Synthesis of 5,5-Disubstituted-1,2,3-trithianes. G. GOOR¹ and M. ANTEUNIS* Rijksuniversiteit Gent, Krijgslaan, 271 (S4bis), B-9000 Gent, Belgium. 5,5-Disubstituted-1,2,3-trithianes have been prepared by heating an alcoholic sodium tetrasulfide solution with 2,2-dimethyl-1,3-dibromopropane². By-products formed were: 4,4-dimethyl-1,2-dithiolane and 3,3-dimethyl-thietane, probably due to some dismutation of the tetrasulfide on heating. Two alternatives for the synthesis of the title compounds are possible. Method A consists of reacting a 1,3-dithiol with sulfur dichloride at low temperature in a volatile solvent. Here too, the reaction mixture contains the corresponding 1,2-dithiolane (Scheme A). $$R^{1} = C + CH_{2} - SH + SCI_{2} \rightarrow R^{1} + SCI_{3}$$ $$R^{2} = C + CH_{2} - SH + SCI_{2} \rightarrow R^{2} + C + CH_{2} + CH_{3}$$ $$R^{1} = R^{2} = C_{2}H_{5},$$ $$R^{1} - R^{2} = -(CH_{2})_{4} - -(CH_{2})_{5} - C_{3}H_{7}, S - C_{4}H_{9}$$ $$R^{1} = CH_{3}, R^{2} = C_{2}H_{5}, n - C_{3}H_{7}, i - C_{3}H_{7}, s - C_{4}H_{9}$$ Scheme A $$R^{1} = R^{2} = C H_{3}, C_{2} H_{5}, i - C_{4} H_{9}$$ $$R^{1} = C H_{3}, R^{2} = neo - C_{5} H_{11}, C_{6} H_{5}, i - C_{4} H_{9}$$ Scheme B Heating of a dimesylate with sodium tetrasulfide (Scheme **B**) results also in a mixture of cyclic di- and trisulfide. The amount of the former is limited if the solvent, after extraction, is distilled off at atmospheric pressure rather than in vacuo; and the ratio trithiane/dithiolane, determined by ¹H-N.M.R.-spectroscopy, is almost better than 2:1. Table. Preparation of 5,5-Dialkyl-1,2,3-trithianes | R¹ | R ² | Method | Conversion | Yield | S-analysis | | |------------------------------------|------------------------------------|--------|------------|-------|------------|-------| | | | | (%) | (%) | calc. | found | | CH ₃ | CH ₃ | В | 68 | 79 | 57.03 | 57.29 | | C ₂ H ₅ | C_2H_5 | Α | 63 | 75 | 49,48 | 49.10 | | | | В | 65 | 70 | | 49.05 | | i-C ₄ H ₉ | i-C4H9 | В | 60 | 55 | 38.40 | 38.55 | | -(CH ₂) ₄ - | | Α | 65 | 68 | 50.00 | 50.09 | | $-(CH_2)_5$ | | A | 70 | 65 | 46.60 | 46.23 | | CH ₃ | C_2H_5 | Α | 67 | 72 | 53.33 | 53.39 | | CH_3 | n-C ₃ H ₇ | Α | 67 | 69 | 49.48 | 49.73 | | CH ₃ | i-C3H2 | Α | 60 | 58 | 49.48 | 49.61 | | CH_3 | s-C4H9 | Α | 59 | 57 | 46.15 | 46.01 | | CH ₃ | i-C4H9 | В | 65 | 74 | 46.15 | 46.10 | | CH ₃ | neo-C ₅ H ₁₁ | В | 63 | 62 | 43.24 | 43.57 | | CH_3 | C_6H_5 | B | 55 | 49 | 42.10 | 42.19 | All synthesised 1,2,3-trithianes (see Table) were isolated by preparative G. L. C. (SE 30)⁶ and identified by M. S. (molecular ion peak and others corresponding to M—S, M—HS₂, M—HS₃), U.V. ($\lambda_m \sim 265$ nm, independant of the solvent or the nature of the R¹,R²-groups) and ¹H-N.M.R.-spectroscopy (100 MHz). Sulfur analyses were based on the Schöniger combustion-method³. As both 1,2-dithiolanes and 1,2,3-trithianes can be smoothly reduced to 1,3-dithiols by sodium in liquid ammonia 2.4 and as dimesylates can be generated in good yield from the corresponding diols⁵, it is clear that Method **B** may be a very promising intermediate in the conversion diol→dithiol ## Preparation of 1,2,3-Trithianes; General Procedure: Method A: Two solutions, one of freshly distilled sulfur dichloride (0.05 mol) in dry n-pentane (50 ml) and one of the dithiol (0.05 mol) and dry triethylamine (0.1 mol) in dry n-pentane (50 ml), are added slowly together to n-pentane (240 ml), at -75° to -85° (nitrogen atmosphere, and rapid stirring). After the addition is completed, the mixture is allowed to warm to room temperature. After washing with cold water, the solution is dried (Na $_2$ SO $_4$). Method B: Sodium sulfide nonahydrate (0.125 mol) is dissolved in water (45 ml), sulfur (0.375 g-atom) is added, and the mixture heated until a clear, dark red, solution results. A sample (9 ml) of this solution is added to a mixture of a dimesylate (0.125 mol) in hexamethylphosphoric triamide (300 ml). The reaction mixture is heated to 100° for 4 hours and during the first two hours the remaining sodium tetrasulfide-solution is added dropwise. After cooling, the mixture is extracted with *n*-pentane. The extract is dried (Na₂SO₄) and the solvent is distilled of. Received: October 28, 1974 (Revised form: January 22, 1975) ¹ Aspirant of the N.F.W.O. ² H. J. Backer, A. F. Tamsma, Rec. Trav. Chim. Pays-Bas 57, 1183 (1938). ³ J. M. Dominicus, J. L. Wagemans, Mededelingen V. C. V. 1968, ⁴ H. J. Backer, N. Evenhuis, Rec. Trav. Chim. Pays-Bas 56, 129 (1937); 56, 174 (1937). ⁵ L. Fieser, M. Fieser, Reagents for Organic Synthesis, John Wiley and Sons, Inc., New York, 1967, p. 662. ⁶ G. L. C. separation: because of possible reduction of tri- to disulfides, the contact between products and metal at high temperatures was minimised by inserting a glass tube in the injector, using all glass columns and placing a by-pass between column and detector.