
Note

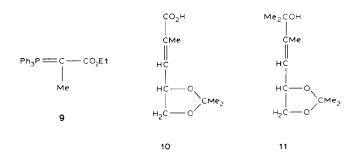
Configurational reassignment of some derivatives of 2-C-methylpent-2-enonic acids*

FIDEL J. LOPEZ APARICIO, ISIDORO IZQUIERDO CUBERO**, AND MARIA D. PORTAL OLFA Department of Organic Chemistry, University of Granada, Granada (Spain) (Received July 16th, 1982; accepted for publication, November 24th, 1982)

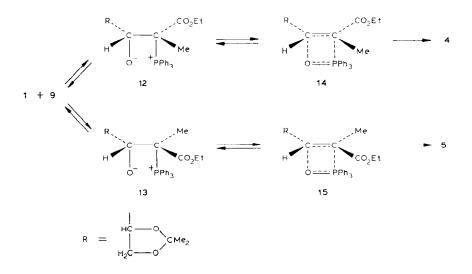
We reported recently² the Knoevenagel–Doebner condensation of 2,3-O-isopropylidene-D-glyceraldehyde (1) and either monoethyl methylmalonate (2) or α methylacetoacetic acid (3) to give 4, its *trans* isomer 5, and 6, and assigned the D configuration to each. This assignment was erroneous for 4 and 5, and a recent investigation³ has revealed that they were DL mixtures. The formation of the D and L isomers of 4 and 5 can be explained either by partial racemisation of 1 (through the enolic form 7) prior to its reaction with 2, or by racemisation of 4 and 5 (through the vinvlogous enolic form 8), under the basic reaction-conditions.

We have now studied the optical stability of 1 and 5 (D isomer) under the Knoevenagel-Doebner reaction conditions. Compounds 4 and 5 (D isomer) were synthesised by a method that ensured that no racemisation occurred.

The $[\alpha]_D$ value of 1 decreased from $\pm 28^\circ$ in pyridine-piperidine at room temperature to $\pm 5^\circ$ during 24 h, and to 0° in 4 days, whereas the $[\alpha]_D$ value of a solution of 5 in the same solvent remained at $\pm 18^\circ$ during 4 days. Thus, the second


0008-6215/83/S 03.00 © 1983 Elsevier Science Publishers B.V.

^{*}Branched-chain Sugars, Part V. For Part IV, see ref. 1.


^{**}To whom correspondence should be addressed.

of the two enolisation processes noted above must be rejected and the racemisation of 1, or reaction intermediates, must be involved in the formation of D and L isomers of 4 and 5.

That 4 and 5 were mixtures of their D and L forms was demonstrated by the syntheses from 1 and (1-ethoxycarbonylethylidene)triphenylphosphorane⁴ (9) of 4 (traces) and 5 (73%) having $[\alpha]_D$ values of +64.5° and +21°, respectively, in contrast to the values of +7.5° and +3° previously reported².

Hydrolysis of 5 (D isomer) to the corresponding acid 10 followed by reaction with methyl-lithium afforded 6 together with a compound identified as *trans*-1,3,4trideoxy-5,6-O-isopropylidene-2,3-di-C-methyl-D-glycero-hex-3-enitol (11) from its spectroscopic data. Compound 6 had $[\alpha]_D + 28^\circ$ (cf. +36° previously reported²), indicating that little or no racemisation had occurred in the reaction of 1 and 3. This fact may be explained by the lower reactivity of 1 and 2 in comparison with that of 1 with 3. Thus, racemisation of 1 takes place before the condensation reaction occurs. The formation of 11 must be the result of the reaction of 6 with methyllithium.

The high stereoselectivity in the reaction of 1 with 9 may be explained by the overlap between the π orbitals of the carbonyl group and the incipient carbon–carbon double-bond stabilising the transition states 14 and 15. This overlap is possible only if the carbonyl group is coplanar with the developing double-bond, and this coplanarity must be disfavoured in 14 by the interaction of the bulky dioxolane ring with the ethoxycarbonyl group, so that the activation energy required for the formation of 4 from 12 will be greater than that for the formation of 5 from 13 These findings accord with those in the literature⁵.

EXPERIMENTAL

General. — Melting points were determined with a Reichter hot-plate microscope, and are uncorrected. The general methods have been described elsewhere².

Reaction of 2,3-O-isopropylidene-D-glyceraldehyde (1) with (1-ethoxycarbonylethylidene)triphenylphosphorane (9). - To a solution of the ylid⁴ 9 (8 g, 22.1 mmol) in dry dichloromethane (20 mL) at room temperature was added, dropwise, a solution of 1 [3 g, 23 mmol, $[\alpha]_D + 28 \rightarrow 0$ (4 days) (c 1.6; pyridine piperidine, 9.5 0.5)} in the same solvent (10 mL). The mixture was stored overnight, and then concentrated, diluted with light petroleum (100 mL), filtered from triphenylphosphine oxide, cooled at ~5° for 2 h, filtered again, and concentrated. The residue was subjected to column chromatography (ether hexane, 1.5) to give, first, a mixture of triphenylphosphine oxide and a product that was identified, after column chromatography (ether -hexane, 1:7), as ethyl cis-2.3-dideoxy-4,5-O-isopropylidene-2-C-methyl-D-glyccro-pent-2enonate (4, 32 mg), $[\alpha]_D + 64.5$ (c 2.6, chloroform), having spectroscopic data in accord with those reported².

Eluted second was ethyl *trans*-2,3-dideoxy-4,5-*O*-isopropylidene-2-*C*-methyl-*D*glycero-pent-2-enonate (5: 3.6 g, 73°₀), $[\alpha]_D + 21$ (c 1 4, chloroform) and +18 (c 2, pyridine), having spectroscopic data in accord with those reported².

trans-2,3-Dideoxy-4,5-O-isopropylidene-2-C-methyl-D-glycero-pent-2-enonic acid (10). --- A suspension of 5 (3.5 g, 16 mmol) in 2xt sodium hydroxide (10 mL) was heated under reflux for 30 mm. T.I.c. then revealed that 5 had disappeared. The mixture was saturated with sodium chloride and cooled to -5, aciditied with conc. hydrochloric acid, and extracted with ether (10 \times 10 mL). The combined extracts were concentrated and the residue (2.6 g) was distilled at 170 (bath) 0.1 mmHg, to yield 10 (2.1 g, 70°,), which crystallised on storage; m.p. 53 55, $[x]_D + 20$ (c 1.15, chloroform); v_{max}^{CC1a} 3100 (OH), 1700 (C = O), 1660 (C = C), 1375 and 1365 (CMe₂), 1270 (C-O-C), 1150, 1060, and 850 cm⁻¹ (dioxolane ring); z_{max}^{MeOH} 221 nm (ϵ , 11500), ¹H-N.m.r. data (CDC1₃); δ 10.58 (s, 1 H, COOH), 6.81 (dq. 1 H, $J_{3,Me}$ 1.5, $J_{3,4}$ 7.5 Hz, H-3), 4.85 (dt, 1 H, $J_{4,5}$ 6.0, $J_{4,5}$, 7.5 Hz, H-4), 4.41 (dd, 1 H, $J_{5,5}$, 7.5 Hz, H-5), 3.59 (t, 1 H, H-5'), 1.85 (d. 3 H, Me-2), and 1.43 (s, 6 H, CMe₂). The sample retained for elemental analysis decomposed during storage

Reaction of **10** *with methyl-lithium.* — To a cooled and stirred solution of methyllithium (11 mmol) in anhydrous ether (15 mL) was added, dropwise, a solution of **10** (2 g, 10.8 mmol) in the same solvent (10 mL). The mixture was stirred and heated under reflux for 6 h, cooled, and diluted with ether and water until two layers were obtained. The ethereal layer was separated, washed with water, and concentrated, to give a mobile oil (0.8 g), t.l.c. (ether-hexane, 3:2) of which revealed two components ($R_{\rm F}$ 0.61 and 0.28) that were separated by column chromatography. The compound of higher mobility was trans-1,3,4-trideoxy-5,6-O-isopropylidene-3-Cmethyl-D-glycero-hex-3-enulose (6; 550 mg, $28\frac{\circ}{0}$), $[\alpha]_{\rm D}$ +28° (c 1.25, chloroform) {lit.² $\lceil \alpha \rceil_{D} + 36^{\circ}$ (chloroform)}, having spectroscopic data in accord with those in the literature². The second component was syrupy trans-1,3,4-trideoxy-5,6-O-isopropylidene-2,3-di-C-methyl-D-glycero-hex-3-enitol (11; 200 mg, 9.3%), $\lceil x \rceil_{D}$ +16° (c 0.8, chloroform); v_{max}^{film} 3465 (OH), 1375 (CMe₂), 1155, 1050, and 845 cm⁻¹ (dioxolane ring). ¹H-N.m.r. data (CDCl₃): δ 5.56 (dq, 1 H, $J_{4,Me}$ 1.5, $J_{4,5}$ 8.25 Hz, H-4), 4.78 (dt, 1 H, J_{5,6} 6, J_{5,6'} 8.25 Hz, H-5), 4.04 (dd, 1 H, J_{6,6'} 8.25 Hz, H-6), 3.46 (t, 1 H, H-6'), 2.29 (bs, 1 H, HO-2), 1.71 (d, 3 H, Me-3), 1.38 and 1.30 (2 s, 12 H, intensity ratio 1:1, H-6,6,6, Me-5, and CMe₂). Mass spectrum: m/z 201 (M⁺ + 1), 185 ($M^+ - Me$), 142 ($M^+ - Me_2CO$), 127 ($M^+ - Me - Me_2CO$), 125 ($M^+ - Me_2$ Me - AcOH), 117, 101 ($C_5H_9O_2^+$), 99 (M⁺ - $C_5H_9O_2$), 59 (Me₂COH⁺), and 43 $(Ac^+, base peak).$

REFERENCES

- 1 I. IZQUIERDO CUBERO, Carbohydr. Res., 114 (1983) 311-316.
- 2 F. J. LOPEZ APARICIO, I. IZQUIERDO CUBERO, AND M. D. PORTAL OLEA, *Carbohydr. Res.*, 103 (1982) 158-164.
- 3 M. D. PORTAL OLEA, Ph. D. Thesis, University of Granada, Granada, Spain, 1983.
- 4 O. ISLER, H. GUTMANN, M. MONTAVON, R. RÜEGG, G. RYSER, AND P. ZELLER, Helv. Chim. Acta, 40 (1957) 1242–1249.
- 5 H. O. HOUSE AND G. H. RASMUNSSON, J. Am. Chem. Soc., 26 (1961) 4278-4281.