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DELAYED FRACTURE OF AN ORTHOTROPIC 

BODY SUBJECTED TO TWO-DIMENSIONAL 

DEFORMATION 

A. A. Kaminskii and G. V. Gavrilov UDC 539.3 

A modified 8,.-model is used to solve for the subcritical growth of macroscopic cracks of a normal cleavage in 
ageing fiber composite acted on by constant tensile stresses applied at infinity under two-dimensional 
deformation conditions. A continued fraction expansion is used to interpret the nonrational function of the 
integral Maslov-Arutyunyan ageing operators. The convergence of the resulting expansion is studied 
numerically, along with changes in the durability and safe loading conditions for an ageing composite as a 

function of  the filling. 

Consider an infinite orthotropic body with a through macroscopic normal-cleavage crack of length 2l 0. The body con- 

sists of a unidirectional fiber composite with a hereditary-ageing binder and an elastic filler and is subject to two-dimensional 

deformation. The crack lies in the body parallel to the reinforcing fibers and retains its rectilinear shape as it propagates. Tensile 

stresses p are applied to the body at infinity in a direction perpendicular to the crack line. We shall assume that near the edges 

of the crack there are small (relative to the crack length) prefracture end zones of length d. We shall model the crack with a 

modified 8~.-model based on a prefracture zone of length d = const [1]. In order to ensure the condition of rectilinear growth of 

the crack in the binder, we shall assume that the binder is uniform and has a lower resistance to brittle fracture than the rein- 

forcing fiber. 

For estimating the effect of the mechanical parameters and of the age of the initial components of the body on the frac- 

ture characteristics, we shall base this study of delayed fracture in this hereditary-ageing body under time-independent subcrit- 

ical loading on the theory of delayed fracture in viscoelastic materials [ l]. 

We shall model this fiber composite as a uniform orthotropic material with reduced elastic moduli calculated using the 

formulas of  [2]. If the x axis is directed along the reinforcing fiber, then [2] 
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Here 

K=3--4V; K a = 3 - 4 V a ;  

Etl, E22, GI2, v21, v23, and v31 are the elastic moduli for the material in the body; ~, E a, G a, and rl = I - ~, E, G are the vol- 

ume content and elastic constants of the reinforcing and binder substances, respectively; and, v and v a are the Poisson ratios of 

the reinforcement and binder. 

We shall use an operator with a Maslov-Arutyunyan operator [3] core of  the type 

where 

T 

and C 0, AI,  and y are constants for the material determined from creep experiments. The elastic-instantaneous value of the elas- 

tic modulus E in Eq. (2) is assumed to be constant. 

The operator ~.K contains a resolvent operator ~,R (~.)wlth a core of the form [3] 

t : ,.C x ~,.A I 

R(>,, t, "~)= q:)('c)-(y-q:)(x) + ~.-~o2('c)+ (,o'( 'c))~(s) "e(Y+~"C~ (3) 

To simplify the solution, we shall assume that the Poisson ratio v is time independent. Then the hereditary properties 

of the binder will be described by the operator 

o r  
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E* = (4) 

In accounting for the hereditary deformation properties of a fibrous orthotropic body, we shall neglect creep along the 

reinforcing fiber, i.e., we shall assume that E l 1 = El I = const and v/) = v 0 = const. Then, applying the algebra of resolvent oper- 

ators and neglecting the terms with G/G a << 1, from Eqs. (1) we obtain 
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A slowly growing crack in this model satisfies the Volterra principle [ 1 ]. Then the equation of  the crack contour can be written 

in the form 

8(x, t, z , )=  T*80(x. l(t)). (7) 
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Here S0(x, l(t)) is a function of the force and geometric parameters and T* is a linear Volterra integral operator of the second 

kind for which we must develop an expression. 

For the given macroscopic crack (d << l 0) with l(t) < x < L(t), the function 80(x, l(t)) can be written in the form [5] 

4~x~.)( . VJ-Vd-(x-;.))] 80(x,/('))=- "-~  ~ 2Vd'[d-(x-l(t))] +(x-l(t))'ln ~ , l ,  
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(8) 

where Kt (t) = p ~ ] ( O .  
The operator T* for this problem will have the form [6] 
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As can be seen from Eq. (9), the operator T* is a complicated nonrational function of the hereditary-ageing operators E-~3 and 

GI2. Equation (9) for T* will have to be expanded in order to solve the problem. To do this, we expand the operator T* in a 

continued fraction using the Thiele formula [7]. The technique for expanding expressions of this type is discussed in detail in 

[1] and [8]. The major point in expanding expression (9) is to represent the square root of one resolvent operator or a linear 

combination of them as a continued fraction. Limiting ourselves to a finite number  of terms in the continued fraction and sum- 

ming it in accordance with the rules of  the algebra of resolvent operators, we expand the square root as a linear combination of 

resolvent operators: 
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This expansion technique with the retention of M terms in the expansions for the operator T* yields the expression 

(11) 

In the following we discuss the rate of convergence of the continued fraction representation of the operator T* for a 

specific example. 

Subcritical crack growth in viscoelastic bodies can be broken up into incubation, transition, and main periods [1]. 

According to the criterion for critical opening, the following inequality is satisfied at the tip of a crack during the incubation 

period: 

ToSo(lo). I+ I.tiR(;i , t, ~)d~ <-5,., (12) 

"~1 i=I 

where, based on Eq. (8), we have 

So(to): So(to, to) = ~ K , o ,  Xto = p~- 
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TABLE 1 

Number of Age of material Zl. days 

interactions 
7 21 120 

I 

2 

3 

4 

10 

5.2231 

3.4361 

3.8153 

3.7178 

3.7368 

3.9258 

2.7570 

3.0003 

2.9386 

2.9506 

3.3770 

2.4813 

2.6633 

2.6183 

2.6269 

T AB L E  2 

Number of 
interactions 

I 

2 

3 

4 

10 

Age of matedal~l, days 

7 21 120 

4.9670 

3.3302 

3.6684 

3.5840 

3.6001 

3.7507 

2.6799 

2.8970 

2.8435 

2.8537 

3.2365 

2.4159 

2.5782 

2.5391 

2.5464 
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Here equality is reached in Eq. (12) at the moment the crack moves. 

The equation for determining the time t ,  at which the incubation period ends is 

t .  N 

-r I i=1 K I O  
(13) 

Here Kit is the critical stress intensity factor for two-dimensional deformation. The time (t, - "el) determines the duration of 

the incubation period of crack growth, 

Given the finiteness of the operator R*(L),  on letting t .  go to infinity, according to Eq. (13) for the definition of safe 

loading Pb at which the opening of  the crack will never attain its critical value 8,., we obtain 

t N K,, fZ 
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t - "*~  "el i=1 

(14) 

where K b is the safe stress intensity factor. 

As Eq. (14) shows, the safe load depends on the parameters of the kernel R(L,  t, "c), but also on the age of the materi- 

al, "c t. As the age "c I increases, Kr and Pb also increase. If Kto > Kr then after a time t. the crack begins to grow slowly. The 

equation for the transitional period describes the initial growth of the crack from length l 0 to l(t l) = I 0 + d and is given by 

t* N t N 

(15) 

The time t I when the crack tip passes the initial end zone d will be the end of the transitional period. Since the function 80(/(t), l 0) 

in Eq. (15) equals zero in the first integral for l(t) = l 0 + d, Eq. (15) transforms to 
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The equation for crack growth during the main period [ 1 ] is 

t N 

",, f Z , ? ( ; , .  t. Xj (t) 80(Z(t)) , ,  i=l 
(17) 

Here the time t" is defined by the equation l ( t )  - l(t ') = d. 

It is evident from Eq. (17) that slow crack growth takes place as long as Kl( t )  < Kit.. The time t 2 at which Kl(t2) = Kic  

will be the end of the main period of crack growth, after which it enters a dynamic propagation regime. Thus, the longevity of 

the material under a given external load will be determined by the sum of the durations of each of the subcritical crack growth 

periods. 

We now give some examples of  the numerical solution of  these equations for subcritical crack growth when the binder 

in the composite material is concrete and the filler material is steel reinforcement or glass fiber, i.e., we shall examine (steel) 

reinforced concrete and glass reinforced concrete. The mechanical  parameters of these materials are: 

- for concrete: E = 2.1010 Pa, v = 0.167, A = 4.918-10 -10 day/Pa, C o = 0.918-10 -I~ Pa --1, y = 0.026 day-l;  

- for steel reinforcement: E = 2" 1011 Pa, v = 0.3; and 

- for glass fiber: E = 0.7"10 It Pa, v = 0.2. 
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Tables 1 and 2 show the rate of  convergence of  the continued fraction representation of the operator T* for a volume 

concentration ~ = 10% of the filler for steel and glass fiber reinforcements, respectively. The tables show that the rate of con- 

vergence of  the continued fraction representation of T* is quite high. The norm II r" lie of the operator in the positive function 

E space yields an error of less than 10% by the second iteration, with the norm's approaching the exact value from below. 

Figure 1 shows plots of  the variation in the safe load with the volume content of reinforcing fibers. The dashed curves 

are for glass reinforced concrete and the smooth curves, for (steel) reinforced concrete. Curves 1, 2, and 3 correspond to mate- 

rials with ages of  7, 21, and 120 days. These graphs show that glass reinforced concrete is more stable against cracks than steel 

reinforced concrete. 

Figure 2 shows plots of the longevity of the body as a function of the volume content of reinforcing fibers forplp, = 0.8 

and a prefracture zone size given by dll  0 = 0.05. The numbers on the curves correspond to the same age data for the material 

as in Fig. 1. These curves show that glass reinforced concrete is more durable than steel reinforced concrete. 
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