INFRARED STUDIES OF CHROMONES—I CARBONYL AND HYDROXYL REGIONS

R. D. H. MURRAY and P. H. MCCABE

Chemistry Department, University of Glasgow, Glasgow, W.2

(Received in the UK 15 July 1969; Accepted for publication 15 August 1968)

Abstract—Quantitative IR solution data in carbon tetrachloride and chloroform are recorded for the CO and OH regions of 31 chromones. In the 1580–1700 cm⁻¹ region, 5-hydroxychromones show three main maxima, the two of highest frequency, at 1663 ± 3 cm⁻¹ and 1630 ± 5 cm⁻¹ in CCl₄ (1661 ± 2 cm⁻¹ and 1627 ± 5 cm⁻¹ in CHCl₃), being sufficiently intense as to possess high CO character. Typically, 5-alkoxy-chromones exhibit two intense maxima in this region, 1663 ± 3 cm⁻¹ and 1613 ± 7 cm⁻¹ in CCl₄ (1657 ± 2 cm⁻¹ and 1608 ± 12 cm⁻¹ in CHCl₃). Diagnostically useful changes in contour and principal peak positions can be seen for substituted and annellated 5-hydroxychromones. In the 2500–3650 cm⁻¹ region, the stretching frequencies of OH groups at the most commonly encountered positions (C-5, C-7, and 2-CH₂OH) in natural chromones, are identified.

IT IS becoming evident¹⁻³ that derivatives of 2-methylchromone (2), normally having an OH substituent at C-5, are more abundant in nature than was previously thought.⁴ Although NMR⁵ and mass spectrometric⁶ data have been reported for a number of such compounds, IR spectroscopy as an aid to structural elucidation has been largely overlooked⁷⁻¹¹ and yet may be extremely useful in determining the site of attachment of additional alkyl and oxygen¹¹ substituents and the size of additional rings.

During our structural studies¹ on some 5-hydroxychromones from *Ptaeroxylon* obliquum quantitative IR solution spectra were systematically recorded but the data obtained were at first sight too complex to be of immediate structural value. Like the simpler 4-pyrones¹²⁻¹⁴ several peaks of high intensity were found to be present in the 1580–1700 cm⁻¹ region, and direct assignment of any one of these bands to the CO stretching frequency was not possible.

When the spectra of the structurally simpler 2-methylchromone (2) and 5-hydroxy-2-methylchromone (3) were compared, the most intense bands in the CO region were surprisingly close at 1665 and 1661 cm⁻¹ (CCl₄) respectively despite the considerable intramolecular H-bonding in the latter compound.^{4, 15} This anomalous behaviour of a strongly chelated OH group having only a small lowering effect on the CO stretching frequency has been observed for 5-hydroxyflavanones^{10, 16-18} though not for the related 5-hydroxyflavanones¹⁶⁻¹⁸ and 2-hydroxyacetophenones¹⁶ in which strong intramolecular H-bonding also occurs.

Hergert and Kurth¹⁶ found that in acetophenones a 2-OH group lowers the CO stretching frequency by $\sim 50 \text{ cm}^{-1}$ and 5-hydroxyflavanones show analogous behaviour. Spectral shifts arising from structural changes in the flavones are not so clearly defined. Although an OH group attached to C-5 of the flavone nucleus chelates strongly with the CO group, this chelation has only a very slight batho-

chromic effect on the CO stretching frequency^{10, 18, 19} which is generally taken as the most intense band in the 1600–1700 cm⁻¹ region. Thus the wavenumber lowering is not greater than 5 cm^{-1} and in some cases a slight increase is observed.²⁰

In the present studies, quantitative IR values for the CO regions of 31 chromones in chloroform and carbon tetrachloride solutions are recorded (Tables 1 and 2). Although the composite nature of the absorptions in the CO region of 5-hydroxychromones is not interpreted herein,²¹ the effects of changes in molecular structure on the spectral pattern is shown to be diagnostically useful. The OH stretching frequencies (Table 3) are found to vary considerably with the position of attachment of the OH function.

5-Hydroxychromones

Carbonyl region. A complex spectrum (Fig. 1) is obtained for 5-hydroxy-2-methylchromone (3) with the major band (ε 1500) at 1661 cm⁻¹ (CCl₄) considerably sharper than the principal broad intense absorption centred at 1665 cm⁻¹ (CCl₄) in the spectrum (Fig. 2) of 2-methylchromone (2). Two further intense peaks are present at 1625 (ε 585) and 1606 (ε 395) cm⁻¹ in the former spectrum. The 1665 cm⁻¹ band of 2-methylchromone undergoes a bathochromic shift of 15 cm⁻¹ when the spectrum (Fig. 2) is recorded in chloroform and presumably represents the CO stretching frequency since a solvent shift of this magnitude might be expected.²² On the other hand the spectrum of 5-hydroxy-2-methylchromone is basically unchanged when recorded in chloroform (Fig. 1).

For solubility reasons it was not possible to obtain a solution spectrum of 5,7dihydroxy-2-methylchromone. The spectral behaviour of 5-hydroxy-7-methoxy-2methylchromone (4) (Fig. 3) parallels that of 5-hydroxy-2-methylchromone. This suggests that a 5-OH substituent has a dominating effect on the CO region since the spectrum of 4 is not at all like that of 7-methoxy-2-methylchromone (*vide infra*). The positions of the two major broad peaks at 1666 and 1630 cm⁻¹ (CCl₄), (Fig. 3) in this case partially resolved into doublets, are again almost unaffected by change of solvent. It is interesting that for both 3 and 4 the least intense peak [1606 and 1602 cm⁻¹ (CCl₄) respectively], shows the largest solvent shift [1601 and 1590 cm⁻¹ (CHCl₃) respectively], a phenomenon previously noted for the 1613 cm⁻¹ band^{13, 14} of 4-pyrone.^{12, 23}

Various substituted and modified 5,7-dihydroxychromones are available from natural sources. In general they exhibit spectral characteristics similar to those of the parent system but some useful variations with structure were noted.

Isopentenyl and isopentyl substituents in position 6 have little effect on the spectral profile. Thus the chromones of the peucenin and dihydropeucenin series,^{1, 24} (5–8) all show their most intense maximum at $1660 \pm 1 \text{ cm}^{-1}$ (CHCl₃) and exhibit typically three decreasing intensity maxima. 8-Alkylated chromones of the heteropeucenin³ and dihydroheteropeucenin series^{1, 3, 25} (9–11) differ significantly from the 6-alkylated series in that the absorption of the band at 1590 cm⁻¹ (CHCl₃) is noticeably more intense than that of the neighbouring 1620 cm⁻¹ band (Fig. 4). This effect is also shown by an 8-OMe substituent. Thus 6-ethyl-5,7-dihydroxy-8-methoxy-2-methyl-chromone (12) possesses a substituent in both the 6 and 8 positions, but the profile

of the spectrum more closely resembles that of a heteropeucenin derivative, the peak at 1604 cm⁻¹ (CCl₄) being of greater intensity than the 1631 cm⁻¹ absorption.

A number of naturally occurring 5-hydroxychromones and their derivatives contain 5-, 6-, or 7-membered rings fused through oxygen at C-7 to the benzenoid ring of the chromone nucleus. Some regularity in their spectral features has been found.

Linear annellation of the 5-hydroxychromone system with a dihydrofuran ring, as in umtatin³ (13), gives a spectrum consisting of three well separated broad and approximately symmetrical peaks similar to the parent system. The most intense band at 1674 cm⁻¹ (CCl₄) is however considerably higher (13 cm⁻¹) than the major peak in the spectrum of 5-hydroxy-2-methylchromone (3) and 8 cm⁻¹ higher than that of 5-hydroxy-7-methoxy-2-methylchromone (4). Similar spectral behaviour has been found for visamminol²⁶ (14) and dihydrokhellinol²⁷ (15).

The spectrum (Fig. 5) of the 5-hydroxyfuranochromone, khellinol^{26, 28} (16) however is similar to that of 5-hydroxy-7-methoxy-2-methylchromone (4) and has the principal absorption at the normal position of 1663 cm⁻¹ (CCl₄). The considerable increase in relative intensity of the broad 1596 cm⁻¹ band is consistent with the presence of an 8-substituent but may also reflect the effect of extended conjugation from the furan ring. Only a small solvent shift is observed for all peaks. 5-Hydroxyfuranochromones should therefore be easily recognisable since the corresponding 5hydroxydihydrofuranochromones are readily afforded by hydrogenation over 5% rhodium-charcoal with concomitant change of contour and increase in frequency of the principal absorption.

A 6-membered ring appears to have no significant annellation effect. Thus isopeucenin²⁴ (17) absorbs at 1659 cm⁻¹ (CHCl₃) and shows a spectrum similar to that of the non-cyclized analogue peucenin 7-methyl ether (6). The pyranochromone, ptaerochromenol³ (18) has its major absorption at 1664 cm⁻¹ (CHCl₃). The contour of this spectrum, with a strong band at 1585 cm⁻¹, is somewhat similar to that of khellinol; like khellinol, ptaerochromenol possess an 8-substituent and a further double bond in conjugation with the chromone nucleus.

By comparison with 5-hydroxy-7-methoxy-2-methylchromone (4) which absorbs at 1663 cm⁻¹ (CHCl₃), a small lowering effect, perhaps useful for future structural studies, is produced by annellation of an oxepin ring. Thus karenin¹ (19) has its major absorption at 1658 cm⁻¹ (CHCl₃) and values of 1656 and 1654 cm⁻¹ are found for desoxykarenin¹ (ptaeroxylin)³ (20) and dihydroptaeroxylin¹ (21) respectively.

Although it is known that allyl alcohols normally show weak $OH-\pi$ H-bonding,²⁹ substitution of a 2-hydroxymethyl for a 2-methyl group has very little effect on the 1580–1700 cm⁻¹ region of 5-hydroxychromone spectra. Thus karenin (19) and ptaeroxylin (20) show very similar absorption and umtatin (13) and visamminol (14) have almost superimposable spectra.

In the 1580–1700 cm⁻¹ region, all 5-hydroxychromones possess three significant maxima, the two of higher frequency being sufficiently intense as to imply CO stretching character in both. Moreover these two bands at ~1660 and ~1630 cm⁻¹ show a constant wavenumber separation of 34 (\pm 5) cm⁻¹ in both carbon tetrachloride and chloroform, the values of both peaks being consistently 2–3 cm⁻¹ lower in the latter solvent. This very slight change in band position with change of solvent polarity is not inconsistent however with both main bands having considerable CO character since a strongly intramolecularly H-bonded CO group would not be expected to solvate readily.

5-Alkoxychromones

Carbonyl region. Although chromones having an OH group in position 5 are only slowly converted to the corresponding methyl ethers,⁴ the spectra of such derivatives, and especially the shift of the major band with solvent, may well be useful for characterizing 5-hydroxychromones.

The spectrum (Fig. 6) of 5-methoxy-2-methylchromone (22) is considerably simpler than that (Fig. 1) of its OH analogue (3) with only two intense bands at 1665 (ϵ 1620) and 1607 (ϵ 580) cm⁻¹ in carbon tetrachloride. The former absorption, presumably the CO stretching frequency since it shows a solvent shift of 7 cm⁻¹ to 1658 cm⁻¹ in chloroform, is noticeably close in frequency to that of the principal band of 5-hydroxy-2-methylchromone in the same solvent.

The spectrum of 7-methoxy-2-methylchromone (23) with two principal absorptions at 1661 and 1614 cm⁻¹ (CCl₄) shows certain of the characteristics of its 5-OMe isomer (22). This might be anticipated since OMe substituents at C-5 and C-7 have similar vinylogous electronic relationships with the CO group. However, the marked solvent dependence of the 1661 cm⁻¹ peak which shifts to 1648 cm⁻¹ in chloroform resembles the behaviour of 2-methylchromone (2) and, by contrast to 5-methoxy-2methylchromone, is consistent with the 1661 cm⁻¹ absorption being allocated to a less hindered CO group which is more readily solvated. The analogy with the 5substituted isomer (22) is not complete for in 7-methoxy-2-methylchromone the

absorption at 1614 (ϵ 880) cm⁻¹ (CCl₄) is more intense than the corresponding absorption of 22 at 1607 (ϵ 580) cm⁻¹ and shifts further in chloroform.

The spectrum (Fig. 7) of 5,7-dimethoxy-2-methylchromone (24) is, not unexpectedly, similar to the spectra of both 5- and 7-methoxy-2-methylchromone with two sharp intense maxima at 1666 and 1620 cm⁻¹ (CCl₄), but quite markedly different to that (Fig. 3) of its 5-OH analogue (4). Both bands shift to lower frequency when the spectrum is recorded in chloroform; the former appears at 1659 cm⁻¹ with a decrease in intensity while the latter at 1610 cm⁻¹ is much more intense.

Data for a number of 5-alkoxychromones are recorded in Table 2. The spectra of such compounds are quite distinctive; they possess two intense maxima at 1657 \pm 2 and ~1600 cm⁻¹ (CHCl₃) showing a larger and less constant wavenumber separation (42-64 cm⁻¹) than the 5-hydroxychromones. It would seem likely that the absorption at 1664 \pm 2 cm⁻¹ (CCl₄) which shows a bathochromic shift, normally of 7 cm⁻¹, in chloroform must represent the CO stretching frequency. The other important absorption at ~1600 cm⁻¹ is probably an aromatic mode since it is more intense when a 7-OMe substituent is present. Thus for the series 5-methoxy-2-methylchromone (22), 7-methoxy-2-methylchromone (23), 5,7-dimethoxy-2-methylchromone (24), and peucenin dimethyl ether (25) the pertinent values are 1608 (ϵ 660), 1609 (ϵ 805), 1610 (ϵ 930), and 1602 (ϵ 1160) cm⁻¹ (CHCl₃) respectively. Phenol methyl ethers normally give more intense aromatic stretching modes that the parent phenols and it is consistent that in 5-hydroxy-2-methylchromone the band at 1601 cm⁻¹ (CHCl₃) is weak (ϵ 390).

The diagnostically useful variations in principal peak positions with substitution observed for the 5-hydroxychromones are not manifested in the spectra of the corresponding 5-methoxychromones, where recorded. Thus the values in chloroform (1654–1657 cm⁻¹) of the CO stretching frequencies for substituted and annellated 5-methoxychromones are close to that (1658 cm⁻¹) of the parent 5-methoxy-2-methylchromone.

Hydroxychromones

Hydroxyl region. Considerable attention^{8, 10, 16–19} has been given to the location of OH stretching frequencies in flavones but the closely related naturally occurring chromones, in which only a few positions are found to bear OH groups, have not yet been treated in any detail.

From chromatographic and other behaviour there is evidence for strong chelation in 5-hydroxyflavones.⁴ Normally, chelation should result in considerable displacement of both the OH and CO stretching bands to lower frequencies.³⁰ Surprisingly, none of the 5-hydroxyflavones studied showed any marked lowering of the CO band and very similar behaviour has been noted for 5-hydroxychromones (*vide supra*). However, in 5-hydroxyflavones the OH band is displaced to lower frequency and extensively broadened;^{8.10, 16-19} indeed the lack of a readily detectable OH stretching frequency is characteristic of the system. It has been found that the spectra of flavone¹⁷ and 5-deuteroxyflavone³¹ are considerably simpler in the 2600–3050 cm⁻¹ region and an O–D stretching band near 2250 cm⁻¹ is clearly evident in the spectrum of the latter compound. The weak bands in the 2600–3050 cm⁻¹ region of the spectrum of 5-hydroxyflavone are therefore associated with the OH stretching vibrations.^{10, 19, 31}

There is ample evidence^{1,4} that in chromones having an OH group at C-5, the most commonly encountered position, strong intramolecular H-bonding occurs to the pyrone CO group. Thus isopeucenin^{1, 24} (17), a 5-hydroxychromone, is markedly different in its properties from the isomeric allopeucenin^{1,24} which possesses a 7-OH group. The former compound is considerably more soluble in ether and exhibits a much greater chromatoplate mobility. Again, 5-hydroxy-2-methylchromone is far less polar in its chromatographic behaviour than 5-methoxy-2-methylchromone in which chelation has been removed. Moreover, successive additions of methanol to a carbon tetrachloride solution of dihydropeucenin 7-methyl ether (8) has no effect on the absorption in the 1580–1700 cm^{-1} region. This suggests that the pyrone CO group is so strongly bonded intramolecularly that complex formation with methanol does not occur. The chemical shift value ($\tau - 2.32$ in CCl₄) reported¹⁵ for the OH proton in the NMR spectrum of 5-hydroxy-2-methylchromone and the values $(\tau - 2.90 \text{ and } -3.06 \text{ in CDCl}_3)$ found for dihydropeucenin (7) and isopeucenin (17) respectively are much lower than the chemical shift range (τ 5.3 to 5.6 in CCl₄) normally observed³² for phenols. This is additional evidence for strong chelation in the 5-hydroxychromone system.

5-Hydroxychromones possess no absorption maxima in the 3300-3600 cm⁻¹ region. However, a weak absorption envelope extends from 2400 to 3300 cm⁻¹ ($\Delta v_{\frac{1}{2}} \sim 450$ cm⁻¹) underlying the sharp C—H stretching frequencies (Figs 8 and 9) and it is assumed that the entire envelope is associated with various stretching modes of the chelated 5-OH group. The absence of absorption of this type in the spectrum (Fig. 9) of the 5-methoxychromone, khellin^{26, 33} (28) supports this assignment. After treatment of a chloroform solution of 5-hydroxy-2-methylchromone with deuterium oxide, the spectrum shows a dimunition in intensity of the broad absorption centred at 2970 cm⁻¹ and possesses a new, considerably sharper ($\Delta v_{\frac{1}{2}} \sim 85$ cm⁻¹)

maximum at 2220 cm⁻¹ (Fig. 8). If the latter band is assumed to be the stretching frequency of the 5-deuteroxyl group, the position of the 5-OH stretching maximum can be estimated^{31, 34} by multiplication of the deuteroxyl frequency by 1.35. The calculated maximum at 2995 cm⁻¹ is in reasonable agreement with the estimated midpoint of the broad OH envelope. It has been noted³¹ for 5-hydroxyflavones that deuteration results in the appearance of a OD stretching band much sharper than the corresponding OH absorption.

An OH group located at C-7 is found in a number of naturally occurring 5-hydroxychromones. For solubility reasons it was not possible to obtain solution data for the OH regions of 7-hydroxy- and 5,7-dihydroxy-2-methylchromone. When the 7-OH group is flanked by a bulky substituent in the ortho position, a steric buttressing effect is observed. Thus for the 7-hydroxychromones, dihydropeucenin^{1, 24} (7) and dihydroheteropeucenin¹ (10), which possess a large isopentyl group in the 6- and 8positions respectively, the free OH band appears as a doublet centred at ~ 3615 cm⁻¹, the separation of the components being ~ 26 cm⁻¹. A similar phenomenon has been reported³⁵ for o-t-butylphenols, and is ascribed³⁶ to two conformations of the OH group.

When a dimethylallyl residue is adjacent to the 7-OH group as in peucenin¹ (5), intramolecular OH- π interaction occurs, resulting in two OH stretching frequencies at 3588 and 3387 cm⁻¹ which show no alteration in relative intensity on dilution. Both peaks are absent in the spectrum of peucenin 7-methyl ether. Although a separation of 127 cm⁻¹ between the free (3614 cm⁻¹) and the bonded (3487 cm⁻¹) OH frequencies of o-(3,3-dimethylallyl) phenol has been recorded,^{29,37} the Δv (OH) value for peucenin is much greater (201 cm⁻¹). This implies^{1,39} an H-bond energy of ~3 k cal/mole for the intramolecular association of the 7-OH and the dimethylallyl substituent. It is reasonable to assume that this outstandingly strong OH- π interaction arises from the polar character of the 7-OH group, which is the result of the vinylogous electron-withdrawing effect of the pyrone CO group, aided by the basicity of the allyl double bond having the positive inductive effect of the two Me substituents.³⁸

When a 7-OH group is flanked by an OMe group as in 12 and 26, intense intramolecularly bonded OH stretching frequencies are found at 3513 and 3517 cm⁻¹ respectively. These values are considerably lower than the value of 3558 cm⁻¹ found⁴⁰ for *o*-hydroxyanisole and may again reflect the acidic nature of the 7-OH group.

The 2-hydroxymethyl group of karenin¹ (19), ptaerochromenol³ (18), and umtatin³ (13) exhibits a free stretching frequency at ~3615 cm⁻¹ (ε ~90). At concentrations greater than 0-015 molar this OH participates in intermolecular H-bonding, producing a broad bonded OH frequency at ~3400 cm⁻¹ which disappears on dilution. It is notable that the free OH band at 3615 cm⁻¹ is rather broad which may suggest that being an allylic alcohol the 2-hydroxymethyl group is undergoing intramolecular OH- π H-bonding with the 2,3-double bond,²⁹ but that the bonded conformations are not sufficiently rigid to produce a splitting of the OH spectrum. It has already been noted that this weak bonding has no observable effect on the CO region. The corresponding OD absorption at 2663 cm⁻¹ is considerably sharper ($\Delta v_{+} \sim 30$ cm⁻¹).

		CHCl3			CCl₄		
		ν	Δv	E ^r	ν	Δν.	64
1		1654 1621 1606	16 13 13	1050 235 170	1668 1620	12 10	1060 210
	• 0						
2		1650 1618 1607	14 13 13	1060 230 170	1665 1618	12 12	1050 200
3	ОН О	1659 1624 1601	9 10 14	1360 680 390	1661 1639 1625 1606	8 9 10	1500 165 585 395
	он о Он о						
4	MeO	1663 ⁴ 1626 ⁴ 1590	14 18 16	1180 770 490	1666 ⁴ 1630 1602	15 17 13	1240 790 495
5	HO OH O HO O	1659 1633 1589	15 25 19	870 560 480	1661 1635		
6	OH O MeO O	1661 1627 1593	12 28 25	1120 490 410			
7	HO OH O HO O	1659 1630 1590	15 29 24	810 440 360			
8		1661 1627 1591	13 27 24	1090 410 350	1663 1630	10 19	1140 415

TABLE 1. IR Absorptions of chromones in the 1580–1700 cm^{-1} region

			CHCl ₃			CCl4	
		v	Δv	E	v	Δv	Eª
9	MeO C	1661 1622 1593	10 14 15	1180 510 550	1663 1624	10 16	1175 470
10	HOLO	1663 1624 1591	12 25 23	1010 340 360			
11	MeO OH O	1661 1622 1594	12 20 15	825 355 390			
12		1661 1629 1597	9 22 19	970 425 465	1663 1631 1604	10 23 17	840 375 420
13	он о осто сн ₂ он	1672 1639 1595	14 21 13	975 555 525	1674 1643	11 20	1180 600
14	OH O OH	1671 1636 1593	14 17 13	925 770 420			
15	OH O OMe	1668 1637 1590	15 24 24	690 300 390	1668 1637 1594	12 24 15	855 350 520

TABLE 1-continued

TABLE 1-continued

		CHCl ₃		CCl ₄			
		v	Δν	Eª	v	∆v _j	ε
	он о						
		1661	16	695	1663	15	700
16		1636	27	325	1639	25	335
10		1604'			1606 ⁴		
	OMe	1592	23	580	1596	15	550
	он о						
		1659	12	1015			
17		1628	26	540			
	$+_0$	1584	22	400			
	он о						
		1664	11	1390	1666	10	~1400
10		1644	21	290			
10	о Снзон	1615	13	310			
	+	1585	15	720			
	ОН О	1450					
10		1658	14	1010			
19		16029	28 26	242 370			
	о сн ₂ он	1002	20	370			
	ОНО						
-		1656	14	1010	1658	11	1260
20		1627	29	560 200	1629	27	560
		1292	23	390			
	он о						
- 11		1654	12	1105			
41		1623	25	550			
	$\sim_0 \sim \sim_0 \sim$	1592	23	585			

Molarities in the range 0-001–0-01 M. v and $\Delta v_{\frac{1}{2}}^{a}$ are in cm⁻¹. d, doublet; *i*, inflection.

		CHCl ₃			CCI4		
		ν	Δv	Eª	v	Δv	e *
22	OMe O	1658 1628	12 21	1330 360	1665 1650 ⁱ 1642 ⁱ	9	1620
		1608	10	660	1607	9	580
	о - Ш	1648	13	1370	1661	14	1310
23		1636i		330	1640		225
	MeO	1609 1575	15	805 130	1614	10	880
	0Me 0			<u></u>			
	Ă Ă	1659	9	1290	1666	9	1640
24		1610	13	930	1644	17	270
	Meo	1 574	12	150	1620	11	395
	OMe O				<u> </u>		
		1656	11	1230	1663	9	1670
25		1627	10	11/0	164 1	16	170
	Meo	1002	12	1100			
_	OMe O						
36		1657	10	1210	1664	9	1290
20		1596	12	850	1043	15	510
<u></u>	OMe						
	QMe Q						
		1657	12	1120	1662	9	1160
27					1637	16	320
	$\sim \sim $	1615	23	918			
	ОМе				1620	17	570
	QMe Q						
		1655	14	1090	1661	11	1260
28		16301	18	630	1045	23	150
	$\sim \sim \sim \sim \sim$	1598	17	170	1624	15	335
	OMe						
		1649	14	600			
29		1631	26	170			
		1607	14	410			
	Meu VV VOV V						

TABLE 2. IR ABSORPTIONS OF 5-ALKOXYCHROMONES IN THE 1580–1700 cm^{-1} region

		CHCl3			CCl₄		
		v	$\Delta v_{\frac{1}{2}}^{a}$	E*	v	Δv	e r
30		1654 1631 1600	10 26 10	1365 410 1275	1660 1643 1608	12 30 10	1420 265 1195
31	Men	1658 1626 1604	11 	1560 320 1750	1664 1640 1606	10 9	1540 220 1455

TABLE 2-continued

EXPERIMENTAL

IR soln measurements were carried out by Mrs. F. Lawrie and Miss A. M. Robertson, on a Unicam SP 100 Mark II spectrophotometer (prism/grating monochromator) operated with evacuated optics. The spectra were recorded linearly in wavenumbers as optical density and calibration was checked against the spectrum of water vapour after each set of measurements. Frequency determinations for resolved bands are believed to be accurate to ± 1 cm⁻¹. The apparent half band widths, Δv_4^* , are quoted to the nearest integer and where necessary were determined by reflection of the undisturbed wings of unsymmetrical bands. Intensities are specified as apparent extinction coefficients, e^{a} (1 mole⁻¹ cm⁻¹), rounded to the nearest five units, measured from a solvent-solvent base line and corrected, where necessary, for enhancement of intensity by contiguous bands. It was not possible on occasions to obtain data in CCl₄ below 1610 cm⁻¹, since, dependent on the cell used, the solvent absorbed most of the incident radiation. Similarly CHCl₃ solns transmitted less than 25% of the incident radiation in the region 3000-3150 cm⁻¹. In the 1580-1700 cm⁻¹ region, spectra were recorded using cell paths of 0.125, 0.2 or 0.5 mm and in the 2500-3650 cm⁻¹ region cell paths of 0.5 mm and 2.0 mm were employed. The structure of all the chromones were confirmed by NMR spectra, recorded by Mr. J. Gall and Mrs. S. J. Hamilton, on a Perkin Elmer R 10 and a Varian HA 100 spectrometer on solns in CDCl₃ with TMS as internal standard. Microanalyses were carried out by Mr. J. M. L. Cameron.

Synthesis and characterization of the chromones

The simple 2-methylchromones were prepared⁴¹ by condensation of the appropriate o-hydroxyacetophenone derivative with Ac₂O and mild base hydrolysis of the resulting 3-acetylchromone. Chromatographic techniques in general replaced the method of isolation recommended in the literature.

Chromone, (1) m.p. 55° (lit.¹⁰ 56-58°) was kindly supplied by Dr. R. I. Reed, Glasgow.

2-Methylchromone, (2) m.p. 70–71° (lit.⁴² 71°) was prepared by the method of Block and von Kostanecki.^{10,42}

5-Hydroxy-2-methylchromone, (3) m.p. 90–91° (lit.⁴³ 92°) was synthesized from 2,6-dihydroxyacetophenone by the method of Limaye and Kelkar.

5-Methoxy-2-methylchromone, (22) m.p. 100-102° (lit.⁴⁴ 105°) was prepared by methylation (MeI, anhyd K_2CO_3 , refluxing acetone) of 5-hydroxy-2-methylchromone and purified by TLC in MeOH-CHCl₃ (1:19) and sublimation at 95°/0-01 mm.

7-Methoxy-2-methylchromone, (23) m.p. 112-113° (lit.⁴³ 113-114°) was prepared by diazomethylation of 7-hydroxy-2-methylchromone⁴⁶ and purified by vacuum sublimation.

5-Hydroxy-7-methoxy-2-methylchromone, (4) m.p. 119-120° (lit.⁴⁷ 120°) was synthesized from 5,7dihydroxy-2-methylchromone,⁴⁸ m.p. 282-285° (purified by sublimation at 160°/0-004 mm) by diazomethylation and purified by TLC in CHCl₃ and crystallization from ether.

		CHCl3			CCl₄	
Chromone	v	$\Delta v_{\frac{1}{2}}^{a}$	e	ν	$\Delta v_{\frac{1}{2}}^{a}$	E ^a
3	~ 2975	~450	~ 60	~ 2970	~400	~ 60
4	~ 2980	~450	~60	~ 2970	~400	~60
	3588	45	70	3598		
5	3387	129	75	3405		
	~ 2970	~450	~ 60			
6	~ 2970	~450	~ 60	~ 2965	~400	~ 60
	3626	32	95			
7	3598	47	90			
	~ 2970	~450	~60			
8	~ 2975	~450	~ 60	~ 2965	~400	~60
9	~ 2970	~450	~60	~ 2960	~450	~ 60
	3625	33	105			
10	3600	50	85			
	~2970	~450	~60		_	
11	~ 2975	~450	~60			
17	3513	35	160	3517	23	130
12	~ 2980	~450	~60	~ 2970	~400	~60
26	3517	33	165	3523	23	140
	3617 ^b	45	60	3628	38	90
13	3392 ^a	180	30			
15	3617°	43	95			
	~ 2970	~450	~ 60	~2975	~400	~60
	3603	45	35			
14	~2975	~450	~60			
16	~ 2970	~450	~60	~ 2970	~400	~60
17	~ 2970	~450	~60			- <u>-</u>
	36154	50	30	3625	34	90
19	34074	200	65			
10	3615*	42	85			
	~ 2970	~450	~60		<u>.</u>	
10	3615	48	100			
17	~ 2950	~450	~60			
20	~ 2940	~450	~60	~ 2930	~ 480	~ 50
21	~ 2950	~450	~60			

TABLE 3. IR ABSORPTIONS OF HYDROXYCHROMONES-HYDROXYL REGION

5,7-Dimethoxy-2-methylchromone, (24) m.p. $123-124^{\circ}$ (lit.⁴⁹ 124°) was prepared from 5,7-dihydroxy-2methylchromone by methylation (MeI, anhyd K₂CO₃, refluxing acetone) and purified by TLC in CHCl₃ and crystallization from ether.

Peucenin, (5) m.p. 212-214; ptaeroxylin (20) (desoxykarenin), m.p. 133-135°; and karenin, (19) m.p. 203-204°, were isolated¹ from the heartwood of *Ptaeroxylon obliquum*.

Peucenin 7-methyl ether, (6) m.p. 106–107°; dihydropeucenin, (7) m.p. 205–207°; dihydropeucenin 7-methyl ether, (8) m.p. 105–107°; isopeucenin, $(17)^{24}$ m.p. 132–134°; dihydroheteropeucenin, (10) m.p. 191–193°; and dihydroheteropeucenin 7-methyl ether, (11) m.p. 91–93°, were derived¹ from (5), and (21) m.p. 81–83°, derived¹ from (20).

Peucenin 5,7-dimethyl ether (25). Peucenin (365 mg) in AnalaR acctone (25 ml) was refluxed for 67 hr in the presence of anhyd K_2CO_3 (1·5 g) and MeI (7·5 ml). After filtration and removal of solvent, the crude product was separated by TLC in CHCl₃-light petroleum (b.p. 40-60°) (4:1) and peucenin 5,7-dimethyl ether crystallized from ether-light petroleum (b.p. 60-80°) as needles, m.p. 79-80°. (Found: C, 70·85; H, 6.9. $C_{17}H_{20}O_4$ requires: C, 70·8; H, 7·0%), NMR signals at τ [8·34, bs, 3H; 8·22, bs, 3H; 4·89, bt, 1H, J = 8 Hz; 6·61, bd, 2H, J = 8 Hz; 6-(3,3-dimethylallyl)];¹ 7·73, s, 3H, 2-CH₃; 4·06, s, 1H, 3-H; 3·45, s, 1H, 8-H; and 6·15, 6·11 (2 × 3H, s) methoxyls.

Isopeucenin methyl ether^{*} (30). Isopeucenin (17) was refluxed in acetone for 22 hr with MeI and anhyd K_2CO_3 and isopeucenin methyl ether purified by crystallization from ether as needles, m.p. 91–93°. (Found: C, 70-1; H, 6.75. $C_{16}H_{18}O_4$ requires: C, 70-05; H, 6-6%).

Heteropeucenin 7-methyl ether,² (9) m.p. 110°; ptaerochromenol,³ (18) m.p. 175°; and umtatin,³ (13) m.p. 178°, also constituents of *P. obliquum*, were kindly supplied by Dr. F. M. Dean, Liverpool.

Khellin (28), m.p. $155-156^{\circ}$ (lit.^{26, 33} 153°) and visamminol (14), m.p. $159-160^{\circ}$ (lit.²⁶ 160°) were isolated from the seeds of Ammi visnaga L.

Khellinol (16), m.p. 201-203° (lit.^{26, 28} 201°) was derived from (28) by demethylation²⁶ with 50% HBr and crystallized from EtOAc.

Dihydrokhellin (15), m.p. 146–147° (lit.²⁷ 150°) was prepared from khellin (320 mg) by hydrogenation in EtOAc over 5% rhodium charcoal. After freeing from catalyst and solvent, the mixture of four products was separated by TLC in MeOH–CHCl₃ (1:49) and dihydrokhellin (140 mg), isolated from the band of lowest mobility, was crystallized from MeOH.

Dihydrokhellinol* (15), m.p. 176-178° (lit.²⁷ 176-177°) was prepared from 16 (48 mg) by hydrogenation over 5% rhodium charcoal (165 mg) in EtOAc. After freeing from catalyst and solvent, the mixture of three products was separated by TLC as above and dihydrokhellinol (12 mg) isolated from the band of lowest mobility and purified by sublimation at 124°/0-01 mm.

Isovisnagin (29), m.p. 240° (lit. 50 245-247°) was kindly supplied by Dr. R. I. Reed, Glasgow.

6-Ethyl-7-hydroxy-5,8-dimethoxy-2-methylchromone (26), m.p. 169-171° (lit.⁵¹ 173°) was prepared from khellin by hydrogenolysis in EtOAc over Adam's catalyst and purified by TLC [MeOH-CHCl₃ (1:19)] and crystallization from MeOH.

6-Ethyl-5,7-dihydroxy-8-methoxy-2-methylchromone (12). Khellinol (215 mg) in EtOAc was stirred with Adam's catalyst and H₂ for 0.5 hr. After freeing from catalyst and solvent, the hydrogenolysis product was isolated by TLC (CHCl₃) and crystallized from MeOH to give 6-ethyl-5,7-dihydroxy-8-methoxy-2-methylchromone as pale yellow needles (160 mg), m.p. 177-179° (Found: C, 62.5; H, 5.6. C₁₃H₁₄O₅ requires: C, 62.4; H, 5.6%), NMR signals at τ 8.86, t, 3H, J = 8 Hz, $-CH_2$ CH₃; 7.29, q, 2H, J = 8 Hz, $-CH_2$ CH₃; 7.63, s, 3H, 2-CH₃; 6.08, s, 3H, $-OCH_3$; 4.01, s, 1H, 3H; and 3.49, s, 1H, 70-H.

Deuterated hydroxychromones. Partial enrichment of OH groups with deuterium was obtained by shaking a CCl_4 or $CHCl_3$ soln of the hydroxychromone with a few drops of D_2O (99.8 atom%) followed by evaporation to dryness under suction. Traces of water were removed by purging with benzene vapour.

Acknowledgements-One of us (PHM) is grateful to the S.R.C. for a studentship award.

We wish to thank Drs. D. D. MacNicol and G. Eglinton for helpful advice and criticism, and Mrs. F. Lawrie for technical assistance and guidance.

REFERENCES

¹ P. H. McCabe, R. McCrindle and R. D. H. Murray, J. Chem. Soc. (C), 145 (1967).

* Compounds kindly prepared by Mr. T. Hogg. Glasgow.

- ² F. M. Dean and D. A. H. Taylor, *Ibid.*, (C), 114 (1966); K. Soviar, O. Motl, Z. Samek and J. Smolikova, *Tetrahedron Letters* 2277 (1967); F. M. Dean, B. Parton, N. Somvichien and D. A. H. Taylor, *Ibid.* 3459 (1967); M. Arshad, J. P. Devlin, W. D. Ollis and R. E. Wheeler, *Chem. Comm.* 154 (1968); W. R. Chan, D. R. Taylor and C. R. Willis, J. Chem. Soc. (C), 2540 (1967).
- ³ F. M. Dean, B. Parton, A. W. Price, N. Somvichien and D. A. H. Taylor, Tetrahedron Letters 2737 (1967).
- ⁴ F. M. Dean, Naturally Occurring Oxygen Ring Compounds. Butterworths, London (1963).
- ⁵ M. M. Badawi and M. B. E. Fayez, Indian J. Chem. 5, 93 (1967).
- ⁶ M. M. Badawi, M. B. E. Fayez, T. A. Bryce and R. I. Reed, Chem. & Ind. 498 (1966).
- 7 A. J. Birch, P. Elliott and A. R. Penfold, Austral. J. Chem. 7, 168 (1954).
- ⁸ L. Henry and D. Molho, Colloq. intern. centre. natl. recherche, sci. 64, 341 (1957).
- ⁹ F. M. Dean and D. R. Randell, J. Chem. Soc. 798 (1961).
- ¹⁰ J. H. Looker and W. W. Hanneman, J. Org. Chem. 27, 381 (1962).
- ¹¹ H. A. B. Linke, Spectrochim. Acta 25A, 1067 (1969).
- 12 L. J. Bellamy, Ibid. 13, 60 (1958); L. J. Bellamy and P. E. Rogasch, Ibid. 16, 30 (1960).
- ¹³ A. R. Katritzky and R. A. Jones, *Ibid.* 17, 64 (1961).
- 14 R. N. Jones, C. L. Angell, T. Ito and R. J. D. Smith, Canad. J. Chem. 37, 2007 (1959).
- ¹⁵ G. Govil and C. L. Khetrapal, Curr. Sci. 34, 116 (1965).
- ¹⁶ H. L. Hergert and E. F. Kurth, J. Am. Chem. Soc. 75, 1622 (1953).
- ¹⁷ B. L. Shaw and T. H. Simpson, J. Chem. Soc. 655 (1955); P. Lebreton and J. Chopin, Spectrochim. Acta 19, 2099 (1963).
- ¹⁸ L. H. Briggs and L. D. Colebrook, Ibid. 18, 939 (1962).
- ¹⁹ J. H. Looker, W. W. Hanneman, S. A. Kagal, J. I. Dappen and J. R. Edman, J. Heterocyclic. Chem. 3, 55 (1966).
- ²⁰ For a review, see H. Wagner, Methods in Polyphenol Chemistry (Edited by J. B. Pridham) p. 37. Pergamon Press, Oxford (1964).
- ²¹ R. D. H. Murray, P. H. McCabe and T. C. Hogg, Tetrahedron 25, 5839 (1969).
- ²² G. Eglinton, Physical Methods in Organic Chemistry (Edited by J. C. P. Schwarz) p. 74. Oliver and Boyd, Edinburgh (1964).
- 23 P. Beak and G. A. Carls, J: Org. Chem. 29, 2678 (1964).
- 24 E. Spath and K. Eiter, Ber. Dtsch. Chem. Ges. 74B, 1851 (1941).
- ²⁵ A. Bolleter, K. Eiter and H. Schmid, Helv. Chim. Acta 34, 186 (1951).
- ²⁶ W. Bencze, J. Eisenbeiss and H. Schmid, Ibid., 39, 923 (1956).
- ²⁷ T. A. Geissman and T. G. Halsall, J. Am. Chem. Soc. 73, 1280 (1951); R. Aneja, S. K. Mukerjee and T. R. Seshadri, Chem. Ber. 93, 297 (1960).
- 28 H. Abu-Shady and T. O. Soine, J. Am. Pharm. Ass. 41, 325 (1952).
- ²⁹ M. Oki and H. Iwamura, Bull. Chem. Soc. Japan 32, 568 (1959).
- ³⁰ L. J. Bellamy, The Infrared Spectra of Complex Molecules Ch. 6. Methuen, London.
- ³¹ J. H. Looker, S. A. Kagal and J. R. Edman, J. Heterocyclic. Chem. 3, 65 (1966).
- 32 C. M. Huggins, G. C. Pimentol and J. N. Shoolery, J. Phys. Chem. 60, 1311 (1956).
- ³³ E. Spath and W. Gruber, Ber. Dtsch. Chem. Ges. 74, 1549 (1941); T. A. Geissmann and J. W. Bolger, J. Am. Chem. Soc. 73, 5875 (1951).
- ³⁴ R. N. Jones and C. Sandorfy, *Techniques in Organic Chemistry* (Edited by A. Weissberger) Vol. 9, p. 333. Interscience, New York (1956).
- 35 R. F. Goddu, J. Am. Chem. Soc. 82, 4533 (1960).
- ³⁶ N. A. Puttnam, J. Chem. Soc. 486, 5100 (1960); L. J. Bellamy, G. Eglinton and J. F. Morman, Ibid. 4762 (1961); M. Tichy, Advances in Organic Chemistry p. 151. Interscience, New York (1965).
- ³⁷ M. Oki and H. Iwamura, Bull. Chem. Soc. Japan 32, 1135 (1959); Ibid. 33, 681, 717, 16000 (1960).
- ³⁸ A. W. Baker and A. T. Shulgin, J. Am. Chem. Soc. 80, 5358, (1958); Ibid. 81, 4525 (1959).
- 39 R. M. Badger, J. Chem. Phys. 8, 288 (1940).
- ⁴⁰ R. Biggins, T. Cairns, G. Eglinton, E. Haslam and R. D. Haworth, J. Chem. Soc. 1750 (1963); M. Horak, J. Smolikova and J. Pitha, Coll. Czech. Chem. Comm. 26, 2891 (1961).
- ⁴¹ C. Mentzer, Colloques intern. centre natl. recherche sci., 64, 207 (1957); S. Sethna and R. Phadke, Organic Reactions Vol. VII, p. 1. Wiley, New York (1953).
- 42 M. Block and S. von Kostanecki, Ber. Dtsch. Chem. Ges. 33, 1999 (1900).
- ⁴³ D. B. Limaye and G. R. Kelkar, J. Indian Chem. Soc. 12, 788 (1935); idem. Rasayanan, 1, 124 (1936); Chem. Abstr. 31, 2213 (1937).

- 44 C. R. Rao and V. Venkateswarlu, Rec. Trav. Chim. 75, 1321 (1956).
- 45 V. V. Virkar and R. C. Shah, Proc. Indian. Acad. Sci. 30A, 57 (1949).
- ⁴⁶ S. von Kostanecki and A. Rozycki, Ber. Dtsch. Chem. Ges. 34, 102 (1901).
- ⁴⁷ T. M. Meyer and H. Schmid, Helv. Chim. Acta 31, 1603 (1948).
- 48 K. C. Gulati, S. R. Seth and K. Venkataraman, J. Chem. Soc. 1715 (1934).
- ⁴⁹ J. B. D. Mackenzie, A. Robertson and W. B. Whalley, *Ibid.* 2965 (1950).
- ⁵⁰ J. R. Clarke, G. Glaser and A. Robertson, Ibid. 2260 (1948).
- ⁵¹ O. Dann and G. Volz, *Liebigs Ann.* 685, 167 (1965).