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Abstract

The infrared (3500 to 30 cm'l) spectra of gaseous and solid and the Raman (3500 to 10 cm") spectra of the liquid with
quantitative depolarization ratios and solid chloromethyl methyl silane, CICH,SiH,CH, have been recorded. Similar data have
also been recorded for the Si-d; isotopomer. These data indicate that two conformers are present in the fluid states but only one
conformer is present in the annealed crystalline state. The mid-infrared spectra of the sample dissolved in liquified xenon as a
function of temperature ( — 100 to — 70°C) have been recorded. Utilizing conformer pairs at 738 (gauche), 685 (gauche), and
700 (trans) cm™' the enthalpy difference has been determined to be 180 = 18 cm™ (515 * 51 cal mol™") with the gauche
conformer the more stable species. However, in the spectrum of the solid, the trans conformer is the stable rotamer remaining
after the sample is well annealed. Utilizing the Si—H stretching frequencies from the infrared spectrum of the CICH,SiHDCH;
isotopomer, the two Si—H bond distances are calculated to be 1.482 and 1.487 A for the gauche conformer. The optimized
geometries, conformational stabilities, harmonic force fields, infrared intensities, Raman activities, depolarization ratios, and
vibrational frequencies are reported for both conformers from RHF/6-31G* and/or MP2/6-31G* ab initio calculations. The
gauche conformer is predicted to be the more stable rotamer from both ab initio calculations in agreement with the experimental
results. The other calculated quantities are compared to the experimentally determined values where applicable as well as with
some corresponding results for some similar molecules. © 1998 Elsevier Science B.V.

Keywords: Chloromethyl methyl silane; Conformational stability; Ab initio calculations; Raman and infrared spectra

1. Introduction

Previously we [1] investigated the far infrared and
low frequency gas phase Raman spectra of the 1-halo-
propane molecules, CH;CH,CH,X where X = F, Cl
and Br, and from the observed asymmetric torsional
transitions of both the trans and gauche conformers
the potential functions governing the conformer inter-

* Corresponding author.

conversions were determined. From these potential
functions the enthalpy differences between the high
energy trans and the low energy gauche conformers
were estimated. The values ranged from 127 %
10 cm™ for the chloride, 122 * 10cm™ for the
fluoride, and 35 + 10 cm™' for the bromide. However,
the experimental determined values had such large
uncertainties (i.e. for the chloride [2-4] ~0, -5 =
10,17 = 52 c¢m™'; for the fluoride [5] 164 = 108; and
for the bromide [4] 35 = 70 cm™!) that it was not
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possible to make meaningful comparison with the
estimated values. Nevertheless, the experimental
results indicated that the gauche conformers are the
more stable rotamers in the gas phase but for the
chloride, bromide and iodide the trans conformer is
the more stable form in the crystalline solid [3]. In
contrast, for the fluoride the gauche conformer
appears to be the more stable rotamer in all physical
states [6].

For the corresponding chlorosilane, CICH,
SiH,CH,, the stable conformer in the crystalline
state is the tfrans form but in the liquid state it was
estimated that the enthalpy difference was zero
between the two conformers [7]. In the vapor state
the infrared bands of the conformer pairs are so
badly overlapped that measurements of the relative
intensities of the bands were not possible [7]. There-
fore, to determine the conformer stability in the fluid
states we have carried out a temperature dependent
infrared spectral investigation of chloromethyl methyl
silane dissolved in liquid xenon. Since the Raman
spectra had not been reported in the previous vibra-
tional study [7] we have recorded Raman data for both
the liquid and solid. As an aid in interpreting the
vibrational spectra we have carried out ab initio cal-
culations at the RHF/3-21G*, RHF/6-31G* and MP2/
6-31G* levels. The optimized geometries, conforma-
tional stabilities, harmonic force fields, infrared
intensities, Raman activities, depolarization ratios,
and vibrational frequencies have been obtained to
compare with the experimental results where applic-
able. The results of these spectroscopic and theoretical
studies are reported herein.

2. Experimental

The samples of chloromethyl methyl silane and the
deuterated species Si-d, were prepared by the reduc-
tion of commercially available chloromethyl methyl
dichlorosilane with lithium aluminum hydride -d, and
-d, in dry dibutyl ether. Purification was performed
with a low-temperature, low-pressure fractionating
column, and the purity of the sample was checked
by recording the mass spectrum and the mid-infrared
spectrum of the gas. The sample was stored under
vacuum at low temperature.

The Raman spectra were recorded on a SPEX

model 1403 spectrophotometer equipped with a
Spectra-Physics model 164 argon ion laser operating
on the 514.5 nm line. The laser power used was 0.5 W
for the liquid and the solid with slit widths of 3 cm™.
The spectra of the liquids were recorded with the
samples sealed in a Pyrex glass capillary contained
in capillary tubes held in a Miller—Harney apparatus
[8]. The Raman spectra of the solids were obtained by
cooling the liquids until the samples solidified.

Depolarization measurements were obtained for the
liquid samples using a standard Ednalite 35 mm
camera polarizer with 38 mm of free aperture affixed
to the SPEX instrument. Depolarization ratio
measurements were checked by measuring the state
of polarization of the Raman bands of CCl, immedi-
ately before depolarization measurements were made
on the liquid sample. The measurements of Raman
frequencies are expected to be accurate to = 2 cm™
and typical spectra are shown in Figs. 1 and 2.

The mid-infrared spectra (Figs. 3 and 4) of the
gases and solids were recorded using a Perkin-Elmer
model 2000 Fourier transform interferometer
equipped with a Ge/Csl beamsplitter and DTGS
detector. Atmospheric water vapor was removed
from the spectrometer housing by purging with dry
nitrogen. The spectra of the gas were obtained by
using a 10 cm cell fitted with CsI windows. The spec-
tra of the solids were obtained by condensing the
sample on a CsI substrate held at the temperature of
boiling liquid nitrogen, housed in a vacuum cell fitted
with CsI windows. The samples were condensed as
amorphous or glassy solids and repeatedly annealed
until no further changes were observed in the spectra.

The mid-infrared spectra of the sample dissolved in
liquified xenon as a function of temperature were
recorded on a Bruker model IFS 66 Fourier transform
interferometer equipped with a globar source, a Ge/
KBr beamsplitter and a TGS detector. In all cases 100
interferograms were collected at 1.0 cm™ resolution,
averaged and transformed with a boxcar truncation
function. For these studies a specially designed cryo-
stat cell was used. It consisted of a copper cell with a
path length of 4 cm with wedged silicon windows
sealed to the cell with indium gaskets. It was cooled
by boiling liquid nitrogen to 77 K. The temperature
was monitored with two Pt thermoresistors. The com-
plete cell was connected to a pressure manifold,
allowing the filling and evacuation of the cell. After
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Fig. 1. Raman spectra of chloromethyl methyl silane-dy: (A) liquid; and (B) annealed solid.

the cell had cooled to the desired temperature, a small
amount of the compound was condensed into the cell.
Next, the pressure manifold and the cell were
pressurized with the noble gas, which immediately
started to condense in the cell, allowing the com-
pounds to dissolve.

The far infrared spectra (Figs. 5 and 6) of gaseous
chloromethyl methyl silane and the Si-d; compound

were recorded on a Bomen model DA3.002 Fourier
transform interferometer equipped with a vacuum
bench, using 6.25 and 25 um Mylar beamsplitters,
and a liquid helium-cooled Si bolometer. The spectra
were obtained from the samples contained in a 1 m
folded path cell equipped with mirrors coated with
gold, and fitted with polyethylene windows with an
effective resotution of 0.10 cm™'. To remove traces of
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Fig. 2. Raman spectra of chloromethyl methyl silane-d,: (A) liquid; and (B) annealed solid.



18 G.A. Guirgis et al./Journal of Molecular Structure 446 (1998) 15-39

A
e —
B
i [ i
T T U
3000 2000 1000

WAVENUMBER (cm™)

Fig. 3. Mid-infrared spectra of chloromethyl methyl silane-d: (A) gas; and (B) annealed solid.

water, an activated 4 A molecular sieve was used to 3. Conformational stability

dry the sample. The spectra of the amorphous and

crystalline solids were obtained with the Perkin- The determination of the conformational stability is
Elmer model 2000 equipped with a metal grid beam- not straight forward since most of the fundamentals
splitter and a DTGS detector. All of the observed for each conformer are predicted to be near coinci-
bands with their proposed assignments are listed in dent. Nevertheless, it is quite clear from the spectral
Tables 1 and 2. data that conformers are present in the fluid phases.
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Fig. 4. Mid-infrared spectra of chloromethyl methyl silane-d,: (A) gas; and (B) annealed solid.
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Fig. 5. Far infrared spectra of chloromethy! methyl silane gas: (A) -
dg; and (B) -d,.

For example, a comparison of the Raman spectrum of
the liquid to that of the solid clearly shows that several
bands disappear with solidification of the sample.
Pronounced Raman lines at 623 and 688 cm™ in the
spectrum of the liquid are absent from the spectrum of
the solid. Similarly infrared bands at 685 (pronounced
Q-branch) and 624 cm™ (maximum in the spectrum
of the gas which are found at 685 and 619 cm™ in
the spectrum of the amorphous solid) are absent
from the spectrum of the solid. Similarly there are
bands at 738 and 580 cm™ which also disappear
from the spectrum of the amorphous sample when
the sample is annealed to a polycrystalline solid
(Fig. 1). Therefore, in both the spectra of the gas
and liquid there is clear evidence for the existence
of two conformers. The ab initio calculations indicate
that the bands which disappear are due to the gauche
conformer so the trans conformer is the rotamer that is
stable in the solid.

The conformer pairs at 685/700 and 738/700 cm™
with the first listed frequency due to the gauche con-
former were used to determine the enthalpy difference
between the conformers by the temperature dependent
infrared spectra of xenon solutions of the normal spe-
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Fig. 6. Far infrared spectra of chloromethyl methyl silane: (A)
unannealed solid-dy; (B) annealed solid-dg; (C) unannealed-d,;
and (D) annealed-d,.

cies. The spectral changes are shown in Fig. 7 for the
first pair of bands and from these spectral data, it is
obvious that the increase in the intensity of the infra-
red band assigned to the gauche conformer as the
temperature decreases confirmed the stability of the
gauche rotamer over the trans conformer in the xenon
solution. In order to obtain the enthalpy difference,
seven spectral data points were obtained for these
lines over the temperature range —70 to —100°C
(Table 3). The intensities of each conformer pair
were fit to the equation —InK = (AH/RT) — (AS/R)
where K is the intensity ratio (/,/I,), and it is assumed
that AH is not a function of temperature. Using a least
squares fit, and from the slope of the line (Fig. 8), a AH
value of 181 = 6cm™ [518 = 17 cal mol™' (1 cal =
4.184 J)] was obtained from the lower wavenumber
conformer pair and a value of 180 = 5cm™ (515 =
14 cal mol ') obtained from the pair at 738/700 cm™'.
The average value from these two determinations is
180 = 18cm™ (343 * 51 cal mol™). This value
should be near the value for the gas [9,10] since
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Fig. 7. Temperature dependence of 700 and 685 cm ™' infrared bands
of chloromethyl methyl silane-d, dissolved in liquid xenon.
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Fig. 8. The van’t Hoff plot of the relative intensities of /34/! 750 and
Iss5/I 700 cm™ infrared bands in xenon solution.

both conformers have similar sizes but significant dif-
ferences in polarities.

4. Vibrational assignment

The vibrational assignment of chloromethyl methyl
silane was previously reported from an infrared
investigation of all phases [7]. However, the present
data obtained are at a higher resolution and the band
contours are well defined. Additionally, the infrared
spectra of the sample dissolved in the xenon matrix
solution, the far infrared spectra of the vapor and
solid, and the Raman spectra of the liquid and solid
phases were recorded for the first time. Because of
this, several modes belonging to the gauche confor-
mer were observed and clearly assigned and reported
in Tables 1 and 2 for the —d, and -d, isotopomers,
respectively. Group frequencies, infrared gas phase
band contours, and Raman depolarization data are
utilized along with the normal coordinate analysis
from ab initio calculations in the assignment of the
spectra. Although the gauche conformer is more pro-
found in the fluid phases, it is clear that the trans
conformer remains in the crystalline state. Therefore,
all assignments for the trans rotamer are reported
from the solid phase data, thus facilitating in the
assignment. However, there are some changes in the
assignment of the normal modes resulting from the
improved data and the normal coordinate analysis
that must be noted as well as the assignments obtained
from the low frequency data.

The CHj; antisymmetric stretches (v;, »,7) and the
CH, antisymmetric stretch (v;5) were previously
assigned to a single band in the spectra. From our
data, there is a weak band observed at 2990 ¢m™
which is now assigned to the CHj; antisymmetric
stretching modes. Also, the ab initio calculations indi-
cate a reversal in the assignment of the CH; rock (v))
and the CH, twist (»;;). Additionally, the ab initio
calculations indicate that the band at 620 cm™ pre-
viously assigned to the SiH, twist of the gauche con-
former is now assigned to the C-Si stretch of the
gauche conformer and the band at 579 cm™ is
assigned to the SiH, twist of both rotamers.

The strong band observed in the spectrum of the gas
at 773 cm ™ is assigned to the C—Cl stretch. This band
is listed in the earlier work, but was unassigned. The
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Table 3
Temperature and intensity ratios for the conformational study of chloromethyl methyl silane in liquid xenon
T(°C) T(K) 1000/T (K) Lossi 700 —-Ink L7/l 700 —InkK
~70 203 4.926 0.4587 0.7795 1.159 —0.1479
=75 198 5.051 0.4759 0.7426 1.211 —-0.1916
~80 193 5.181 0.4895 0.7144 1.242 —0.2168
-85 188 5.319 0.5058 0.6816 1.281 —0.2473
—90 183 5.464 0.5260 0.6424 1.339 -0.2921
-95 178 5.618 0.5561 0.5868 1.388 —0.3278
-100 173 5.780 0.5701 0.5619 1.454 —0.3747
181 = 6 180 = 5

*Average AH = 180 = 4 (516 = 11 cal mol ™).

bands previously assigned to the C—Si stretches at 740
and 728 cm™' were not observed in our spectra and
thus must have been due to impurities in the earlier
sample [7]. However, the bands at 701 and 685 cm™
formerly assigned [7] to the C—Cl stretching modes of
the trans and gauche conformers, respectively,
are now assigned to the C-Si stretching modes,
respectively.

Additional vibrational data is provided by the far
infrared spectra of the vapor and solid phases and
from the low frequency Raman spectra of the liquid
and solid. The SiCCl bend for the trans conformer is
assigned to the band observed at 246 cm™ in the gas
and liquid phases, and at 249 and 253 cm™' for the
solid phases of the infrared and Raman spectra,
respectively. The shoulder observed at 255 cm™' in
the Raman spectrum of the liquid is assigned to the
corresponding gauche vibration. The methyl torsion
of the trans conformer, v 5, was observed as a band of
medium intensity in the infrared spectra of the gas and
solid at 154 and 161 cm™', respectively, and as a very
weak line at 165 cm™' in the Raman spectrum of the
solid. The corresponding mode for the gauche form is
assigned to a very weak line at 178 cm™ (Raman
spectrum of the liquid) and a shoulder at 175 cm™
(infrared spectrum of the vapor). The two remaining
fundamentals are the CSiC bend and the asymmetric
torsional mode. The CSiC bend is assigned to the band
at 150 cm™ (infrared solid) for the trans conformer,
and at 139 cm ™' (infrared vapor) for the gauche form.
The asymmetric torsional mode was observed in the
infrared spectrum of the gas at 87 cm™' for the gauche
conformer and a higher frequency of 112 ¢cm ™' in the
spectrum of the solid is assigned to the corresponding
mode for the trans rotamer.

In the deuterated analogue, there are some differ-
ences in our proposed assignments compared to the
earlier one {7] that should be noted. The CH; anti-
symmetric stretches, »; and »;7, are interchanged with
the assignment of the CH, antisymmetric stretch, v 4.
The ab initio calculations still indicate a reversal of
the CH, rock and CH, twist vibrations, but also indi-
cate a reversal of the assignment of the SiD, wag and
the SiC stretch. Additionally, the SiD, deformation
previously assigned at 728 cm ™' is now assigned to
the band at 818 cm ™' along with the CH; rock of the
gauche conformer (¥,,'). The band at 728 cm™ is now
assigned to the C—Cl stretch, and the band at 689 cm ™'
(previously the CCI stretch) is now assigned as the
CH; rock (v;), according to the ab initio calculations.
The remaining four fundamentals below 400 cm™ are
assigned similar to those in the normal compound.

5. Ab initio calculations

The LCAO-MO-SCF restricted Hartree—Fock cal-
culations were performed with the Gaussian-92 pro-
gram [11] using Gaussian-type basis functions. The
energy minima with respect to nuclear coordinates
were obtained by the simultaneous relaxation of all
of the geometric parameters using the gradient method
of Pulay [12]. The structural optimization for both the
trans and the gauche conformers were carried out
with initial parameters taken from those of 1,1-
dichloropropane [13] and dichlorodimethylsilane [14].
The 3-21G* and 6-31G* basis sets were employed at the
level of restricted Hartree—Fock (RHF) and Moller—
Plesset (MP2) to second order. The determined struc-
tural parameters are listed in Table 4.
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Table 4

Structural parameters, rotational constants, dipole moments, and energy for chloromethyl methyl silane

RHF/3-21G” RHF/6-31G" MP2/6-31G” MP2/6-311 + G™
Parameter gauche trans gauche trans gauche trans gauche trans
Si,~C, 1.876 1.882 1.882 1.888 1.874 1.880 1.868 1.874
C;-Si 1.897 1.897 1.905 1.904 1.897 1.896 1.891 1.891
Cl-C; 1.830 1.828 1.804 1.801 1.794 1.792 1.791 1.790
Hs-C, 1.087 1.087 1.086 1.086 1.093 1.093 1.093 1.094
H¢-C, 1.086 1.087 1.085 1.087 1.094 1.093 1.092 1.093
H,-C, 1.087 1.087 1.086 1.087 1.093 1.093 1.094 1.093
Hg-Si 1.480 1.474 1.480 1.475 1.490 1.485 1.481 1.476
Hy-Si 1.474 1.474 1.475 1.475 1.485 1.485 1.477 1.476
H,-C; 1.081 1.081 1.081 1.081 1.092 1.092 1.091 1.092
H,-C; 1.081 1.081 1.081 1.081 1.092 1.092 1.092 1.092
C,SiC, 111.3 109.4 111.4 109.3 110.6 109.1 110.2 109.2
CIC,Si 110.2 109.9 111.6 111.3 1111 111.3 111.1 111.6
HC,Si 110.8 110.8 110.7 110.7 111.0 110.8 111.1 110.9
H(C,Si 110.9 111.4 111.2 i11.5 110.6 111.2 110.8 111.2
H,C,Si 111.3 111.4 111.3 111.5 111.0 111.2 110.8 111.2
HSiC, 106.5 108.3 106.3 108.5 106.7 108.4 106.9 108.3
H,SiC, 108.1 108.3 108.4 108.5 108.3 108.4 108.5 108.3
H oC,Si 1124 112.7 111.8 112.0 111.6 111.5 111.6 111.3
H,,C,Si 112.8 112.7 112.1 112.0 111.5 111.5 111.1 111.3
CIC,SiC, 614 180.0 61.5 180.0 59.7 180.0 58.7 180.0
HsC,SiC, -179.4 180.0 -179.8 180.0 -179.8 180.0 -179.3 180.0
H(C,SiH; 119.9 119.7 119.9 119.7 120.0 119.8 120.2 119.8
H,C,SiH; -120.2 -119.7 ~1204 -119.7 -120.0 -119.8 -119.9 -119.8
H;SiC:C, 120.8 120.9 120.5 120.7 120.8 120.8 118.1 120.7
H,SiC:C, -122.4 -120.9 ~122.8 -120.7 -122.2 -120.8 -120.3 -120.7
H 4C1SiCl 118.2 118.4 119.2 119.3 119.8 119.8 120.0 120.0
H,,C;SiCl -118.6 -118.4 ~-119.4 -119.3 -119.6 -119.8 -119.7 -120.0
A 7750 15560 7763 15550 7681 15702 7784 15804
B 2292 17077 2237 1705 2289 1741 2353 1748
C 1950 1598 1910 1595 1941 1629 1988 1636
|dl 1.724 2.644 1.683 2.552 1.597 2.517 1.573 2.464
™ 0.831 —1.378 0.793 1.319 0.770 1.333 0.813 1.287
™ 0.961 0.000 0.924 0.000 0917 0.000 0.881 0.000
[pe] 2.142 2.982 2.077 2.873 2.000 2.849 1.978 2.780
—(E + 824) 0.279905 0.279114 4.216001 4.215428 4716628 4.717433 5.052083 5.051076
AE (cm™) 174 126 176 221

In order to obtain a more complete description of
the molecular motions involved in the normal modes
of CICH,SiH,CH,, we have carried out a normal
coordinate analysis. The force fields in Cartesian
coordinates were calculated by the Gaussian-92 pro-
gram [11] with the MP2/6-31G* basis set. Internal
coordinates (Fig. 9) were used to calculated the G
and B matrices using the structural parameters given
in Table 4. Using the B matrix, [15] the force field in
Cartesian coordinates was then converted to a force
field in internal coordinates, and the pure ab initio

vibrational frequencies were reproduced. The force
constants for the trans and gauche conformers can
be obtained from the authors. Subsequently, scaling
factors of 0.9 for stretching and bending and 1.0 for
the torsional coordinates, and the geometric average
of scaling factors for interaction force constants were
used to obtain the fixed scaled force field and resultant
wavenumbers. A set of symmetry coordinates was
used (Table 5) to determine the corresponding poten-
tial energy distributions (PED). A comparison
between the observed and calculated frequencies of
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Fig. 9. Internal coordinates of chloromethy! methyl silane.

Symmetric coordinates for chloromethyl methyl silane

29

Species

Description

Symmetry coordinate

A’

A"

CH; antisymmetric stretch
CH,; symmetric stretch

CH; symmetric stretch
SiH, symmetric stretch
CH; antisymmetric deformation
CH, deformation

CH; symmetric deformation
CH, wag

SiH, deformation

SiH; wag

C-Cl stretch

CH; rock

C,~-Si stretch

SiCj stretch

SiC;Cl bend

C,SiC; bend

CH; antisymmetric stretch
CH; antisymmetric stretch
SiH, antisymmetric stretch
CH; antisymmetric deformation
CH, rock

CHj; rock

CH, twist

SiH; twist

SiH; rock

CH; torsion

CH,Cl torsion

S =2rg—r17—1y

Sa=ry+r1;
Si=re+r7+718
Si=r14+715

Ss=204— s — g
Se=da;—ar—az;—f,-8;
Si=as+as+tas—Bi—Bs5—Bs
Sg= B2+ 83— o~ a3
Sg=46—f|—62*0|—02
Sip=¢€+e2-0, -0

Si=r

Stz=234‘,35‘ﬁﬁ

Si3=R,

Siu=R;
Sis=58i-aj~ar—az3~B:- 8
Se=St—-0—-€,—-€;—0,—0;

Si=r;—r1sg
Sig=ra—r;3
Sip=rs—rs5

Sp=0s~ s
Su=oay~oa3+ ;- B
522=ﬁ5—ﬁo
Sm=ar—a3—B+8;
Syu=€ —e—0,+0>
Siu=¢€¢ —e2~0,-0;
Saw=7)

Sp=7;
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Fig. 10. Predicted and observed Raman spectra of chioromethyl
methyl silane-dg: (A) observed spectrum of liquid; (B) predicted
spectrum of mixture of gauche and trans conformers with AH =
180 cm™'; (C) predicted spectrum of pure frans conformer; and (D)
predicted spectrum of pure gauche conformer.

chloromethyl methy! silane along with the calculated
infrared intensities, Raman activities, depolarization
ratios and PED are given in Table 6 and Table 7 for d,
and d,, respectively.

The predicted Raman and infrared spectra
(Figs. 10~13) for chloromethyl methyl silane were
calculated using the frequencies, scattering activities
and intensities determined from the ab initio cal-
culations. The Gaussian-92 program [11] with the
option of calculating the polarizability derivatives
was used. The Raman scattering cross sections, da;/
aQ, which are proportional to the Raman intensities,
can be calculated from the scattering activities and the
predicted frequencies for each normal mode using the
relationship: [16]

(v Vj)4

a0; _ (2‘%“) ( h
a0\ 45 —hey; 87cy,
1 exp[ T ]

where v, is the exciting frequency, »; is the vibrational

S
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3000 2000 1600 0
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Fig. 11. Predicted and observed infrared spectra of chloromethyl
methyl silane-dy: (A) observed spectrum of xenon solution; (B)
predicted spectrum of mixture of gauche and trans conformers
with AH = 180 cm™"; (C) predicted spectrum of pure trans confor-
mer; and (D) predicted spectrum of pure gauche conformer.

frequency of the jth normal mode, A, ¢ and & are uni-
versal constants, and S; is the corresponding Raman
scattering activity. To obtain the polarized Raman
scattering cross section, the polarizabilities are incor-
porated into S; by S;{(1 — pp/(1 + pj)] where p; is the
depolarization ratio of the jth normal mode. The
Raman scattering cross sections and calculated
frequencies are used together with a Lorentzian line
shape function to obtain the calculated spectrum.
Since the calculated frequencies are = 10% higher
than those observed, the frequency axis of the theore-
tical spectrum was compressed by a factor of 0.9. The
predicted Raman spectra of the trans and gauche pure
conformers are shown in Fig. 10(C) and (D) respect-
ively for the normal species, and Fig. 12(C) and (D)
for the Si-d; isotopomer. The corresponding predicted
Raman spectra of the mixture of the two conformers
with an assumed AH of 180cm™' are shown in
Fig. 10(B) and Fig. 12(B), respectively. These spectra
should be compared to the experimental spectra of the
liquids (Fig. 10(A) and Fig. 12(A)). The calculated
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Fig. 12. Predicted and observed Raman spectra of chloromethyl
methyl silane-d,: (A) observed spectrum of liquid; (B) predicted
spectrum of mixture of gauche and trans conformers with AH =
180 cm™; (C) predicted spectrum of pure trans conformer; and (D)
predicted spectrum of pure gauche conformer.

Raman spectra are quite similar to the experimental
spectra with the exception of the intensities of the
higher wavenumber carbon-hydrogen stretches of
the CH; deformation, which are predicted too strong,
and the Si—C stretches which are predicted too weak.
Similar problems are encountered in the calculated
spectra of the Si-d, isotopomer. Nevertheless, the
calculated spectra are considered to be in reasonable
agreement with the observed spectra and demon-
strates the value of using the calculated intensities to
aid in the vibrational assignment even at the relatively
low level of the calculation.

Infrared intensities were also calculated based on
the dipole moment derivatives with respect to the
Cartesian coordinates. The derivatives were taken
from the ab initio calculations at the MP2/6-31G*
level and transformed to normal coordinates by:

Ipy _ E)&
(i6)-2(%)s

where the Q; is the ith normal coordinate, X; is the jth

A

BN EEEENEEE SN NN NN NN
3000 2000 1000 0
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Fig. 13. Predicted and observed infrared spectra of chloromethyl
methyl silane-d,: (A) observed spectrum of gas; (B) predicted spec-
trum of mixture of gauche and trans conformers with AH =
180 cm™; (C) predicted spectrum of pure trans conformer; and
(D) predicted spectrum of pure gauche conformer.

Cartesian displacement coordinates, L is the transfor-
mation matrix between the Cartesian displacement
coordinates and normal coordinates. The infrared
intensities were then calculated by

() ()]
3¢2 |\ 9Q; 30, 0Q;

In Fig. 11(C) and (D), the predicted infrared spectra of
the two conformers of the normal species are shown,
whereas in Fig. 13(C) and (D) the predicted infrared
spectra of the Si-d, isotopomer are shown. The com-
bination of the spectra of the two conformers with a
AH of 180 cm™ are shown in Figs. 12(B) and 13(B).
The experimental infrared spectrum of the normal
species dissolved in liquid xenon at —70° is also
shown for comparison in Fig. 11(A) and the infrared
spectrum of gaseous Si-d, sample is shown in
Fig. 13(A). Excluding the overtones or combination
bands which are present in the spectrum of the xenon
solution, the agreement between the observed and
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Fig. 14. Potential function governing internal rotation of chloromethy! methyl silane as determined by ab initio calculations with RHF/6-31G*
basis set. The potential surface calculated by allowing for optimization at transition states as well as the gauche position by relaxation of all

geometric parameters.

calculated spectra for both the dy and Si-d; isotopo-
mers are considered satisfactory and provide support
for the vibrational assignments.

The potential surface (Fig. 14) of the asymmetric
torsion was obtained by relaxation of all structural
parameters in the expected potential minima and max-
ima using the MP2/6-31G* basis set. The calculated
energy difference of 176 cm™' from the MP2/6-31G*
calculation with the gauche conformer more stable is
in agreement with the experimental results from the
variable temperature study. The relative energies of
the potential barriers appear to have reasonable values
based on the barriers to internal rotation of some simi-
lar molecules.

6. Discussion

In the previous study [7] of chloromethyl methyl
silane, the large overlap of bands in the gaseous state
and the observation of no appreciable changes in the
spectra of the liquid between 23 and —100°C made it
impossible for the investigators to determine the
thermodynamically preferred conformer in the fluid
states. In the present study, an alternative method to
determine the AH value was performed by using a
very low concentration of the sample dissolved in
an inert liquid matrix of xenon atoms. Since liquified
noble gases are the most inert solvents, only small
interactions are expected to occur between the sample

and the surrounding atoms, and the enthalpy differ-
ences of conformers which have similar size and
polarity of samples dissolved in such solutions are
expected to be comparable to those in the gas phase
[9,10]. The measurement of the infrared spectrum of
the liquified noble gas solution as a function of
temperature provides a convenient way to determine
the AH values of compounds that are difficult to
obtain in the gas phase. Additionally, the separation
of the bands is better than in the infrared spectrum of
the gas due to the collapse of the P and R branches.
This results in the narrowing of spectral bands and the
low temperature reduces excited state transitions (‘hot
bands’) which can easily be mistaken as conformer
bands in the infrared spectrum of the gas. These
advantages greatly facilitated the analyses and inter-
pretation of the spectra of the molecules of the rare
gas solutions. Therefore, we were able to identify
more confidently the assignment of the conformer
pairs.

Utilizing the predictions from the ab initio calcula-
tions it was necessary to revise the previously reported
[7] vibrational assignment. Fundamentals below
400 cm™ had not been previously reported so the
spectroscopic data in the low wavenumber region is
new information. Using a single scaling factor of 0.9
except for the two torsions, the wavenumbers for the
fundamentals are predicted from the MP2/6-31G*
calculation to 1.8% for the gauche conformer and
1.7% for the trans conformer. Therefore, ab initio
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calculations at this level provide excellent predictions
of the wavenumbers for the fundamentals for these
types of molecules.

In support of the vibrational assignment the Teller—
Redlich product rule was calculated. For the gauche
conformer the theoretical tau value is 7.24 and the
experimental value using the frequencies for the nor-
mal modes for the gas is 7.22 which is in excellent
agreement. For the frans conformer frequencies from
the solid state had to be used. For the A’ block the
theoretical tau value is 2.86 with the experimental
value of 2.57 which is too low but the discrepancy
is probably due to the association in the solid state.
For the A” block the theoretical value is 2.58 and the
experimental value is 2.53 which is in excellent agree-
ment. Therefore, Teller—Redlich calculations support
the vibrational assignment for the Si-d, isotopomer.

The changes in the relative stabilities of the two
conformers in going from the fluid states to the crys-
talline solid is probably due to two factors. The
permanent dipole for the trans is predicted to be
40% larger than that of the gauche conformer. There-
fore, in the liquid state which is a polar medium of the
trans conformer stability will be increased compared
to that of the gauche conformer. This is probably the
reason why the energy difference for the two confor-
mers was found to be nearly zero in the earlier vibra-
tional study [7]. This effect can also assist along with
the packing factor to the frans conformer being the
stable rotamer in the solid. Similar results were also
found [1] for the 1-chloropropane molecule where the
stable conformer in the fluid states is the gauche rota-
mer but in the solid state the trans conformer is the
stable form. Thus, the longer C-Si bond compared to
the C—C bond does not appreciably effect the confor-
mational behavior of chloromethyl methyl silane com-
pared to that of the corresponding carbon analogue.

The normal vibrations are relatively pure modes for
the trans conformer with significant mixing of the
SiH, wag with the CH; rock and the two low fre-
quency bends, SiCCl and CSiC in the A’ species. In
the A” species the CH, twist is significantly mixed
with the SiH, twist whereas the remaining modes
are relatively pure. For the gauche conformer the mix-
ing is quite extensive with the modes indicated as the
CHj; rock and the SiCj; stretch having less than 20%
being contributed by these vibrations. Several of the
other modes such as the CSiC bend, CHj torsion and

Table 8
Observed and calculated (cm") torsional transitions for chloro-
methyl methyl silane

Transition Obs. Calc.? A
gauche
1 ¥ «~0=* 87.0 87.3 03
2+ —1% 85.0 85.0 0.0
trans
1+—0 80.0 79.7 -0.3
21 78.0 77.4 -0.6

*Values from potential parameters listed in Table 9.

the SiH; twist also have significant mixing. Thus, the
descriptions provided for the vibrations of the gauche
conformer are more for bookkeeping than to describe
the atom motions involved.

We determined the potential parameters from the
frequencies of the torsional transitions (Table 8) for
the two conformers along with the enthalpy value
from the xenon solution and the dihedral angle pre-
dicted for the gauche conformer from the MP2/6-
31G* calculation. With these data, the potential
function governing the internal rotation of this mole-
cule has been calculated. The torsional potential is
represented by a Fourier cosine series in the internal
rotation angle, 8

s (Vi .
V()= El (?> (1 -cosif)

where 6 and i are the torsional angle and foldness of
the barrier, respectively. It was assumed that V,
through Vs were relatively small and they were not
included in the series. The potential coefficients, V,,
V, and V; are calculated from the input of the
torsional transition frequencies AH value, gauche
dihedral angle and the internal rotation constants
F(6). The internal rotation constant varies as a
function of the internal rotation angle, and this is
approximated by another Fourier series

6
F(¢)=Fy+ X Fcosi
i=1

The relaxation of the structural parameters, B(¢), dur-
ing the internal rotation can be incorporated into the
above equation by assuming them to be small periodic
functions of the torsional angle of the general type

B(¢) —a+ bcosed + csing
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Table 9

Potential energy coefficient (cm™) of chioromethyl methyl silane for the conformer interconversion
Coefficient Value* RHF/6-31G*
\2 -202 £ 16 ~110

Vv, —43 * 16 -38

Vs 856 £ 5 778

\' - 18

AH 180 = 37 126

Dihedral angle 120.7 118.5
trans/gauche barrier 775 714
gauchelgauche barrier 838 771
gaucheltrans barrier 959 840

!Calculated using Fy=1.011811, F, = —0.183056, F,=0.112370, F;

The series approximating the internal rotation con-
stants for chloromethyl methyl silane was determined
by using structural parameters from the MP2/6-31G*
ab initio calculations. In the initial calculation of the
potential function the transitions assigned as the 1 «—0
for the trans conformer, the 1 = «— 0} for the gauche
conformer, the enthalpy value of 180 cm™, and the
dihedral angle of 120.3° was used to obtain the V,, V,
and V; terms. One additional transition for each
conformer was added and the final results are given
in Table 9. The determined parameters were then
compared to those obtained from the RHF/6-31G*
calculation (Table 9). The trans to gauche and gauche
to gauche barriers have values of 775 and 838 cm ™'

s

—-0.028214, F,=0.010795, Fs = —0.003130, F, = 0.001124.

respectively, from the far infrared and enthalpy data
and the corresponding ab initio values are 714 and
771 cm", respectively, which 1is in excellent
agreement (Fig. 14).

The enthalpy value from the xenon solution has a
very small statistical uncertainty which, of course,
does not take into account problems associated with
combination or overtone bands having frequencies
near or almost identical to the bands being used for
the determination. Possible interference from over-
tone bands is reduced by using the lower frequency
fundamentals. Nevertheless, there is still problems
associated with overlapping bands (Fig. 15) although
the 738 cm™' band used for one of the determinations

ﬂ\ /\R \ ’[ : ‘\\ [ ‘\\ ‘/';m
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Fig. 15. Mid-infrared spectra range (800-400 cm™) of chloromethyl methyl silane-d,: (A) unannealed solid; and (B) annealed solid.
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seems to disappear completely from the spectrum of
the annealed solid. Since the 584 cm™ band is mainly
due to the gauche conformer, we used this band with
the 700 cm™ to obtain a third value for the enthalpy
difference. This pair of bands gave a value of 122 =
13cm™', which is the expected range since the
584 cm™ band contains some absorption due to the
trans conformer. Therefore, we believe the
value obtained from only the two pairs of bands is a
good value but the uncertainty should be more like
10% rather than the small statistical uncertainty of
2%, ie. 180 * 18cm™'. This value is in good
agreement with the predicted value of 221cm™
obtained with the large basis set, i.e. MP2/6-
311+G** (Table 4).

Utilizing the isolated Si—H stretching frequencies
from the CICH,SiHDCHj; isotopomer it is possible to
calculate the Si—H distances (ry) for the gauche con-
former [17]. Utilizing the frequencies of 2174 and
2148 cm™ for the two different Si—H vibrations for
the gauche conformer the Si—H bond distances are
calculated to be 1.482 and 1.487 A. These values
compare very well with the 1.485 and 1.490 A pre-
dicted for these bond distances from the MP2/6-31G*
calculations. The predicted Si—H bond distances from
the MP2/6-311+G** calculations are shorter with
values of 1.477 and 1.481 A, respectively, which
makes them smaller by 0.005 and 0.006 A than the
ro values obtained from the infrared spectrum. There-
fore, the agreement from the MP2/6-31G* calculation
is quite good and indicates that the structural para-
meters obtained from the relatively small 6-31G*
basis set with electron correlation at the MP2 level
provides good predictions of the structural parameters
for these types of molecules.

As pointed out earlier, 1-chloropropane also has the
gauche conformer as the stable rotamer in the fluid
phase but in the solid the zrans conformer is the stable
form. Thus the longer C—Si bond compared to the
corresponding C-C bond does not alter this change.
Since an accurate determination of the experimental
enthalpy for the conformational change in 1-chloro-
propane has not been made, a temperature study of
the infrared spectra of a sample dissolved in xenon
or other rare gases would be valuable for com-
parison with the current studies. Similar studies of

1-bromopropane would also be of interest since it is
not known which conformer is the more stable form in
the fluid phases.
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