### TWO TRITERPENE GLYCOSIDES FROM ISERTIA HAENKEANA

F. JAVIER ARRIAGA, ANGEL RUMBERO and PURIFICACION VAZQUEZ\*

Departamento de Química, Universidad Autónoma de Madrid, Cantoblanco, 28049-Madrid, Spain

#### (Received in revised form 12 May 1989)

Key Word Index—Isertia haenkeana, Rubiaceae; quinovic acid glycosides, cincholic acid glycosides, quinovic acid, <sup>1</sup>H, <sup>13</sup>C NMR

**Abstract**—Two new triterpene glycosides, quinovic acid  $3\beta$ -O-6-deoxy-D-glucopyranoside-28-O- $\beta$ -D-glucopyranoside and cincholic acid  $3\beta$ -O- $\beta$ -6-deoxy-D-glucopyranoside-28-O- $\beta$ -D-glucopyranoside, were isolated from aerial parts of *Isertia haenkeana*. Their structures were established on the basis of spectral data and chemical transformations.

### **INTRODUCTION**

As a part of our investigations of *Isertia haenkeana*, we have previously reported the isolation and identification of secoiridoids from the leaves of this plant [1]. Many interesting glycosides of quinovic and cincholic acids have been obtained from the Rubiaceae family [2–4] We now describe the isolation and characterization of two new triterpene glycosides (5 and 10) and five known triterpene acids (1, 2, 4, 7 and 9).

### **RESULTS AND DISCUSSIONS**

The known triterpene glycosides 4, 7 and 9 were identified by means of physical constants and spectral data [5, 6]. The two new triterpene glycosides, 5 and 10, are saponins in which the aglycones are quinovic acid (3) and cincholic acid (8), respectively

Acid hydrolysis of compounds 4–7 gave the same aglycone which was characterized as quinovic acid by comparison with an authentic sample. The <sup>1</sup>H NMR spectrum of the triacetate derivative 4a indicated that 4 was composed of a D-quinovose subunit linked to C-3 of the aglycone (Tables 1 and 2) [6, 7]. Confirmation of the structure 4 was provided by <sup>13</sup>C NMR spectroscopy (Table 3) which established a  $\beta$ -configuration for the proton attached to C-3 in the aglycone [8], the other carbon chemical shifts being in accordance with those reported in the literature for quinovic acid [9]. In the present study, the <sup>1</sup>H and <sup>13</sup>C NMR spectra are reported for the first time.

Alkaline hydrolysis of compound 7 gave compound 6 which was identified by <sup>1</sup>H and <sup>13</sup>C NMR spectroscopy as quinovin glycoside C [5, 6, 10] The <sup>13</sup>C NMR spectrum of the acetate of compound 7 (Table 3) was identical to quinovic acid  $3\beta$ -O-[ $\beta$ -D-glucopyranosil-(28  $\rightarrow$  1)- $\beta$ -Dglucopyranosil] ester peracetyl methyl ester [6].

Compound 9 is a triterpene with an oleanane skeleton. Thus in its <sup>1</sup>H NMR spectrum H-18 appears at  $\delta$ 2.89 (dd, J = 4.3 and 13 9 Hz), a typical value for this triterpene series, cf ursane skeleton which gives rise to a signal at  $\delta 2.20$  (d, J = 12 Hz) [11] Alkaline hydrolisis gave a compound whose spectral data and physical constants are in accordance with those for quinovin glycoside **B**(9) previously reported [5]

# Quinovic acid $3\beta$ -O- $\beta$ -6-deoxy-D-glucopyranoside-28-O- $\beta$ -D-glucopyranoside (5)

The <sup>1</sup>H and <sup>13</sup>C NMR spectra (Tables 1 and 2) indicated the presence of two sugar subunits: quinovose and glucose. The signal at  $\delta 4$  49 (d, J = 7.8 Hz) was attributed to the anomeric hydrogen of quinovose attached to C-3 of the aglycone and the chemical shift at  $\delta 5.59$  (d, J = 7.8 Hz) was consistent with the anomeric proton of glucose in an ester linkage The glycosyl ester linkage was proposed to be at C-28 in view of <sup>13</sup>C NMR spectrum which showed for C-27 in compounds 4 and 5, a chemical shift at  $\delta 179.0$ and 179.3, respectively, although the signal for C-28 was shifted upfield by 3.9 ppm, a difference attributed to esterification The signal for C-3 was at  $\delta 90.7$ , compared with  $\delta 77.8$  in quinovic acid (3) demonstrating an ether linkage at this carbon

The presence of a quinovose subunit was confirmed by comparative NMR spectroscopy analysis of the alkaline hydrolysis product of compound 5 with the <sup>13</sup>C NMR data of compound 4 and the <sup>1</sup>H NMR data of compound 4a. Moreover, the disappearance of the glucose signals in the <sup>1</sup>H and <sup>13</sup>C NMR spectra of the alkaline hydrolysis product of this compound was consistent with the presence of a glucose molecule in a ester linkage

The  ${}^{13}$ C NMR spectral data (Table 3) corresponding to the glucose carbons are in accordance with other similar triterpenes esterified with D-glucose at C-28. The other signals in the  ${}^{13}$ C NMR spectrum are identical to those of quinovic acid All these considerations, led us to assign to compound 5 the structure of quinovic acid  $3\beta$ -O- $\beta$ -6deoxy-D-glucopyranoside-28-O- $\beta$ -D-glucopyranoside.

# Cincholic acid $3\beta$ -O- $\beta$ -6-deoxy-D-glucopyranoside-28-O- $\beta$ -D-glucopyranoside (10)

The nature of the sugars subunits for this glycoside were determined in a similar manner to that just described above. The major difference between the two

<sup>\*</sup>Author to whom correspondence should be addressed.



glycosides is the aglycone part. Acid hydrolysis of compound 10 gave cincholic acid (8). A comparative spectroscopy study between pentacyclic triterpenes of the  $\alpha$ amyrin type (ursa-12-en-3 $\beta$ -ol) and  $\beta$ -amyrin type (oleana-12-en-3 $\beta$ -ol) [12] revealed significant differences between both series The <sup>1</sup>H NMR spectrum showed a signal at  $\delta 2 82$  (dd, J = 4.3 and 13 9 Hz) for H-18, a typical shift in the oleanane series [11] However, the major differences were found in the <sup>13</sup>C NMR spectra, especially in the chemical shifts for carbon atoms in ring E. A comparison in the  $\Delta\delta$  between the olefinic carbon signals (C-12 and C-13) for both series indicated a higher  $\Delta\delta$ value for the  $\beta$ -amyrin type [1, 13] Compound 5 ( $\alpha$  series) showed a  $\Delta\delta = 25$  (CD<sub>3</sub>OD) and 37 pyridine- $d_5$  whereas compound 10 ( $\beta$  series) showed a  $\Delta\delta = 98$  (CD<sub>3</sub>OD) and 112 pyridine- $d_5$ . The other carbon chemical shifts for ring

| H                   | <b>4</b> a | 5a       | 6a       | 7a       | 9a      | 10a      |
|---------------------|------------|----------|----------|----------|---------|----------|
| 1′                  | 4 50 d     | 4 49 d   | 4 53 d   | 4.53 d   | 4.50 d  | 4.44 d   |
| 2′                  | 5 00 dd    | 5 00 dd  | 5 02 dd  | 5 03 dd  | 5 00 dd | 493 dd   |
| 3'                  | 5 15 dd    | 5 15 dd  | 5 20 dd  | 5.25 dd  | 5.15 dd | 5 09 dd  |
| 4'                  | 4.80 dd    | 4.80 dd  | 5 05 dd  | 5.06 dd  | 4.80 dd | 4 74 dd  |
| 5'                  | 3 50 dq    | 3 54 dq  | 3.69 ddd | 3 68 ddd | 3.50 dq | 3 49 dq  |
| CH <sub>3</sub> -6' | 1 30 d     | 1 22 d   |          |          | 1.30 d  | 1 17 d   |
| 6'A                 |            |          | 4 24 dd  | 4 25 dd  |         |          |
| 6' <sub>B</sub>     |            |          | 4 12 dd  | 4 13 dd  |         |          |
| 1‴                  |            | 5 59 d   |          | 5 59 d   |         | 5 53 d   |
| 2''                 |            | 5.13 dd  |          | 5.16 dd  |         | 5 11 dd  |
| 3″                  |            | 5 25 dd  |          | 5.25 dd  |         | 5.20 dd  |
| 4″                  |            | 5 11 dd  |          | 5 11 dd  |         | 5 06 dd  |
| 5″                  |            | 3 80 ddd |          | 3 81 ddd |         | 3 75 ddd |
| 6''_                |            | 4.27 dd  |          | 4 27 dd  |         | 4 21 dd  |
| 6''                 |            | 4 03 dd  |          | 4 04 dd  |         | 3 97 dd  |

Table 1 <sup>1</sup>HNMR spectral data of compounds **4a-7a**, **9a** and **10a** (200 MHz; CDCl<sub>3</sub>, TMS as internal standard)

Table 2 Coupling constants for the protons in compounds 4a-7a, 9a, and 10a

|                                         | <b>4</b> a | 5a  | 6a  | 7a   | 9a  | 10a  |
|-----------------------------------------|------------|-----|-----|------|-----|------|
| J <sub>1'2'</sub>                       | 78         | 78  | 79  | 79   | 78  | 78   |
| $J_{2',3'}$                             | 96         | 95  | 93  | 94   | 96  | 95   |
| $J_{3', 4'}$                            | 96         | 9.5 | 9.3 | 9.4  | 9.6 | 95   |
| J4'.5'                                  | 96         | 95  | 93  | 94   | 96  | 95   |
| J 5' .6'                                | 63         | 63  |     |      | 63  | 62   |
| $J_{5',6'}$                             |            |     | 4.9 | 5.0  |     |      |
| J 5' .6'                                |            |     | 24  | 24   |     |      |
| $J_{6',.6'n}$                           |            |     | 122 | 124  |     |      |
| $J_{1'',2'}$                            |            | 78  |     | 7.9  |     | 7.8  |
| J 2". 3"                                |            | 95  |     | 94   |     | 9.5  |
| J 3" 4"                                 |            | 95  |     | 94   |     | 9.5  |
| J4",5"                                  |            | 95  |     | 94   |     | 9.5  |
| J 5" 6"                                 |            | 45  |     | 44   |     | 43   |
| J 5".6"                                 |            | 21  |     | 20   |     | 20   |
| $J_{6''_{\mathbf{A}},6''_{\mathbf{B}}}$ |            | 127 |     | 12.5 |     | 12.4 |

E are in accordance with the values reported in the literature for oleanane skeleton-based compounds [14, 15]. Finally, alkaline hydrolysis gave a compound which was identified with the quinovin glycoside B (9). Consequently, the structure of the compound 10 was concluded to be cincholic acid  $3\beta$ -O- $\beta$ -6-deoxy-D-glucopyranoside-28-O- $\beta$ -D-glucopyranoside.

### EXPERIMENTAL

Mps, uncorr MS<sup>-</sup> Hewlett-Packard GC-MS 5985B instrument <sup>1</sup>H and <sup>13</sup>C NMR 200 and 50 3 MHz, respectively, TMS ( $\delta$ =0) as int standard, the DEPT technique was used in the <sup>13</sup>C NMR spectra. HPLC Polygosil 60-C<sub>18</sub> column.

Plant material Isertia haenkeana collected in February 1986 in Costa Rica (Palmar Norte). A voucher of the plant is deposited in the herbarium of the Natural History Museum of San Jose, N 3046

Extraction and isolation of triterpene glycosides The air-dried plant material (2 25 kg) was extracted with MeOH in a Soxhlet-

type extractor Evaporation of the solvent *in vacuo* left a semisolid dark-green residue (379 g) The residual extract was extracted with NaHCO<sub>3</sub> (5%) and, upon acidification with HCl (5%), a ppt consisting mainly of triterpene glycosides was separated (147 g) A portion of the ppt was chromatographed in silica gel column and eluted successively with CHCl<sub>3</sub>-EtOAc (1 1) to give ursolic acid (1) and oleanolic acid (2), and CHCl<sub>3</sub>-MeOH (4 1) to give a mixture of triterpene glycosides which gave the following  $R_f$  data, TLC [(silica gel) (4) and (9):  $R_f$  0 65, (5) and (10).  $R_f$  0 34, and (7).  $R_f$  0.23, CHCl<sub>3</sub>-MeOH (4.1)]. This mixture was separated by semipreparative HPLC [column: Polygosil 60-C<sub>18</sub> (5  $\mu$ m); solvent MeCN-H<sub>2</sub>O (3 7), 9 ml/min., detection UV].

Quinovic acid  $3\beta$ -O- $\beta$ -6-deoxy-D-glucopyranoside (4). Mp 237-238° (lit),  $[\alpha]_{D}^{20}$  + 57° (EtOH; c 1 00), IR v<sup>KBr</sup> cm<sup>-1</sup> 2925, 1680; <sup>13</sup>C NMR (50 3 MHz, CD<sub>3</sub>OD, pyridine- $d_5$ , DEPT) see Table 3. Compound 4 was acetylated with Ac<sub>2</sub>O-pyridine at room temp, work-up in the usual manner afforded **4a** Mp 115-118°, <sup>1</sup>H NMR (200 MHz, CDCl<sub>3</sub>).  $\delta$ 5 75 (1H, m, H-12), 305 (1H, dd, J = 9 8 and 5 Hz, H-3), sugar protons (see Tables 1 and 2)

Table 3 <sup>13</sup>C NMR spectral data of compounds 4–7 and 10 (50 32 MHz. TMS as int standard)

| С   | 4*                | 4†                | 5*                | 5†                | 6*                | 7a‡               | 10*               | 10†               |
|-----|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| 1   | 40 1              | 38 5              | 39 9              | 38 7              | 39 9              | 38 6              | 39 9              | 38 7              |
| 2   | 26 5              | 26 1              | 26 4              | 26 4              | 26 4              | 25 6              | 256               | 251               |
| 3   | 90 6              | 88 0              | 90 7              | 88 2              | 90 6              | 90.2              | 90 6              | 88.3              |
| 4   | 39 9ª             | 38 5ª             | 40 1ª             | 39 1*             | 40 1ª             | 39 7              | 40.14             | 39 2ª             |
| 5   | 56 9              | 55 2              | 56 8              | 55 5              | 56 9              | 55 1              | 56 9              | 55 6              |
| 6   | 193               | 18.1              | 192               | 18.2              | 193               | 18-1              | 19.3              | 18.5              |
| 7   | 38 0              | 36 9              | 38 0              | 371               | 38 0              | 36 8              | 37 8              | 36 9              |
| 8   | 40 7ª             | 39 4ª             | 40 8 <sup>a</sup> | 39 8ª             | 40 7ª             | 36 7              | 40.64             | 39.84             |
| 9   | 479               | 46 6              | 48 0              | 46 9              | 48 1              | 46 4              | 48 1              | 47 3              |
| 10  | 378               | 36.4              | 37 8              | 36.6              | 37 8              | 367               | 37.8              | 36 9              |
| 11  | 238               | 22 7              | 23 9              | 23 0              | 23 8              | 22.4              | 24 0              | 23 3              |
| 12  | 1304              | 1284              | 1308              | 129 2             | 1304              | 130.4             | 127 7             | 126 1             |
| 13  | 133 9             | 133 4             | 133 3             | 132 9             | 133 8             | 130.8             | 137 5             | 137 3             |
| 14  | 573               | 56 2              | 57 2              | 56 3              | 57 3              | 55.4              | 573               | 56 5              |
| 15  | 27 0              | 257               | 27 1              | 25 7              | 27 0              | 24.24             | 27.1              | 26 5              |
| 16  | 257               | 24 9              | 258               | 251               | 25 7              | 24 9 <sup>r</sup> | 25 1              | 24.6              |
| 17  |                   | 48 1              |                   | 48 6              |                   | 48-3              |                   | 47 8              |
| 18  | 55 5              | 54.3              | 55.3              | 54.3              | 55 5              | 53 5              | 44.6              | 43 8              |
| 19  | 40 3              | 38 8              | 40 2              | 38 7              | 40 3              | 38.6              | 44 6              | 43 5              |
| 20  | 38.3              | 371               | 38.2              | 371               | 38.3              | 36.5              | 31.5              | 30.5              |
| 2.1 | 312               | 30.0              | 311               | 29 9              | 31.2              | 29.4              | 34.7              | 336               |
| 22  | 376               | 36 4              | 37 0              | 36 0              | 37.6              | 35 2              | 327               | 31.9              |
| 23  | 28 5              | 27 4              | 28 5              | 27 6              | 28 5              | 27 5              | 28 5              | 27 8              |
| 24  | 16 8 <sup>b</sup> | 15 9 <sup>b</sup> | 17 0 <sup>b</sup> | 16 3 <sup>b</sup> | 16 9 <sup>ь</sup> | 16.2              | 16 9 <sup>h</sup> | 16 3 <sup>b</sup> |
| 25  | 17 O <sup>b</sup> | 16 4 <sup>b</sup> | 17 1 <sup>ь</sup> | 16 7 <sup>ь</sup> | 17 l <sup>ь</sup> | 16.2              | 17 O <sup>b</sup> | 16 8 <sup>b</sup> |
| 26  | 181               | 18 1°             | 18 2              | 18 4°             | 18-1              | 18 1              | 18.25             | 18 7              |
| 27  | 1790              | 177 4             | 179 3             | 177 8             | 179 0             | 1798              | 1801              | 178 7             |
| 28  | 1818              | 1796              | 177 9             | 176 2             | 181 5             | 1752              | 178.0             | 176 5             |
| 29  | 190               | 176               | 192.              | 177               | 191               | 170               | 33.6              | 32.9              |
| 30  | 214               | 20 7              | 21 5              | 20.8              | 21 5              | 20.9              | 24 0              | 23 5              |
| 1′  | 106 4             | 105 9             | 106 5             | 106 2             | 106 6             | 102 7             | 106 5             | 106 3             |
| 2′  | 759               | 75 1              | 75 8              | 753               | 75 6              | 70 8              | 758               | 75 5              |
| 3'  | 78 0              | 77 6              | 778               | 778               | 78.2              | 726               | 77.9              | 78.0              |
| 4′  | 77 0              | 76 1              | 76 9              | 76 4              | 717               | 68 5              | 77 0              | 76 5              |
| 5′  | 729               | 719               | 72 9              | 72 2              | 77 6              | 71 5              | 72 9              | 723               |
| 6′  | 18 l              | 18.3°             | 18.2              | 18.85             | 62.8              | 61 9              | 19 O <sup>c</sup> | 18.5              |
| 1″  |                   |                   | 95 5              | 95 2              |                   | 913               | 956               | 954               |
| 2"  |                   |                   | 73 8              | 73 6              |                   | 69.8              | 73 9              | 73 9              |
| 3‴  |                   |                   | 78 5°             | 78 8 <sup>d</sup> |                   | 72 3 <sup>b</sup> | 78 6 <sup>d</sup> | 79 0 <sup>d</sup> |
| 4″  |                   |                   | 711               | 70 7              |                   | 67.8              | 711               | 70 9              |
| 5'' |                   |                   | 78 1°             | 78 3 <sup>d</sup> |                   | 72 6 <sup>b</sup> | 78 2 <sup>d</sup> | 78 5 <sup>d</sup> |
| 6″  |                   |                   | 62 5              | 61 9              |                   | 61 5              | 62 5              | 62 0              |

\*In CD<sub>3</sub>OD

†In pyridine-d5

‡In Cl<sub>3</sub>CD

<sup>a-d</sup>Assignments may be interchanged in each vertical column

Quinovic acid 3 $\beta$ -O- $\beta$ -6-deoxy-D-glucopyranoside-28-O- $\beta$ -Dglucopyranoside (5) 902 g, mp 208-210°,  $[\alpha]_D^{20} 20°$  (EtOH, c 1 00) IR v<sup>KBr</sup> cm<sup>-1</sup> 3400, 2925, 1730, 1690, 1630, <sup>13</sup>C NMR (50 3 MHz, CD<sub>3</sub>OD, pyridine- $d_5$ , DEPT) see Table 3 (Found C, 63 5t, H, 828  $C_{42}$ H<sub>35</sub> $O_{14}$  cospaces C, 63 48, H, 83t%) Compound 5 was acetylated in the usual manner to give 5a, mp 143-145°; <sup>1</sup>H NMR (200 MHz, CDCl<sub>3</sub>)  $\delta$ 5 73 (1H, m, H-12), 303 (1H, dd, J = 9 8 and 5 Hz, H-3), sugar protons (see Tables 1 and 2)

Quinovic acid 3 $\beta$ -O-D-glucopyranoside (6) Mp 247-250° (lit),  $[\alpha]_D^{20} + 62°$  (MeOH, c 100), IR v<sup>KBr</sup> cm<sup>-1</sup> 2925, 1680, <sup>13</sup>C NMR (50 3 MHz, CD<sub>3</sub>OD, DEPT) (see Table 3) Compound **6a** Mp 270 272<sup>c</sup>, <sup>1</sup>H NMR (200 MHz, CDCl<sub>3</sub>)  $\delta$ 5 75 (1H, *m*, H-12), 3 04 (1H, *dd*, J = 9.8 and 5 Hz, H-3), sugar protons (see Tables 1 and 2)

Quinovic acid  $3\beta$ -O- $\beta$ -D-glucopyranoside-28-O- $\beta$ -D-glucopyranoside-28-O- $\beta$ -D-glucopyranoside (7) Mp 163-165  $[x_2]_{20}^{20} + 23'$  (EtOPE, c 1069, IR v<sup>KBr</sup> cm<sup>-1</sup> 2970, 1740, 1690, 1620 Compound **7a** Mp 134-136', <sup>1</sup>H NMR (200 MHz, CDCl<sub>3</sub>)  $\delta$ 5 73 (1H, m, H-12), 3 05 (1H, dd, J = 9 8 and 5 Hz, H-3), sugar protons (see Tables 1 and 2), <sup>13</sup>C NMR (50 3 MHz, CDCl<sub>3</sub>, DEPT) see Table 3

Cincholic acid  $3\beta$ -O- $\beta$ -6-deaxt-D-glucopyranoside (9) Mp 193-196<sup>-</sup> (lit),  $[\alpha]_D^{20}$  + 78 (EtOH,  $\epsilon$  0 78), IR  $\nu^{KBr}$  cm<sup>-1</sup> 2925, 1680 Compound 9a Mp 190-192 . <sup>-1</sup>H NMR (200 MHz. CDCl<sub>3</sub>)  $\delta 5 \, 80 \, (1H, m, H-12)$ , 3 05 (1H, dd, J = 9.8 and 5 Hz, H-3), 2.89 (1H, dd, J = 13.9 and 4 3 Hz, H-18), sugar protons (see Tables 1 and 2)

Cincholic acid  $3\beta$ -O- $\beta$ -6-deoxy-D-glucopyranoside-28-O- $\beta$ -D-glucopyranoside (10) 2 25 g, mp 187–190°,  $[\alpha]_D^{20} + 31°$  (EtOH, c 1 00); IR $\nu$  <sup>KBr</sup> cm<sup>-1</sup> 3400, 2925, 1730, 1690, 1630, <sup>13</sup>C NMR (50.3 MHz, CD<sub>3</sub>OD, pyridine- $d_5$ , DEPT) see Table 3 (Found. C, 63 50, H, 8 29 C<sub>42</sub>H<sub>66</sub>O<sub>14</sub> requires C, 63 48, H, 8 31%) Compound 10a Mp 123–125°, <sup>1</sup>H NMR (200 MHz, CDCl<sub>3</sub>)  $\delta 5$  78 (1H, m, H-12), 3.02 (1H, dd, J = 9 8 and 5 Hz, H-3), 2 82 (1H, dd, J = 13 9 and 4 3 Hz, H-18), sugar protons (see Tables 1 and 2).

Alkaline hydrolysis of 5, 7 and 10 Compound 5 (100 mg) in 5 ml MeOH and 15 ml 1 M KOH was heated for 3 hr at  $100^{\circ}$  The soln was acidified with HCl (6%) and twice extracted with EtOAc The organic layer was evapl to dryness to give 4 (87 mg). Hydrolysis of compounds 7 and 10 to give from 6 and 9, respectively, was performed in the same manner

Acid hydrolysis of 4–7 and 10. Compound 5 (500 mg) in 125 ml  $H_2SO_4$  (7% EtOH) was heated for 4 hr at 100° The soln was evapt to 20 ml,  $H_2O$  was added to give a white ppt of quinovic acid (3) (250 mg) (identified by TLC, <sup>1</sup>H and <sup>13</sup>CNMR) Quinovic acid was isolated in a similar way from compounds 4, 6 and 7, and cincholic acid from 10

Acknowledgements—Samples of Isertia haenkeana were kindly provided by Mr L Poveda (National Museum, San Jose, Costa Rica) We are grateful to Dr P Hoet for his active co-operation and to the late Dr J Borges for his encouragement at the beginning of this work Financial support by Rio Ródano, S A is also gratefully acknowledged

#### REFERENCES

- Rumbero-Sánchez, A and Vázquez, P (1988) Heterocycles 27, 2863
- 2 Raffauf, R F, Le Chuesne, P W and Ghosh, P C. (1978) J Nat. Prod 41, 432
- 3 Banerji, N. (1978) J Indian Chem Soc LV, 275
- 4 Hui, W H. and Yee, C W (1968) Aust. J Chem 21, 543.
- 5. Tschesde, R, Duphorn, I and Snatzke, G (1963) Ann 667, 151.
- Matos, M E. O, Sousa, M. P, Machado, M. I L. and Filho,
   R. B (1986) Phytochemistry 25, 1419
- 7 Sahu, N P, Mahato, S B, Banerji, N and Chakravarti, R N (1974) Indian J Chem. 12, 284
- 8 Book, K and Pedersen, C (1983) in Advances in Carbohydrate Chemistry and Biochemistry Vol 41, p 55 (Tipson, R S and Horton, D, eds), Academic Press, New York
- 9 Miana, G A and Al-Hazini, H M G (1987) Phytochemistry 26, 225
- 10 Adeoye, A. O. and Waigh, R D (1983) Phytochemistry 22, 975
- 11. Furuya, T, Orihara, Y and Hayashi, C (1987) Phytochemistry 26, 715
- 12 Knight, S A (1974) Org Magn. Reson 6, 603.
- Seo, S., Tomita, Y. and Tori, K. (1975) Tetrahedron Letters 7
  Schteingart, C. D. and Pomilio, A. B. (1984) Phytochemistry 23, 2907.
- 15 Liu, C N., Chung, M I, Gau, K H and Chiang, J R. (1987) Phytochemistry 26, 2381