Ein einfaches neues Verfahren zur Herstellung 2-substituierter Chinazoline

Klaus SASSE

Wissenschaftliches Hauptlaboratorium der Bayer AG, D-5090 Leverkusen-Bayerwerk

2-Oxo-1,2-dihydrochinazoline (3) sind Schlüsselverbindungen zur Herstellung weiterer 2-substituierter Chinazoline. Nach bisherigen Kenntnissen wurden die Verbindungen 3 im wesentlichen durch Harnstoff-Schmelze mit 2-Aminobenzaldehyd¹ oder dem Kaliumsalz der Isatinsäure und nachfolgende Decarboxylierung der Chinazolon-4-carbonsäure² gewonnen. Wir fanden nun ein einfacheres und ergiebigeres Verfahren zur Synthese der Verbindungen 3 durch Cyclisierung von N-(2-Dichloromethylphenyl)-harnstoffen (2), die aus 2-Dichloromethylphenyl-isocyanaten (1) und Ammoniak zugänglich sind.

$$X \xrightarrow{CHCl_2} \xrightarrow{NH_3 / Toluol} X \xrightarrow{NH_2 - Toluol} X \xrightarrow{NH_3 / Toluol} X$$

Die Umsetzung von 1 zu 2 verläuft quantitativ z.B. mit gasförmigem Ammoniak in inerten Lösungsmitteln wie Toluol. Die Cyclisierung von 2 zu 3 kann unter verschiedenen Bedingungen vorgenommen werden:

- (A) durch Erhitzen auf Temperaturen oberhalb 120°;
- (B) in wäßrigen Säuren;
- (C) in siedenden niederen Alkoholen;
- (D) durch Einwirkung von Basen.

0039-7881/78/0532-0379 \$ 03.00

© 1978 Georg Thieme Publishers

380 Communications SYNTHESIS

Nach den Verfahren A, B und C fallen die Verbindungen 3 in Form ihrer (in der Regel chlorwasserstoff-sauren) Salze an, die durch nachträgliche Basen-Behandlung (z. B. mit Natronlauge, vorzugsweise aber Ammoniak) in die freien Verbindungen 3 übergeführt werden. Man kann 1 auch direkt in 3 umwandeln, wenn man auf 1 mindestens 3 Mol Ammoniak in einem Solvens einwirken läßt, in dem 2 gelöst bleibt (z. B. in Dioxan). Das zweistufige Verfahren liefert jedoch bessere Ausbeuten.

Die 2-Oxo-1,2-dihydrochinazoline **3** werden in siedendem Phosphoryl-chlorid in 2-Chlorochinazoline (**4**) umgewandelt; ein Zusatz von Phosphor(V)-chlorid^{3,4} zum Reaktionsgemisch ist hierbei nicht erforderlich.

Die Verbindungen 4 sind vielseitig einsetzbare Zwischenprodukte zur Herstellung 2-substituierter Chinazoline, über die bisher nur wenige Untersuchungen bekannt geworden sind.

Die Umsetzung von 4 mit Alkoholaten liefert 2-Alkoxychinazoline (5);

die Umsetzung mit Alkali-phenolaten und Alkali-thiophenolaten in Dioxan bei 80° ergibt 2-Aryloxy- (z. B. 6a) bzw. 2-Arylthiochinazoline (z. B. 6b).

Einige 2-Aminochinazoline (7) wurden bereits aus 2-Chlorochinazolin⁴ bzw. 2-Fluorosulfonyl-chinazolin⁵ und Aminen hergestellt. Abgesehen von Ammoniak, das erst oberhalb 100° (z. B. in Dioxan unter Druck bei 150°) mit 4 in Reaktion tritt, genügen für die Umsetzungen mit primären und sekundären Aminen in Dioxan Temperaturen bis 80°.

$$X \longrightarrow \begin{array}{c} N \\ N \longrightarrow Cl \end{array} + \begin{array}{c} HN \\ R^2 \end{array} \xrightarrow{\begin{array}{c} Dioxan \\ - HCl \end{array}} \begin{array}{c} X \longrightarrow \begin{array}{c} N \\ N \longrightarrow R^2 \end{array}$$

Die 2-Aminochinazoline 7 mit mindestens einem H-Atom an der exocyclischen Amino-Gruppe werden durch Acyl-halogenide, Dikohlensäure-ester und Isocyanate an diesem N-Atom und nicht am Ring-N-Atom acyliert (8a), alkoxycarbonyliert (8b) bzw. aminocarbonyliert (8c).

Struktur und Reinheit der Verbindungen 5–8 wurden durch die ¹H-N.M.R.-Spektren (CDCl₃) belegt. Dabei ergaben sich für die Lage der Bande des CH-Protons in 4-Stellung folgende Gesetzmäßigkeiten⁶ (Varian-Spektrometer A-60; Innerer Standard: Tetramethylsilan).

Durch Halogen-Substitution im Benzol-Kern wird die Lage der Bande bei gleichen Substituenten in 2-Stellung nicht

beeinflußt. Dagegen finden sich folgende Abhängigkeiten von der Art des 2-Substituenten:

Tabelle 1. 2-Oxo-1,2-dihydrochinazoline^a (3)

3	X	Ausbeute [%]	Summenformel ^b		
b			C ₈ H ₅ ClN ₂ O (198.6)		
c	7-C1	92	C ₈ H ₅ ClN ₂ O (198.6) ^e		
d	8-C1	43	$C_8H_5CIN_2O$ (198.6)		
e	5,6-di-Cl	90	C ₈ H ₄ Cl ₂ N ₂ O (215.0)		
f	5,8-di-Cl	90	C ₈ H ₄ Cl ₂ N ₂ O (215.0)		

- ^a Sämtliche Verbindungen schmelzen nicht unterhalb 300°.
- b Die Mikroanalysen zeigten die folgenden maximalen Fehler: Cl, ±0.3; N, ±0.3.
- ^c Das Produkt enthält nach Trocknen bei 100° noch 1 mol H₂O.

Tabelle 2. 2-Chlorochinazoline (4)

	X	Ausbeute [%]	F	Summenformel ^a
	H 6-Cl	71 73	108° (108°) ³	C ₈ H ₅ ClN ₂ '(164,6) C ₈ H ₄ Cl ₂ N ₂ (199.1)
c	7-Cl	68	165°	C ₈ H ₄ Cl ₂ N ₂ (199.1) C ₈ H ₄ Cl ₂ N ₂ (199.1)
d e	8-Cl 5,6-di-Cl	59 70	170° 145°	C ₈ H ₃ Cl ₃ N ₂ (233.5)
f	5,8-di-Cl	65	126°	C ₈ H ₃ Cl ₃ N ₂ (233.5)

Die Mikroanalysen zeigten die folgenden maximalen Fehler: Cl. ± 0.3 ; N, ± 0.3 .

N-(2-Dichloromethylphenyl)-harnstoff (2, X = H):

In eine Lösung von 2-Dichloromethylphenyl-isocyanat (1, X = H; 20.2 g, 0.1 mol) in Toluol (100 ml) leitet man unter schwacher Kühlung bei 15–20° Ammoniak-Gas im Überschuß ein. Das ausfallende Produkt wird abgesaugt und getrocknet; Ausbeute: 21 g (95%); (sintert ab $\sim 140^\circ$ ohne zu schmelzen).

2-Oxo-1,2-dihydrochinazolin (3, X = H):

Methode B: N-(2-Dichloromethylphenyl)-harnstoff (2, X=H; 21.9 g, 0.1 mol) wird in 10 %iger Salzsäure (150 ml) zum Sieden erhitzt, bis sich eine klare Lösung gebildet hat. Dann läßt man erkalten, gibt wäßriges Ammoniak bis pH 9 zu, läßt das Gemisch einige Zeit in Eis stehen, saugt ab und trocknet das Produkt; Ausbeute: 14 g (95 %); F: > 250°.

May 1978 Communications 381

Tabelle 3. 2-Aminochinazoline (7)

7	R ¹	R ²	X	Ausbeute [%]	F bzw. Kp	Summen- formel ^a
a	Н	Н	Н	52	F: 204° (203°, 198°) ^{5,7} (aus Butanol)	C ₈ H ₇ N ₃ (145.2)
b	Н	CH ₃	Н	89	F: 89° (92°) ⁴ (aus Petrolether)	C ₉ H ₉ N ₃ (159.2)
c	Н	i-C ₃ H ₇	Н	75	F: 72° (aus Petrolether)	$C_{11}H_{13}N_3$ (187.2)
d	Н	C ₆ H ₅	Н	45	F: 146° (aus CCl ₄)	$C_{14}H_{11}N_3$ (221.3)
e	CH ₃	CH ₃	Н	71	F: 86° (86°) ⁴	$C_{10}H_{11}N_3$ (173.2)
f	<i>n</i> -C ₃ H ₇	n-C ₃ H ₇	Н	62	F: 47° (47°) ⁵ (aus Petrolether)	$C_{14}H_{19}N_3$ (229.3)
g	n-C ₄ H ₉	n-C ₄ H ₉	Н	59	F: 56° (aus Petrolether)	$C_{16}H_{23}N_3$ (257.4)
ħ	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$	Н	48	Kp: 113°/0.06 torr	$C_{14}H_{15}N_3$ (225.3)
i	(CH ₂) ₅		Н	95	Kp: 148-150°/0.1 torr	$C_{13}H_{15}N_3$ (213.3)
j	CH ₃	CH ₃	7-Cl	77	F: 132° (aus Petrolether)	$C_{10}H_{10}CIN_3$ (207.7)
k	C ₂ H ₅	C ₂ H ₅	7-Cl	68	F: 36° Kp: 138-140°/0.1 torr	$C_{12}H_{14}CIN_3$ (235.7)
1	n-C ₃ H ₇	n-C ₃ H ₇	7-CJ	54	F: 32° Kp: 140-142°/0.08 torr	$C_{14}H_{18}ClN_3$ (263.8)
m	n-C ₄ H ₉	n-C ₄ H ₉	7-C1	75	F: 51°	$C_{16}H_{22}CIN_3$ (291.8)
n	· (CH ₂) ₅ ·		7-C1	73	F: 86° (aus Petrolether)	$C_{13}H_{14}CIN_3$ (247.7)
0	C ₂ H ₅	C_2H_5	6-C1	63	F: 91° (aus Petrolether)	$C_{12}H_{14}CIN_3$ (235.7)
p	n-C ₃ H ₇	<i>n</i> -C ₃ H ₇	6-Cl	67	F: 78° (aus Petrolether)	C ₁₄ H ₁₈ ClN ₃ (263.8)

^a Die Mikroanalysen zeigten die folgenden maximalen Fehler: C, ±0.2; N, ±0.3.

Methode C: N-(2-Dichloromethylphenyl)-harnstoff (2, X = H; 21.9 g, 0.1 mol) wird in 95 %igem Ethanol (120 ml) suspendiert und das Gemisch allmählich zum Sieden erhitzt. Es bildet sich vorübergehend eine klare Lösung; dann scheidet sich ein festes Produkt ab. Man kocht das Gemisch noch 1 h, saugt das 2-Oxo-1,2-dihydrochinazolin-hydrochlorid ab und suspendiert es in Wasser (100 ml). Bei 40-50° gibt man wäßriges Ammoniak bis pH 9 zu, rührt noch 30 min bei 40-50°, saugt ab und trocknet das Produkt; Ausbeute: 14g (95 %); $F: > 250^\circ$.

Methode D (Eintopf-Verfahren): Man läßt 2-Dichloromethylphenyl-isocyanat (1, X=H; 20.2 g, 0.1 mol) bei 15–20° unter Rühren in ein Gemisch von konz. wäßrigem Ammoniak (30 g) und Dioxan (100 ml) eintropfen. Anschließend erwärmt man allmählich auf 70° und hält diese Temperatur noch 1 h ein. Nach dem Abkühlen wird das Produkt abgesaugt, mit Wasser gewaschen und getrocknet; Ausbeute: 12 g (83 %); $F: > 250^\circ$ (Lit. 2 , $F: 282-284^\circ$).

$$C_8H_6N_2O$$
 ber. $C_65.75$ H 4.14 N 19.16 (146.1) gef. 65.2 4.20 19.03 Cl-Gehalt: <0.5 %.

Die Verfahren B D lassen sich gut auch auf kern-chlorierte Derivate übertragen (Tabelle 1).

2-Chlorochinazoline (4); allgemeine Herstellungsvorschrift:

Das 2-Oxo-1,2-dihydrochinazolin 3 wird mit der 7- bis 10fachen Gewichtsmenge Phosphoryl-chlorid bis zum Eintritt einer klaren Lösung unter Rückfluß gekocht (~2h). Das überschüssige Phosphoryl-chlorid wird anschließend abdestilliert, der Rückstand mit Wasser verrührt und mit Natriumcarbonat neutralisiert. Das feste Produkt wird abgesaugt und mit Toluol extrahiert. Der Toluol-Ex-

trakt wird eingedampft und der Rückstand, falls erforderlich, zur weiteren Reinigung aus Petrolether umkristallisiert.

2-Alkoxychinazoline (5); allgemeine Herstellungsvorschrift:

Das 2-Chlorochinazolin 4 (0.1 mol) wird bei Raumtemperatur portionsweise in eine Lösung von Natrium (2.3 g. 0.1 g-Atom) im jeweiligen Alkohol (100 ml) eingetragen. Das Gemisch wird 1 h bei Raumtemperatur gerührt, 1 h zum Sieden erhitzt und anschließend im Vakuum eingedampft. Der Rückstand wird mit Wasser verrührt, das Reaktionsprodukt abgesaugt und aus Petrolether umkristallisiert oder (falls ölig) in Chloroform aufgenommen und destilliert.

2-Methoxychinazolin; Ausbeute: 76%; F: 58°.

2-Ethoxychinazolin; Ausbeute: 69%; F: 61°.

6-Chloro-2-methoxychinazolin: Ausbeute: 71%; F: 114°.

6-Chloro-2-ethoxychinazolin; Ausbeute: 65%; F; 91%.

6-Chloro-2-isopropyloxychinazolin: Ausbeute: 70%; Kp: 130

134°/0.08 torr.

2-Aryloxy- bzw. 2-Arylthiochinazoline (6); allgemeine Herstellungsvorschrift:

Zur Mischung aus einem 2-Chlorochinazolin (4; 0.1 mol) und einem (Thio-) Phenol (0.1 mol) in Dioxan (125 ml) läßt man bei Raumtemperatur konz. Natronlauge (0.1 mol, enthaltend 4g NaOH) tropfen. Man rührt 1 h bei Raumtemperatur und 6 h bei 70 80° nach. Nach Abdampfen des Dioxans wird der Rückstand mit stark verdünnter Natronlauge verrührt. Das Reaktionsprodukt wird abgesaugt und (im allgemeinen aus Petrolether) umkristallisiert.

2-(4-Chlorophenoxy)-chinazolin (6a); Ausbeute: 43%; F: 156°. 2-(4-Chlorophenylthio)-chinazolin (6b); Ausbeute: 57%; F: 110°.

2-Aminochinazoline (7); allgemeine Herstellungsvorschrift:

In die Lösung des 2-Chlorochinazolins 4 (0.1 mol) in Dioxan (100 ml) läßt man das primäre oder sekundäre Amin (0.22 mol) bei Raumtemperatur eintropfen (bzw. leitet es gasförmig ein). Innerhalb 1 h wird zum Sieden erhitzt und dann noch 3 h unter Rückfluß gekocht. Der nach Abdestillieren des Dioxans verbleibende Rückstand wird mit Wasser verrührt. Feste Reaktionsprodukte werden abgesaugt und umkristallisiert, nicht kristallisierende Produkte in Chloroform aufgenommen und destilliert.

2-Propanoylaminochinazolin (8a):

Zu 2-Aminochinazolin (7a; 14.5 g, 0.1 mol) und Triethylamin (10.1 g, 0.1 mol) in Dioxan (100 ml) läßt man bei Raumtemperatur Propanoyl-chlorid (9.3 g, 0.1 mol) tropfen. Die Mischung wird 1 h bei Raumtemperatur, 2 h bei 50-60° gerührt, abgekühlt und mit Wasser versetzt. Das Reaktionsprodukt wird abgesaugt und getrocknet; Ausbeute: 13 g (64%); F: 150° (Petrolether).

2-Ethoxycarbonylaminochinazolin (8b):

2-Aminochinazolin (7a; 14,5 g, 0.1 mol) wird in Dioxan (100 ml) unter Zusatz von Pyridin (1 ml) mit Diethyl-dicarbonat (32,4 g, 0.2 mol) 6 h unter Rückfluß gekocht. Der nach Abdestillieren des Dioxans verbleibende Rückstand wird mit verd. Salzsäure gewaschen und aus Ethano) umkristallisiert; Ausbeute: 15 g (52%): F: 177°.

2-(N'-Methylureido)-chinazolin (8c):

2-Aminochinazolin (7a; 14.5 g, 0.1 mol) wird in Dioxan (100 ml) gelöst. Nach Zugabe von Zinn(II)-2-ethylhexanoat (0.2 g) wird Methyl-isocyanat (6 g, 0.133 mol) zugesetzt. Das Gemisch wird 3 h bei 40-50° gerührt, eingedampft und der Rückstand aus Butanol umkristallisiert; Ausbeute: 12 g (59%); F: 233°.

Diese Arbeit ist Herrn Prof. Dr. Otto Bayer zum 75. Geburtstag gewidmet.

Eingang: 28. September 1977

¹ S. Gabriel, T. Posner, Ber. Dtsch. Chem. Ges. 28, 1037 (1895).

² G. Stefanovič, L. Lorenc, M. L. Mihailovič, Recl. Trav. Chim. Pays-Bas 80, 149 (1961).

S. Gabriel, R. Stelzner, Ber. Disch. Chem. Ges. 29, 1313 (1896).
 A. Albert, G. B. Barlin, J. Chem. Soc. 1962, 3129.

⁴ W. L. F. Armarego, J. I. C. Smith, J. Chem. Soc. 1966, 234.

⁵ D. J. Brown, J. A. Hoskins, Austr. J. Chem. 25, 2641 (1972).

⁶ Aufnahme der Spektren durch H. Niedrig, Ingenieur-Abteilung für Angewandte Physik der Bayer AG.

⁷ M. J. S. Dewar, J. Chem. Soc. 1944, 619.