612 Communications SYNTHESIS use of conjugated nitroalkenes (1-nitroalkenes, 1) as dipolarophiles in the cycloaddition with aromatic N-oxides (2). The course of the cycloaddition depends on the structure of the nitroalkenes 1 and the products are 4- or 5-nitro-4,5-dihydro-1,2-oxazoles, or 1,2-oxazoles not containing a nitro group. Thus, the reaction of benzonitrile oxide (2, X=H) with nitroethylene (1a) in ether at room temperature yields 5-nitro-3-phenyl-4,5-dihydro-1,2-oxazole (3) whereas the analogous reaction with 1-nitro-1-propene (1b) leads to 5-methyl-4-nitro-3-phenyl-4,5-dihydro-1,2-oxazole (4). Under the same conditions, 2-methyl-1-nitropropene (1c) adds to benzonitrile oxide (2, X = H) to give 5-methyl-5-nitromethyl-3-phenyl-4,5-dihydro-1,2-oxazole (5) instead of the expected product 6 of a 1,3-dipolar cycloaddition. This result can be explained by assuming that under the reaction conditions 2-methyl-1-nitropropene (1c) isomerizes partially to 2-methyl-3-nitropropene (1f) by hydrogen shift. $$H_2C$$ $C = C$ H_3C H_3C H_3C H_3C H_3C H_3C H_3C The possibility of the isomerization 1 c→1 f has already been reported by Descotes et al.³. Further, it is known that disubstituted ethylenes react much faster than trisubstituted ethylenes in 1,3-dipolar cycloadditions⁴. ## G. A. SHVEKHGEIMER Gubkin Institute of Petrochemical and Gas Industry, 117-293 Moscow, U.S.S.R. A. BARAŃSKI*, M. GRZEGOŹEK Institute of Organic Chemistry and Technology, Politechnical University, 31–155 Kraków, Poland It is known that nitroalkenes react as dipolarophiles in cycloaddition reactions¹. In a previous communication², we described the 1,3-dipolar cycloaddition of unconjugated nitroalkenes with aliphatic and aromatic nitrile oxides. It was found that this reaction affords only 5-nitroalkyl-4,5-dihydro-1,2-oxazoles. We report now the first examples of the In the case of the addition of 2-nitropropene (1 d) and 2-nitro-2-butene (1e) to benzonitrile oxide (2, X = H), the reaction proceeds beyond the 1,2-oxazoline stage to give the corresponding 1,2-oxazoles (7, 8) with elimination of nitrous acid. Compound 7 was also synthesized by dehydronitration of 5methyl-4-nitro-3-phenyl-4,5-dihydro-1,2-oxazole (4) in boil- Table 1. 3-Phenyl-4,5-dihydro-1,2-oxazoles prepared ing xylene. 5-Nitro-3-phenyl-1,5-dihydro-1,2-oxazole (3) under similar conditions (boiling toluene) gives 3-phenyl-1,2-oxazole (9). | X ¹ | X ² | R ⁴ | R ⁵ | Yield
[%] | m.p.
(Solvent) | Brutto
formula ^a | 1 H-N.M.R. (CDCl ₃ and acetone- d_{6}) δ [ppm] | |--------------------|-----------------|-----------------|-----------------------------------|--------------|------------------------|--|---| | Н | Н | Н | NO ₂ | 90 | 79–80°
(ethanol) | C ₉ H ₈ N ₂ O ₃
(192.2) | 3.93 (d, 2H, $J = 4.6$ Hz); 6.17 (q, 1H, $J = 4.6$ Hz) | | NO ₂ | Н | Н | NO_2 | 98 | 139-140°
(methanol) | $C_9H_7N_3O_5$ (237.2) | 4.34 (d, 2H, J=4.6 Hz); 6.69 (q, 1H, J=4.6 Hz) | | H ₃ CO— | Н | Н | NO_2 | 93 | 124-126°
(methanol) | $C_{10}H_{10}N_2O_4$ (222.2) | 4.30 (d, 2H, $J=4.6$ Hz); 6.54 (q, 2H, $J=4.6$ Hz) | | Н | NO ₂ | Н | CH ₃ | 68 | 88-89° (ethanol) | $C_{10}H_{10}N_2O_3$ (206.2) | 1.50 (d, 3 H, J = 6.9 Hz); 5.32 (o, 1 H, J = 6.9 Hz, J = 3.5 Hz); 5.92 (d, 1 H, J = 3.5 Hz) | | NO ₂ | NO ₂ | Н | CH ₃ | 60 | 168-170°
(methanol) | $C_{10}H_9N_3O_5$ (251.2) | | | Н | Н | CH ₃ | ←CH ₂ —NO ₂ | 10 | 82-83° (propanol) | $C_{11}H_{12}N_2O_3$ (220.2) | 3.12 (d, 1 H, <i>J</i> = 17.2 Hz); 3.66 (d, 1 H, <i>J</i> = 17.2 Hz); 4.50 (s, 3 H); 1.60 (s, 3 H) | | NO ₂ | Н | CH ₃ | —CH ₂ —NO ₂ | 18 | 99-101°
(ethanol) | C ₁₁ H ₁₁ N ₃ O ₅ (265.2) | 1.60 (s, 3 H); 3.42 (d, 1 H, <i>J</i> = 17.4 Hz); 3.84 (d, 1 H, <i>J</i> = 17.4 Hz); 4.88 (s, 2 H) | ^a The elemental analyses showed the following maximum deviations from the calculated values: C, ± 0.49 ; H, ± 0.20 ; N, ± 0.32 . Table 2. 3-Phenyl-1,2-oxazoles prepared | X | R ⁴ | R ⁵ | Yield
[%] | m.p.
Solvent | Brutto
formula ^g | 1 H-N.M.R. (CDCl ₃ and acetone- d_{6}) δ [ppm] | |-------------------|-----------------|-----------------|---------------------|-----------------------------------|---|--| | Н | Н | Н | 77ª | b.p. 97–98°/4 torr ^b | C ₉ H ₇ NO
(145.2) | | | NO_2 | Н | H | 77ª | 181–183°°
(ethanol) | $C_9H_6N_2O_3$ (190.2) | | | H ₃ CO | Н | Н | 61ª | 46-47° (hexane) | $C_{10}H_9NO_2$ (175.2) | 3.82 (s, 3 H); 6.56 (d, 1 H, $J \approx 2$ Hz);
8.38 (d, 1 H, $J \approx 2$ Hz) | | Н | Н | CH ₃ | 56; 43 ^d | 41–42°c (hexane) | C ₁₀ H ₉ NO
(159.2) | 2.30 (s, 3 H); 6.12 (s, 1 H) | | NO_2 | Н | CH_3 | 72; 50 ^d | 154–155°
(dioxan) | $C_{10}H_8N_2O_3$ (204.2) | 2.45 (s, 3 H); 6.38 (s, 1 H) | | H ₃ CO | Н | CH_3 | 53 | 92–93°
(ethanol) | $C_{11}H_{11}NO_2$ (189.2) | 2.43 (s, 3 H); 3.82 (s, 3 H); 6.28 (s, 1 H) | | Н | CH ₃ | CH ₃ | 30 | b.p. 101–102°/1 torr ^f | C ₁₁ H ₁₁ NO
(173.2) | 1.93 (s, 3 H); 2.23 (s, 3 H) | ^a From the corresponding 3-aryl-5-nitro-4,5-dihydro-1,2-oxazole. ^b n_D^{20} : 1.5616; d_4^{20} : 1.1386. Ref.⁵, b.p. 145°/30 torr; n_D^{20} : 1.5625; d₄²⁰: 1.1378. [°] M.S.: m/e = 190 (M⁺), 189, 160, 143, 118. Ref.⁶, m.p. 182–183°. d From the corresponding 3-aryl-5-methyl-4-nitro-4,5-dihydro- ^{1,2-}oxazole. e Ref. 7, m.p. 42°. n_D^{20} : 1.5646. $^{^{\}rm g}$ The N analyses showed a maximum deviation of ± 0.27 from the calculated values. The melting points were determined using a Boëtius apparatus and are uncorrected. The 1 H-N.M.R. spectra were recorded on a Tesla apparatus BS-478 (80 Hz) in CDCl₃ and also in acctone- d_6 using hexamethyldisilazane (HMDS, $\delta = 0.05$ ppm) as an internal standard. ## Reaction of Benzonitrile Oxides with Nitroalkenes; General Procedure: A solution of the nitroalkene⁸ (1; 0.02 mol) in dry ether (20 ml) is added dropwise to a vigorously stirred solution of the benzonitrile oxide⁺ (2; 0.01 mol) in dry ether (80 ml) at 0°. Stirring is continued for 12 h at room temperature. The mixture is then refluxed for 2 h, the ether is evaporated in vacuo, and the residue is distilled in vacuo or recrystallized from a suitable solvent (Table 1). ## Dehydronitration of 3-Aryl-5-nitro-4,5-dihydro-1,2-oxazoles; General Procedure: A solution of the 3-aryl-5-nitro-4,5-dihydro-1,2-oxazole (0.01 mol) in dry toluene (50 ml) is refluxed for 2 h on the oil bath. The solvent is then evaporated in vacuo and the residue is distilled in vacuo or recrystallzed (Table 2). ## Dehydronitration of 3-Aryl-5-methyl-4-nitro-4,5-dihydro-1,2-oxazoles; General Procedure: A solution of the 3-aryl-5-methyl-4-nitro-4.5-dihydro-1,2-oxazole (0.01 mol) in dry *p*-xylene (50 ml) is refluxed for 6 h on the oil bath. The solvent is then evaporated and the residue is recrystallized (Table 2). Received: April 26, 1976 - S. S. Novikov, G. A. Shvekhgeimer, V. V. Sevostianova, V. A. Shlapochnikov, in: Khimia aliphaticheskih i alitsiklicheskih nitrosoedinenii, Moscow, 1974, p. 239. - ² A. Barański, G. A. Shvekhgeimer, N. I. Kirillova, Rocz. Chem. in press. - ³ G. Descotes et al., Bull. Soc. Chim. Fr. 1970, 290. - ⁴ C. Grundmann, Fortschr. Chem. Forsch. 7, 62 (1966). - ⁵ K. v. Auwers, B. Ottens, Ber. dtsch. chem. Ges. 58, 2072 (1925). - ⁶ M. R. Langella, R. V. Finzi, Chim. Ind. (Milano) 47, 966 (1965). - ⁷ G. Bianchi, P. Grünanger, *Tetrahedron* **21**, 817 (1965). - V. V. Perekalin, A. S. Sopova, in: Nepredelnye nitrosoedinenia, Moscow. 1966.