

0031-9422(94)00490-0

A CHALCONE GLYCOSIDE FROM CLERODENDRON PHLOMIDIS

R. ROY and V. B. PANDEY*

Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221 005, India

(Received 30 March 1994)

Key Word Index—*Clerodendron phlomidis*; Verbenaceae; flowers; leaves; pectolinarigenin; chalcone glycoside; 7-hydroxyflavone; 7-hydroxyflavanone 7-O-glucoside.

Abstract—A new chalcone glycoside, together with pectolinarigenin, 7-hydroxyflavone and 7-hydroxyflavanone 7-O-glucoside have been isolated from the flowers and leaves of *Clerodendron phlomidis*. The structure of the chalcone glycoside has been established as 4,2',4'-trihydroxy-6'-methoxychalcone 4,4'-D-diglucoside by spectroscopic and degradative methods.

INTRODUCTION

Clerodendron phlomidis L. (Verbenaceae) is a small tree distributed throughout India and various medicinal properties are attributed to it in the Indian System of Medicine [1]. A number of compounds, namely clerodin, β -sitosterol, lupeol acetate, scutellarein, (24S)-ethyl cholesta, 5,22,25'-triene-3- β -ol, D-mannitol, ceryl alcohol, pectolinarigenin, palmitic acid, cerolic acid, apigenin, luteolin and hispidulin [2–7] have earlier been reported from C. phlomidis. We report here the isolation of flavonoids pectolinarigenin and a new chalcone glycoside from flowers and 7-hydroxyflavone and 7-hydroxyflavanone-7-O-glucoside from the leaves of the plant.

RESULTS AND DISCUSSION

The methanolic extract of the flowers of *C. phlomidis* yielded the chalcone glycoside (1), mp 186–188°, $C_{28}H_{34}O_{15}$. With Mg/HCl it developed a magenta colour. The UV spectrum showed absorption bands like that of chalcone [8]. It showed peaks in its IR spectrum at 3400 cm⁻¹ (*br*) for a polyhydroxy system, at 2775 cm⁻¹ for a methoxyl and at 1645 cm⁻¹ for a conjugated carbonyl group. On acid hydrolysis it gave glucose and an aglycone (2).

The aglycone (2) $C_{16}H_{14}O_5$, mp 257–259°, furnished a diacetate (3), mp 171–173°, $C_{20}H_{18}O_7$. The ¹H NMR spectrum of (2) showed a methoxyl group signal (δ 3.72), a typical four peak pattern doublet for 4'-oxygenated B ring (δ 7.25, 6.80, J = 9 Hz each), two meta coupled doublets (δ 5.83, 6.02, J = 2.2 Hz each) and ABX pattern of protons (δ 2.70, m and 5.25 1H, dd, J = 5 Hz) like that of naringenin-5-methyl ether [9] (lit. mp 258–261°, diacetate, mp 171.5–173°). The mass spectrum showed

molecular ion peak at m/z 286.0946 and had characteristic ion peaks (m/z 166 and m/z 120) due to retro-Diels-Alder type fragmentation indicating the presence of methoxyl group in ring A. These data suggest that 2 is naringenin 5-methyl ether.

The ¹³C NMR of 1 showed signals at δ 101.1 and 101.7 due to anomeric carbons of two D-glucose units. Compound 1 on acetylation (Ac₂O/Py) gave a nona-acetate (4) (δ 1.95–2.42). The ¹H NMR spectrum of 1 showed two anomeric protons at δ 5.1 and 5.3 which each appeared as doublets (J = 3 Hz). These data show that 1 contains two D-glucose units which have α -linkages with the aglycone. The formation of naringenin 5-methyl ether supports the structure of the aglycone as isosalipurpol 6'-methyl ether (5).

The attachment of sugar units at C-4 and C-4', respectively, was apparent from the UV spectrum of 1 which showed a bathochromic shift of 50 nm in presence of NaOMe without increase in intensity and no bathochromic shift with NaOAc. The ¹H NMR spectrum of 1 showed signals for the presence of twelve glucosyl protons (δ 3.25–4.0, m), one methoxyl (δ 3.80, br s), two anomeric protons, two broad singlets ($\delta 6.35$, 6.50), for C-3' and C-5' protons, two broad singlets each ($\delta 6.50$, 7.00) for C-3, C-5 and C-2, C-6 protons. It also showed two signals for one proton doublet each (J = 16 Hz) for C- α and C- β protons of chalcone skeleton. FAB-MS showed a molecular ion peak at m/z 610 and significant peaks at m/z 287 due to the loss of two glucose units and m/z 168 and 120 due to cleavage of the isosalipurpol 6'-methyl ether unit into two halves. The ¹³C NMR data are shown on structure 1. Thus 1 is 4,2',4'-trihydroxy-6'-methoxychalcone $4.4'\alpha$ -D-diglucoside.

EXPERIMENTAL

Leaves and flowers of *C. phlomidis* were collected from Varanasi district and verified by the Department of

^{*}Author to whom correspondence should be addressed.

Botany, Banaras Hindu University and a specimen sample is kept in the department.

Flowers (250 g) were dried, powdered and successively extracted with EtOAc and MeOH in a Soxhlet extractor. CC resolution on SiO₂ gel of the EtOAc and MeOH extracts furnished pectolinarigenin (31 mg), mp 212–214° (lit. mp 213–215°) [10] and chalcone glycoside (1) (75 mg), respectively. The dried leaves (500 g) similarly extracted with MeOH and chromatographed over SiO₂ gel gave, respectively, 7-hydroxyflavone (42 mg), mp 142–144° [11] and 7-hydroxy-flavanone 7-O-glucoside (53 mg) [11]. The structure of the known compounds were established by a comparison with spectral data with reported data and also by authentic samples.

Chalcone glycoside (1) was crystallized from MeOH as yellow granules (75 mg), mp 186–188°. UV λ_{max}^{MeOH} (nm): 245 sh (log ε 4.25) and 364 (log ε 4.40), ¹H NMR (CD₃OD): δ 7.80 (1H, d, J = 16 Hz), 7.75 (2H, m), 7.60 (1H, d, J = 16 Hz), 7.00 (2H, m), 6.50 (1H, br s), 6.35 (1H, br s), 3.25–4.00 (12H, m). The acid hydrolysate showed a single spot on PC which corresponded to D-glucose (Co-PC with authentic samples). Diacetate of aglycone 3, mp 171–173°. UV λ_{max} 273 and 320 nm, IR ν_{max} 1743 and 1682 cm⁻¹, ¹H NMR (CDCl₃): δ 2.25 (s, 6H), 2.70 (dd, J = 16, 5 Hz, 1H), 6.31 (d, J = 8 Hz, 1H), 7.44 (d, J = 8 Hz, 1H); (Found C, 64.66, H, 5.28, Calculated for C₂₀H₁₈O₇: C, 64.86, H, 4.90%).

Acknowledgements---The authors are grateful to Prof. Dr G. Rücker, Director, Pharmazeutisches Institut der Universität Bonn, Germany, for spectral analysis and R.R. wishes to thank CCRAS, New Delhi for financial assistance.

REFERENCES

- Kirtikar, K. R. and Basu, B. D. (1975) Indian Medicinal Plants (Blatter, E., Casisus, J. F. and Mhasker, K. S., eds), Vol. III, p. 1947.
- Joshi, K. C., Singh, P. and Mehra, A. (1979) Planta Medica 37, 64.
- Gupta, R. K., Chandra, S. and Mahadevan, V. (1967) Indian J. Pharm. 29, 102.
- Subramanian, S. S. and Nair, A. G. R. (1972) J. Indian Chem. Soc. 49, 1069.
- Subramanian, S. S., Nair, A. G. R. and Vedantham, T. N. C. (1973) Phytochemistry 12, 2078.
- 6. Seth, K. K., Pandey, V. B. and Dasgupta, B. (1982) *Pharmazie* 37, 74.
- Bhakuni, D. S., Srivastava, S. N., Sehgal, S. L. and Kaul, K. N. (1962) J. Sci. Ind. Res. (India) 21, 48.
- 8. Imperato, F. (1978) Phytochemistry 17, 822.
- Maruyama, M., Hayasaka, K. and Sasaki, Shin-ichi (1974) Phytochemistry 13, 286.
- Subramanian, S. S. and Nair, A. G. R. (1972) Phytochemistry 11, 3095.
- Mabry, T. J., Markham, K. R. and Thomas, M. B. (1970) The Systematic Identifications of Flavonoids, pp. 64 and 169. Springer, New York.