches. In the past three
decades, considerable effort has been devoted to its theory and applications; see for
example, Anderson & Moore (1979). This filtering approach assumes that both the
state equation and output measurement are subjected to stationary Gaussian noises. The
applications of the Kalman filtering theory may be found in a large spectrum of different
fields ranging from various engineering problems to biology, geoscience, economics and
management, etc.

Recently, the research of robust estimation is very attractive, and many developments
have been made. In Bernstein & Haddad (1989), a Kalman filtering with an HQQ norm
constraint has considered. Xie et al. (1991) have studied the design of filters guaranteeing
both robust stability and a prescribed H^ performance for the filtering error, in the
presence of parameter uncertainty. Note, however, that in Xie et al. (1991) the adopted
performance measure is in terms of the induced norm of the operator from the noise input
to the estimation error. The design of digital filters with an H^ like performance for a
linear system, has been tackled in Sun et al. (1991) whereas Shi (1993, 1996); Shi et
al. (1997); Shi (1998) have considered the H^ filtering for sampled-data systems with
parameter uncertainties. Very recently, Petersen & McFarlane (1991) considered a robust
Kalman filtering problem for systems with bounded parameter uncertainty in the state
matrix. A different approach has been proposed by Xie & Soh (1994), to the robust Kalman
filtering problem for systems with bounded parameter uncertainty in both the state and
measurement matrices. Also, Xie et al. (1994) studied the above problem for discrete-time
systems. However, to the best of the authors knowledge, to date the problem of robust
Kalman filtering for uncertain continuous-time linear systems with nonlinear uncertainties
has not yet been investigated.

In this paper we consider the problem of state estimation for linear systems subject to
real time-varying nonlinear parametric uncertainty. We address the designing of a stable
quadratic state estimator such that the estimation error covariance will have a guaranteed
bound for all admissible uncertainties. A Riccati equation approach is proposed to solve

* * the above problem. We demonstrate that the above problem can be solved in terms of two
algebraic Riccati equations (ARE).

Notation. The notations in this paper are quite standard. R" and R"x/" denote,
respectively, the // dimensional Euclidean space and the set of all /; x m real matrices. The
superscript ' 7 ' denotes the transpose and the notation X ^ Y (respectively, X > Y) where
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366 P. SHI AND C. Y. KAYA

X and Y are symmetric matrices, means that X — Y is positive semi-definite (respectively,
positive definite). / is the identity matrix with compatible dimension. E{-} denotes the
expectation operator with respective to some probability measure P. tr(M) is the trace of
a square matrix M.

2. Problem formulation and preliminaries

2.1 The uncertain system

Consider the following class of uncertain dynamical systems:

x(t) = Ax(t) + f\(t,x(t)) + Bu(t) + w(t), x(0)=x0 (2.1)

y(t) = Cx(t) + h{t, x(0) + v(t) (2.2)

where x(t) e R" is the system state, u{t) e Rm is the system input, y(t) e Rr is
the measurement, w(t) e R" and v(t) e Rr are the process and measurement noises,
respectively. A, B and C are known constant matrices of appropriate dimensions that
describe the nominal system, and f\{t,x{t)) and f2(t,x(t)) are unknown matrices with
compatible dimensions which represent time-varying parametric uncertainties and satisfy

||/i(r,jc(r))|| ^ail|jc(r)||, ||/2(r,*(0)ll ^a2| |*(OII, for all x e Rn (2.3)

where a\ ^ 0 and «2 ^ 0 are known constant numbers.
As is in the standard Kalman filtering case, we shall make the following assumptions

on the process noise w(t) and measurement noise v(t).

ASSUMPTION 2.1 For alH ^ 0, r ^ 0 and / e S,

(a) Ew(t) = 0, Ew(t)wT(t) = WS(t - T), W > 0
(b) Ev(t) = 0, Ev(t)vT(r) = V8(t -x), V > 0
(c) Ew(t)vT(r) = 0

where S(-) is the Dirac function. Since in this paper, we are dealing with only the steady
state filtering problem, it is assumed that Jo —• —oo.

2.2 The state estimation problem

Our objective in this paper is to design a stable estimator such that the error covariance of
state x(t) and its estimate JC(/) is bounded for all admissible uncertainties f\(t, x(t)) and
fl(t,x(t)).

DEFINITION 2.1 Given the Systems (2.1)-(2.2), the state equations,

x(t) = Gx(t) + BlU(t) + Ky(t), jc(O) = JC0 (2.4)

are said to define a guaranteed cost state estimator for this system if there exists a constant
symmetric matrix P ^ 0 such that

E{(x - x)(x - x)T} ^ P, or E{(x - x)T(x - x)} ^ tr(P) (2.5)

for all admissible uncertainties f\ (t, x(t)) and f2(t, x(t)).
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ROBUST KALMAN FILTERING 367

In this situation, the estimator (2.4) is said to provide a guaranteed cost matrix P.
Before ending this section, let us establish the following lemmas which link the

relations between linear uncertainty and nonlinear uncertainty.

LEMMA 2.1 For m ^ n, suppose v € R" with ||v|| = 1, and y eWm with \\y\\ = 1. Then
there exists a matrix M eW1*"1 with p(M) = X.(MTM) ^ 1 such that

v = My.

Proof. By Gram-Schmidt algorithm, together with v and u being unit norm, we may
construct orthonormal basis, i.e. V = (v, V2, •.., vn) and Y = (y,y2,..., ym).

It is trivial to show that Vm = (v, V2,..., vm) satisfies v£vm = / . Consequently,

M = VmYT satisfies MTM = / which implies p(M) < 1. Now, from MY = Vm, one has
v = My. This ends the proof.

Denote the admissible uncertainty sets by

\\fi(t,x(t))\\^ai\\x(t)\\)

= {f2(t,x(t)):

REMARK 2.1 The matrices f\ (t, x(t)) and f2(t, x(t)) contain the uncertain parameters in
the state and measurement matrices of the Systems (2.1)-(2.2). The scalars a,, / = 1,2
specify how the uncertain parameters in fi(t, x(t)), i = 1,2 affect the nominal matrices
of the Systems (2.1)-(2.2).

Next, we establish the relationship between the sets fi\{t,x{t)), f22(t,x(t)) and the
sets

Qi\(J,x(t)) = {aiMix(t) : Mx e R"xw, p(Mx) ^ 1}

and

= {a2M2x(t) : M2 e Rrxn, p(M2) ^ 1}.

LEMMA 2.2 The sets Q\(t, x{t)), fait, x(t)) and the sets i?/i(f, x(t)) and % ( ? , x(t)) are
identical, i.e.

Proof. It suffices to show only that fi\ (t, x(t)) = Qi\ (t, x(t)).
Firstly, it can be easily seen that

Also, for any x{t) e R", one has

(t))c.$ (2.6)
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368 P. SHI AND C. Y. KAYA

where

Next, assume any nonzero vector v e $. Then there exists a non-negative scalar d\ ^ a\
such that

(2.7)

Without loss of generality, let us assume x(t) ^ 0 and define

_ _ v _ _ x(t)
y = I N I ' X(0= \\x(t)\\'

Now, by using Lemma 2.1, there exists M e Rnxn with p(M) ^ 1 such that

v = Mx(t)

which, by taking into account of (2.7), leads to

v — a\Mx(t).

Now, we have

v = a\Mx{t) e Qn(t,x(t))

which implies that # c find, x(t)). Bearing in mind (2.6), we conclude that Q\ (t, x(t)) c
find, xd))- Therefore we have Q\{t, x(0) = find, *(*))•

REMARK 2.2 The advantage of Lemma 2.1 is that, instead of nonlinear uncertainty in
(2.3), it suffices to consider only linear uncertainty with structure as in (2.3), while the
latter is easier to handle and has been widely used in robust control and filtering (see,
for example, Petersen, 1987; Shi et al, 1999; de Souza et ai, 1993), although the former
represents a large class of physical uncertain systems. Furthermore, many existing results
on robust stability and robust control with linear uncertainty as the one given in (2.3) can
be extended to the cases involving nonlinear uncertainty.

LEMMA 2.3 Let H, F and E be real matrices of appropriate dimensions. Then, for any
scalar s > 0 and for all matrices F satisfying FT F ^ / ,

HFE + ETFTHT ^ sETE + -HHT.
£

Proof. We observe that for any x e R/z

0 ^ xT(y/sFE - -l=HT)T{yfeFE - -^HT)x

= xT(eETFTFE + -HHT - ETFTHT - HFE)x.
e

Now, the desired result follows immediately from the the above inequality.
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I ROBUST KALMAN FILTERING 369

3. Guaranteed cost filter design

In this section, we will design, via the Riccati equation approach, a guaranteed cost state
estimator of the form (2.4) such that the estimation error covariance of the state x(t) and
its estimate x(t) satisfies (2.5) for all admissible parameter uncertainties.

From Remark 2.2, to study the guaranteed cost estimation problem of Systems (2.1)-
(2.2) with norm-bounded nonlinear uncertainty, it is sufficient to study the same problem
for the following system:

x(t) = Ax(t) + aiM\(t)x(t) + Bu(t) + w(t), x(0) = x0 (3.1)

y(t) = Cx(t) + a2M2(t)x(t) + v(t) (3.2)

where x(t) e Rn is the system state, u(t) e Rw is the system input, y(t) e Rr is
the measurement, w(t) e Rn and v(t) e Rr are the process and measurement noises,
respectively. A, B and C are as in (2.1)-(2.2). a\ ^ 0 and a2 ^ 0 are known constant
numbers. M\ (t) and M2(t) are unknown matrices which represent time-varying parametric
uncertainties and satisfy

Mf(t)Mi(t) ^ / , Ml(t)M2(t) ^ /, Vf. (3.3)

For the simplicity of technique, we adopt the following assumption on M\(t) and M2(t).

ASSUMPTION 3.1 There exists a known constant matrix H such that M2(t) = HM\(t)
for all t.

We also assume that System (3.1) is quadratically stable (Khargonekar et al, 1990), that
is, there exists a symmetric positive definite matrix P such that

[A + a\Mi(t)]TP + P[A + a\M\(t)} < 0

for all uncertainties M\{t) satisfying (2.3).
To begin with the study of the robust state estimation problem, let us first define the

estimation error

e(t) = x(t) - x(t)- (3.4)

Then from Systems (2.1)—(2.2) and estimator (2.4), e(t) satisfies the following dynamics

e(t) = Ge{t) + (A - G - KC)x(t) + [AA(t) - KAC(t)]x(t)

+ (B-Bi)u(t) + w(t)-Kv(t), (3.5)

where AA(t) = aiM{(t), and AC{t) = a2HMi(t).
Now, we have the argumented system of (2.1)-(2.2) and (3.5)

i(r) = [A + HMi (t)E]x(t) + Bu(t) + F%(t) (3.6)

e(t) = [0 /]*(/) (3.7)

where

= r x(t)
[x(t)~

i = r
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370 P. SHI AND C. Y. KAYA

is a white noise process with an identity covariance matrix and the matrices A, B, H,
F and E are defined by

A =

H =

A ° i 5 _ r B i F F T _ \ w w i
A-G-KC GV \B-BA' ~\W W + KVKT\

 K }

—J l_ _ l I— J

r axl
 VTA, E = U 0]. (3.9)

DEFINITION 3.1 Given Systems (2.1)-(2.2), the state estimator (2.4) is said to be a stable
quadratic state estimator if there exists a symmetric nonnegative matrix Q ^ 0 such that

[A + //Mi(0£]<2 + Q[A + HMi(t)E]T + F F 7 ^ 0 (3.10)

for all admissible uncertainties Mi(t).

We now show that a stable quadratic state estimator is a guaranteed cost state estimator.

THEOREM 3.1 Assume that Systems (3.1)-(3.2) satisfy (3.3) and Assumptions (2.1)
and (3.1), and is quadratically stable. Also, suppose that (2.4) is a stable quadratic state
estimator for Systems (3.1)—(3.2) and let the symmetric nonnegative matrix Q be as defined
in (3.10). Then, (2.4) is a guaranteed cost state estimator for Systems (3.1)—(3.2), and

E{(x - x)(x - x)T} ^ (222, or E{(x - x)T(x - x)\ < tr(022)

is satisfied with Q22 being the 2-2 block of the matrix Q.

Proof. Let E{x(t)xT(t)} = (MO- From (3.6), by the result in Grimble & Johnson (1988),
one has

(MO + [A + HMi(t)E]QF{t) + QF(t)[A + HMi(t)E]T + FFT = 0. (3.11)

Define S(t) = Q - QF(t). One obtains from (3.10) and (3.11)

S(t) + [A + HMi(t)E]S(t) + S(t)[A + HMi(t)E]T + FFT < 0. (3.12)

Bearing in mind the fact that System (3.1) is quadratically stable and (2.4) is a stable
quadratic estimator, it can be shown that A -f HMi(t)E is exponentially stable (Bolzern
et al, 1996). On the other hand, note that System (3.1) is assumed to the quadratically
stable (implying this system is stable) and the definitions of S(t) and QF(t), together with
(2.4) is a stable quadratic state estimator and the initial time to —• —00, it follows that
System (3.1) is under steady state, which implies from (3.12) that 5(0 ^ 0, Vf ^ 0. That
is, ( M O ^ 0 , Vr ̂  0. Finally, from (3.7) we have

E{^ r (OI = [0 I]QF(O\ ? "U<222,

which implies that the estimator (2.4) provides a guaranteed cost matrix Q22 for
System (3.1)—(3.2), and the proof is complete.
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ROBUST KALMAN FILTERING 371

Now, let us design a robust filter for Systems (3.1)—(3.2), and show that the covariance
of the estimation error will be guaranteed within a certain level for all admissible
uncertainty. To this end, we first introduce the following concept of stabilizing solution
of Riccati equation.

DEFINITION 3.2 Let A, W and R be known constant matrices of appropriate dimensions
with W and R being symmetric. Then, a solution P of ARE

ATP + PA + PWP + R = 0

is said to be stabilizing if the matrix A + WP is stable.

Now, we are in a position to present our main results of this paper.

THEOREM 3.2 Assume that Systems (3.1)—(3.2) satisfy (3.3) and Assumptions (2.1) and
(3.1), and are quadratically stable. Suppose there exists an £ > 0 such that the following
conditions hold:

(a) There exists a stabilizing solution P to the ARE

AP + PAT + -P2 + eah + W = 0. (3.13)
e

(b) There exists a stabilizing solution Q to the ARE

AQ + QAT + -QETEQ - (QCT + eaia2H
T)(V + ea\HHTyx

e

x(QCT +saia2H
T)T + ea\l + W = 0. (3.14)

Then, the estimator given by

x(t) = Gx(t) + Bxu(t) + Ky(t) (3.15)

where

G = A + -QETE - (QCT +£axa2H
T)(V + e

K = (QCT + sa\a2H
T)(y + ea\HHTTx

is a stable quadratic estimator with guaranteed cost

E((x-x)T(x-x)}^tr(P-Q).

Proof. Define a matrix

X = \ P P-Q]
[P-Q P-Q]'

f"» where P and Q are the stabilizing solutions to (3.13) and (3.14), respectively. By standard
matrix manipulations, it can be shown that the matrix X satisfies the following ARE

AX + XAT + -XETEX + £HHT + FFT = 0, (3.16)
£

where A, H, E and F are as in (3.8) and (3.9).
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372 P. SHI AND C. Y. KAYA

By applying Lemma 2.3 to (3.16), one obtains

[A + HMi(t)E]X + X[A + HM\(t)E]T + FFT < 0

for all M\ (t) satisfying M\(t)M\ (t) < /, Vf. Therefore, from Theorem 3.1, it follows that
(3.15) is a stable quadratic estimator and

E{(x-xf(x-x)}^tr(P-Q),

and the proof ends.

REMARK 3.1 It should be noted that the the positive semi-definiteness of the matrix P — Q
is ensured by the fact of, as in (3.16), X is symmetric and A is stable. In addition, if the pair
(A, W) is controllable, it can be shown that P — Q is positive definite, see, for example,
Bolzernefa/. (1996).

REMARK 3.2 Theorem 3.2 presents a sufficient condition for the solvability of the robust
filtering problem of Systems (3.1)-(3.2) (consequently, (2.1)-(2.2)). If for a fixed e > 0,
the AREs (3.13) and (3.14) do admit stabilizing solutions Ps and Qs, then, such Ps and Qs

are unique and turn out to be minimal, i.e. Ps ^ P and Qs ^ Q, where P and Q are any
solutions of (3.13) and (3.14), respectively. Hence, Ps and Qs provides the tightest upper
bound of E{(x —x)T(x —x)} for all admissible uncertainty. The problem of optimizing the
bound with respect to e has been investigated by Bolzern et al. (1994). It is shown that the
above minimization problem is convex for trace functions of Ps and Qs, which allows us
to develop efficient numerical procedures for the computation of the minimal upper bound.
Furthermore, the optimization problem of finding minimal upper bound of tr(P — Q) for
covariance of the estimation error E{(x — x)T (x — x)} may be solved by the linear matrix
inequality technique Boyd et al. (1994), that is,

minimize tr(P — Q)

Subject to £ > 0, Y ̂  0 and Z ^ 0,

where Y and Z stand for the left hand sides of (3.13) and (3.14), respectively.
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