starting from carbonyl compounds, the most important procedures involve variants of the Peterson reaction; inconveniences of this route are either by-reactions with enolizable carbonyl compounds or the obtention of (Z,E)-mixtures.² We report here a new and general method for preparing vinylsilanes from aldehydes and ketones with high stereoselectivity.

When different aldehydes and ketones 1 were allowed to react with (chlorolithiomethyl)trimethylsilane [CH₃)₃SiCHClLi] (2) [generated in situ by lithiation of (chloromethyl)trimethylsilane³ with sec-butyllithium and tetramethylethylenediamine (TMEDA) at $-78\,^{\circ}$ C to $-60\,^{\circ}$ C]⁴ at temperatures ranging between $-60\,^{\circ}$ C and $-45\,^{\circ}$ C, the intermediates 3 were obtained,⁵ which by chlorine-lithium interchange using lithium naphthalenide⁶ at $-78\,^{\circ}$ C to $20\,^{\circ}$ C led to the corresponding β -substituted organolithium species 4;⁷ the spontaneous β -elimination of this unstable intermediate led to the expected vinylsilanes 5 in a stereoselective manner. Thus, starting from aldehydes 1d-h the corresponding products 5d-h were isolated, which had an (E)-configuration in $>95\,\%$ (determined by GLC) (Table 1).

$$\begin{bmatrix} R^{1} & OLi \\ R^{2} & Si(CH_{3})_{3} \end{bmatrix} \xrightarrow{\text{a.q. NH}_{4}Cl} \begin{bmatrix} R^{1} & Si(CH_{3})_{3} \\ 46-61\% & R^{2} \end{bmatrix}$$
5a-h

1, 5	R¹	R ²	1, 5	\mathbb{R}^1	R ²
a	C ₂ H ₅	C ₂ H ₅	e	H	n-C₄H₀
b		$(H_2)_{\Delta}$	f	H	i-C ₄ H ₉
c	$-(CH_2)_5$		g	Н	C_6H_5
d	H `	$n-C_3H_7$	h	H	C ₆ H ₅ CH ₂ CH ₂

Highly Stereoselective Synthesis of Vinylsilanes from Carbonyl Compounds

José Barluenga,* José L. Fernández-Simón, José M. Concellón, Miguel Yus

Departamento de Química Organometálica, Facultad de Química, Universidad de Oviedo, E-33071 Oviedo, Spain

The *in situ* generated (chlorolithiomethyl)trimethylsilane reacts at $-60\,^{\circ}\text{C}$ to $-45\,^{\circ}\text{C}$ with different aldehydes or ketones 1 to afford, after lithiation with lithium naphthalenide at $-78\,^{\circ}\text{C}$ to $20\,^{\circ}\text{C}$, vinylsilanes 5a-h in a stereoselective manner.

The great synthetic utility of vinylsilanes¹ is critically dependent on their availability. Most existing methodologies utilize alkynes, carbonyl compounds, or vinyl halides.² In the case of

Table 1. Vinylsilanes 5 Prepared

Product	Yield ^a (%)	bp (°C)/mbar	Molecular Formulab or Lit. bp (°C)/mbar
5a	61	45-47/20	C ₉ H ₂₀ Si (156.3)
5b	52	39-41/20	$C_9H_{18}Si$ (154.3)
5c	55	49-52/20	75/39°
(E)-5d°	54	53-55/20	135/98810
(E) -5 e^c	51	44-46/20	72-76/3911
(E)-5f°	50	37-39/20	_d
(E)-5g ^c	46	90-92/20	90-91/17 ¹³
(E) -5 \mathbf{h}^{e}	48	65-67/0.13	_f

^a Overall yield of isolated product based on starting ketone 1. Purity was confirmed by GLC.

Vinylsilanes 5; General Procedure:

To a stirred solution of (chloromethyl)trimethylsilane (1.4 mL, 10 mmol) in THF (15 mL) is successively added a 1.4 M solution of secbutyllithium in cyclohexane (7.8 mL, 11 mmol) and TMEDA (1.5 mL, 10 mmol) at $-78\,^{\circ}\mathrm{C}$ under argon. Stirring is continued for 40 min allowing the temperature to rise to $-60\,^{\circ}\mathrm{C}$, and then a solution of the carbonyl compound 1 (10 mmol) in THF (3 mL) is added to the resulting mixture, which is stirred 2 h at temperatures ranging between $-65\,^{\circ}\mathrm{C}$ and $-45\,^{\circ}\mathrm{C}$. The resulting mixture is then cooled to $-78\,^{\circ}\mathrm{C}$, a solution of lithium naphthalenide in THF (22 mmol) is added and stirring is continued overnight allowing the temperature to rise to 20\,^{\circ}\mathrm{C}. The mixture is then hydrolyzed with sat. aq. NH4_Cl, and extracted with ether (3 × 15 mL). The organic layer is dried (Na_2SO_4), and the solvents are distilled. Products are then bulb-to-bulb distilled (0.13 mbar, 40 °C bath temperature) and further purified by distillation (20 mbar).

This paper is dedicated to the memory of Dr. Antonio Ara.

Received: 20 July 1987

Table 2. Spectral Data of Compounds 5

Product	IR $(film)^a$ $v_{C=C}$ (cm^{-1})	¹ H-NMR (CDCl ₃) ^{b,c} δ, J(Hz)	$^{13}\text{C-NMR}$ (CCl ₄ + D ₂ O capillary) ^{b,d} δ	MS° m/z (%)
5a	3025, 1605 (HC=C)	0.0 (s, 9 H, 3 × SiCH ₃); 0.9 (t, 6 H, J = 5, 2 × CH ₃); 1.9-2.2 (m, 4 H, 2 × CH ₂); 5.1 (s, 1 H, CH = C)	0.5 (SiCH ₃); 13.0, 14.1 (2 × CH ₃); 29.4, 31.2 (2 × CH ₂); 121.1 (CH =C); 162.8 (C=CSi)	156 (M ⁺ , 17); 142 (15); 141 (M ⁺ - 15, 100); 113 (17); 99 (30); 87 (29); 73 (51); 59 (56); 45 (12); 43 (10)
5b	3025, 1615 (HC=C)	0.0 (s, 9H, $3 \times SiCH_3$); 1.4-1.7 (m, 4H, $2 \times CH_2$); 2.1-2.3 (m, 4H, $2 \times CH_2C = C$); 5.3 (s, 1H, $CH = C$)	-0.6 (SiCH ₃); 16.0, 27.2, 32.4, 37.5 (ring CH ₂); 118.6 ($\underline{\text{CH}}$ =C); 163.0 ($\underline{\text{C}}$ =CSi)	154 (M ⁺ , 18); 140 (11); 139 (M ⁺ -15, 100); 111 (10); 79 (26); 73 (23); 59 (49); 45 (6); 43 (7)
5c	3040, 1610 (HC=C) ⁹	0.0 (s, 9 H, $3 \times SiCH_3$); 1.4–1.6 (m, 6 H, $3 \times CH_2$); 2.0–2.2 (m, 4 H, $2 \times CH_2C = C$); 5.0 (s, 1 H, $CH = C$) ^{f,9}	-0.5 (SiCH ₃); 25.9, 28.0, 28.4, 35.1, 40.2 (ring CH ₂); 120.4 (CH =C); 159.3 (C=CH)	168 (M ⁺ , 20); 154 (15); 153 (M ⁺ - 15, 100); 125 (31); 93 (16); 85 (10); 73 (19); 59 (44); 45 (7); 43 (5)
(E)-5d	3030, 1615 (HC=C)	0.0 (s, 9 H, 3 × SiCH ₃); 0.8 (t, 3 H, $J = 5$, CH ₃); 1.1–1.5 (m, 2 H, CH ₂ CH ₃); 1.8–2.2 (m, 2 H, CH ₂ C=C); 5.6 (d, 1 H, $J = 19$, SiCH=C); 6.1 (2t, 1 H, $J = 19$ and 5, CH=CSi)	-1.0 (SiCH ₃); 13.9 (CH ₃); 22.0, 39.1 (2 × CH ₂); 130.6 (SiCH = C); 147.8 (CH = CSi)	142 (M ⁺ , 6); 128 (10); 127 (M ⁺ - 15, 100); 99 (32); 85 (16); 73 (29); 59 (61); 45 (9); 43 (10)
(E)-5e	3020, 1610 $(HC = C)^{g.11}$	0.0 (s, 9H, $3 \times SiCH_3$); 0.8–1.0 (m, 3H, CH ₃); 1.2–1.5 (m, 4H, CH ₂ CH ₂ CH ₃); 1.9–2.2 (m, 2H, CH ₂ C=C); 5.6 (d, 1H, $J = 19$, SiCH=C); 6.1 (2t, 1H, $J = 19$, 5, CH=CSi) ¹¹	-1.0 (SiCH ₃); 15.1 (CH ₃); 22.8, 31.6, 37.1 (3 × CH ₂); 130.7 (SiCH =C); 149.4 (CH = CSi)	156 (M ⁺ , 2); 142 (11); 141 (M ⁺ - 15, 100); 114 (28); 99 (15); 85 (15); 81 (13); 73 (46); 59 (67); 45 (15); 43 (12)
(E)-5f	3030, 1610 (HC=C)	0.0 (s, 9H, $3 \times \text{SiCH}_3$); 0.8 (d, 6H, $J = 5$, $2 \times \text{CH}_3$); 1.4–1.8 (m, 1H, CH); 1.9 (t, 2H, $J = 5$, CH ₂ C=C); 5.6 (d, 1H, $J = 19$, SiCH=C); 6.0 (2t, 1H, $J = 19$, 5, CH=CSi)	-1.5 (SiCH ₃); 21.8 (CH ₃); 27.6 (CH); 46.5 (CH ₂); 131.2 (SiCH =C); 146.0 (CH =CSi)	156 (M ⁺ , 3); 142 (14); 141 (M ⁺ – 15, 100); 114 (17); 113 (15); 99 (22); 85 (16); 73 (58); 59 (62); 45 (10); 43 (12)
(E)-5g	3040, 3010, 1605, 1570, 1495, 750, 685 (HC=C)	0.0 (s, 9 H, $3 \times SiCH_3$); 6.3 (d, 1 H, $J = 19$, $SiCH = C$); 6.8 (d, 1 H, $J = 19$, $CH = CSi$); 7.1-7.4 (m, $5H_{arom}$)	-0.6 (SiCH ₃); 127.3, 128.6, 129.4, 130.0, 139.5, 145.6 (7 × CH = C and C_{ipso})	176 (M ⁺ , 28); 162 (15); 161 (M ⁺ – 15, 100); 145 (55); 135 (30); 59 (31); 43 (12)
(E)-5h	3030, 3010, 1610, 1600, 1495, 750, 700 (HC=C)	0.0 (s. 9H, $3 \times SiCH_3$); 2.2-2.8 (m, 4H, $2 \times CH_2$); 5.6 (d, 1H, J = 19, $SiCH = C$); 6.1 (2t, 1H, J = 19, 5, $CH = CSi$); 7.2-7.4 (m, $5H_{arom}$)	-0.9 (SiCH ₃); 35.8, 38.9 (2 × CH ₂); 126.7, 129.0, 130.2, 142.5, 147.3 (7 × CH = C and C_{ipso})	204 (M ⁺ , 2); 189 (M ⁺ – 15, 37); 131 (10); 130 (100); 129 (61); 91 (86); 73 (71); 59 (88); 45 (11); 43 (10)

^a Recorded on a Perkin-Elmer 577 IR spectrometer.

b Satisfactory microanalyses obtained: $C \pm 0.1$, $H \pm 0.2$.

 $^{^{\}circ}$ > 95% (E)-configuration, (GLC).

d No data available in ref. 12.

 $^{^{\}circ}$ > 98% (E)-configuration, (GLC).

No data reported in ref. 14.

b Recorded on a Varian FT-80 spectrometer.

Referred to the Si-CH₃ signal ($\delta = 0.0$) in compound 5.

d Referred to the solvent CCl4.

e Recorded on a Hewlett-Packard 5987 A spectrometer.

In CCl₄ + D₂O capillary.

g In CCl₄.

Downloaded by: Rutgers University. Copyrighted material.

- (1) Chan, T.H., Fleming, I. Synthesis 1979, 761.
- (2) Colvin, E.W. Silicon in Organic Synthesis, Butterworths, London 1981, Chapter 7.
- (3) For a review, see: Anderson, R. Synthesis 1985, 717.
- (4) Burford, C., Cooke, F., Roy, G., Magnus, P. *Tetrahedron* 1983, 39, 867, and references cited therein.
- (5) When the reaction mixture is hydrolyzed at this point, the corresponding silylated chlorohydrin is obtained (see Ref. 4).
- (6) The metallation with lithium powder needs to be carried out at higher temperature; under these conditions side-reactions occur yielding a mixture of reaction products.
- (7) For stabilized dianions of this type see: Barluenga, J., Fernández-Simón, J.L., Concellón, J.M., Yus, M. J. Chem. Soc. Chem. Commun., 1987, 915, and references cited therein.
- (8) For an application of these types of reactions in the synthesis of unsaturated compounds, see: Barluenga, J., Alvarez, F., Concellón, J.M., Bernad, P., Yus, M. Synthesis 1987, 318.
- (9) Martel, B., Varache, M. J. Organometal. Chem. 1972, 40, C 53.
- (10) Benkeser, R.A., Burrous, M.L., Nelson, L.E., Swisher, J.V. J. Am. Chem. Soc. 1961, 83, 4385.
- (11) Miller, R.B., McGarvey, G. J. Org. Chem. 1978, 43, 4424.
- (12) Zaitseva, G.S., Livantsova, L.I., Bankov, Y.I., Lutsenko, I. F. Zh. Obshch. Khim. 1980, 50, 1880; C.A. 1980, 93, 239551.
- (13) Eisch, J.J., Foxton, M.W. J. Org. Chem. 1971, 36, 3520.
- (14) Ochiai, M., Ukita, T., Fujita, E. Chem. Lett. 1983, 9, 1457.